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Deviations from a core airway microbiota have been associated with the

development and progression of asthma as well as disease severity. Pet cats

represent a large animal model for allergic asthma, as they spontaneously

develop a disease similar to atopic childhood asthma. This study aimed to

describe the lower airway microbiota of asthmatic pet cats and compare

it to healthy cats to document respiratory dysbiosis occurring with airway

inflammation. We hypothesized that asthmatic cats would have lower airway

dysbiosis characterized by a decrease in richness, diversity, and alterations

in microbial community composition including identification of possible

pathobionts. In the current study, a significant di�erence in airway microbiota

composition was documented between spontaneously asthmatic pet cats and

healthy research cats mirroring the finding of dysbiosis in asthmatic humans.

Filobacterium and Acinetobacter spp. were identified as predominant taxa in

asthmatic cats without documented infection based on standard culture and

could represent pathobionts in the lower airways of cats. Mycoplasma felis, a

known lower airway pathogen of cats, was identified in 35% of asthmatic but

not healthy cats.

This article has been published alongside “Temporal changes of the respiratory

microbiota as cats transition from health to experimental acute and chronic

allergic asthma” (1).

KEYWORDS

respiratory microbiota, inflammatory airway disease, large animal model, 16S rRNA

gene, translational research

Introduction

In humans, asthma is used to describe a group of inflammatory airway diseases

with distinct phenotypes based on the clinical manifestation of the disease and

underpinned by specific endotypes or mechanistic pathways (2). Interactions between

the host immune system and microbiome have recently been recognized as important

contributors to asthmatic endotypes, driving studies of the composition and structure of

the airway microbiota of asthmatic patients to develop a deeper understanding of such

a complex disease (3–6). While the relationship among phenotypes, endotypes, and the

respiratory microbiota is not completely understood (7–9), the respiratory microbiota is

known to play critical roles in the development, regulation, andmaintenance of a healthy

immune system (10–12).
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Further, dysbiosis or alterations in the composition of the

microbial community can contribute to immune dysregulation,

potentially influencing the development of disease as well as

response to treatment (7, 13–15). In a healthy environment,

equilibrium or homeostasis exists, and triggers such as

environmental irritants may lead to pathogen colonization or

alterations in microbial community composition that cause low-

grade inflammation, allowing for bacterial replication, epithelial

damage, and recruitment of immune cells, contributing to a

vicious cycle of inflammation. It is unclear if the dysbiosis

documented in asthma occurs as a result of inflammation

or secondary bacterial infection, or if dysbiosis occurs

first, triggering inflammation, and providing a niche for

opportunistic pathogens or pathobionts to thrive, or both (16).

Differences in microbial community composition between

spontaneously asthmatic and healthy airways of humans (5, 17)

and horses (18, 19) as well as experimentally induced asthma in

mice (20) and cats (1) have been documented. Since cats can

experimentally or spontaneously develop airway eosinophilia,

airway hyperresponsiveness, and airway remodeling analogous

to human allergic asthma, they serve as an important large

animal model for the type 2 high endotype (21, 22). In this study,

we aimed to characterize the lower airway microbiota of pet

cats with spontaneous allergic asthma and compare it to that of

healthy cats.We hypothesized that, as in humans, spontaneously

asthmatic pet cats would have decreased richness and diversity

and significant alterations in the microbial community, and

the potential emergence of possible pathobionts compared to

healthy cats.

Materials and methods

Ethics statement

All studies were performed in accordance with the Guide for

the Use and Care of Laboratory Animals and were approved by

the University of Missouri Institutional Animal Care and Use

Committee (MU IACUC protocol #7891).

Cats

Client-owned pet cats presenting to the University of

Missouri Veterinary Health Center between 2015 and 2019 that

were diagnosed with asthma and had bronchoalveolar lavage

fluid (BALF) samples banked were retrospectively enrolled.

Diagnostic criteria for feline asthma included a history of

clinical signs such as cough and respiratory distress, thoracic

radiographs with evidence of a bronchial pattern and lung

hyperinflation, and BALF cytology containing >7% eosinophils

(23). Signalment, home environment (indoor vs. outdoor),

clinical signs, peripheral eosinophil count, heartworm test

results, serum allergy testing, thoracic radiographic pattern, and

BALF cytology report were extracted from the medical record

when available. A clinical severity score was assigned based upon

a previously published (24) three-point scoring system, namely,

1 = mild (cough alone); 2 = moderate (wheezing or exercise

intolerance); or 3= severe (respiratory distress episodes).

Banked BALF samples from eleven healthy research cats

were used as controls. Control cats were from a research colony

(Comparative Internal Medicine Laboratory, University of

Missouri, Columbia, MO). Cats were housed in large runs with

elevated platforms for climbing and enrichment toys. Access to

food and clean drinking water was provided ad libitum. There

were 6 female and 5 male cats from 2 different litters and

they were housed according to sex. Cats were determined to be

healthy by the absence of respiratory clinical signs, a normal

physical examination by a board-certified veterinary internal

medicine specialist, and a lack of cytologic evidence of infection

or inflammation from BALF samples. Euthanasia was not an

endpoint of the study; all cats were subsequently adopted into

private homes.

Sample collection

All cats, control and client-owned, were anesthetized and

carefully intubated using a sterile 3.5–4 French endotracheal

tube. To collect BALF, a 20ml aliquot of sterile saline was

instilled and aspirated via a sterile 8 French red rubber catheter

that was threaded through the endotracheal tube until it was

gently wedged in the distal airway. Immediately after collection,

all samples were placed on ice and transported to the laboratory.

Promptly after collection, samples were centrifuged to pellet

bacterial cells. The supernatant was discarded and pellets were

resuspended in 800 µl of lysis buffer adapted from Yu et al.

(4% sodium dodecyl sulfate, 50mM EDTA, 500mM NaCl, and

50mM Tris–HCl pH 8.0) (25). All the samples were banked at

−80 ◦C until the end of the study, and DNA was extracted as a

single batch.

DNA extraction, 16S rRNA library
preparation, sequencing, and informatics

DNA from BALF was extracted using the column method

as previously described (26, 27). Library construction and

sequencing were completed at the University of Missouri

DNA Core facility as previously described (26). Assembly,

filtering, binning, and annotation of DNA sequences were

performed at MU Informatics with Quantitative Insights Into

Microbial Ecology 2 (QIIME 2) v2021.2 (28). Sequences were

trimmed from the Illumina adapters with cutadapt (29).

Using DADA2 (30), trimmed forward and reverse reads were

truncated to 150 base pairs, paired, and then denoised into
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FIGURE 1

Alpha diversity metrics including (A) total observed features, (B) within sample richness, (C) Shannon Index, and (D) Simpson Index. Significant

decreases in coverage and richness were observed in asthma compared to healthy cats. Within sample diversity was significantly increased in

asthmatic cats compared to healthy cats. Wilcoxon rank sum test, p-values indicated.

FIGURE 2

Principal coordinate analysis of Jaccard similarity index showing

significant di�erences (p < 0.0001; F = 10.03) in microbial

community composition between healthy and spontaneously

asthmatic cats. Circles represent healthy cats; triangles

represent asthmatic cats and ellipses represent 95% CIs.

unique sequences called Amplicon Sequence Variants (ASVs).

A feature table containing the frequency of each ASV per

sample was rarefied to 11,562 total features per sample,

maximizing the number of subsampled features per sample

and a total number of samples retained for further analysis.

Samples with a total feature number of <1,488 were omitted

from downstream analyses. A taxonomy was assigned to

each unique ASV with a sklearn algorithm (31) using the

QIIME2-provided 99% non-redundant SILVA v132 reference

database of the 515F/806R region of the 16S rRNA gene (28,

32). Code used for sequence processing can be accessed at

https://github.com/mubioinformatics/nf-qimme2 and https://

github.com/ericsson-lab/spontaneous_asthma. Alpha diversity

analysis, principal coordinate analysis (PCoA), and one-way

permutational analysis of variance (PERMANOVA) of Jaccard

distances (1/4 root-transformed data) were performed using the

vegan v2.5-7 (33) package within R v4.1.2 (34).

Statistical analysis

Statistical analysis was performed using Sigma Plot 14.0

(Systat Software Inc., Carlsbad, CA) and R v4.1.2. Normality was

first tested using the Shapiro–Wilk method, and equal variance

was tested using the Brown–Forsyth method. Fischer’s exact

tests were utilized to determine associations. Mann–Whitney
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FIGURE 3

Taxa present in bronchoalveolar lavage fluid—mean relative abundance of taxa present at > 5% in bronchoalveolar lavage fluid collected from

healthy and cats with spontaneous asthma. Families with a relative abundance of <5% are grouped into “Other.” Families with >40% relative

abundance in at least one sample are bolded in the legend and represented by a darker color in the plot.

Rank sum tests were used to test for differences between

sample sites in coverage, richness, and relative abundance

of all taxa at the level of family detected at > 0.5% of

samples. Results are presented as mean ± SEM. PCoA was

used to visualize the relatedness of samples. Enhanced Volcano

(35) was utilized to generate a volcano plot to visualize

which taxa had undergone the most significant changes.

Results were considered statistically significant for p-values

≤ 0.05.

Results

Cats

Twenty-six cats, 12 females and 14 males, all altered,

weighing 4.9 ± 0.19 kg (mean ± SEM) from a variety of

breeds including domestic short hair (n = 18), domestic

long hair (3), Siamese (2), Persian, (1), Maine Coon (1), and

Himalayan (1) were enrolled. Clinical signs on presentation

were reported to be acute (<2 weeks; 6) or chronic (>2

weeks; 20) and included cough (15), wheeze (6), respiratory

distress (5), increased respiratory effort in combination with

the increased respiratory rate (5), increased respiratory effort

alone (3), and exercise intolerance (3). Cats were categorized

as having mild (12), moderate (7), or severe (7) signs based

on the clinical severity score. Ten cats also had upper

airway signs, including nasal discharge (5), sneezing (3),

and stridor (2). In addition to asthma, the cats with upper

airway signs were also diagnosed with chronic rhinitis (3),

nasopharyngeal stenosis (2), and nasal carcinoma (1). None

of the cats tested for heartworm antibodies were positive (n

= 16). BALF culture results were negative in 21/24 and were

not performed in 2/26 cats. In 3 cats, culture was positive

for Stenotrophomonas maltophilia (Pseudomonas maltophilia),

Pseudomonas putida, and an unidentified Pasteurella spp. and

Streptococcus spp. Pasteurella multocida, and Pseudomonas

aeruginosa. Recent drug administration, defined as within 14

days prior to sampling, included antibiotics (4), corticosteroids

(4), or both (2). The 11 control cats were significantly

younger than the asthmatic cats (2.7 ± 0.1 vs. 5.2 ± 0.6

years, respectively; p = 0.016). BALF eosinophil counts in

healthy cats ranged from 2.5% to 6.5% (mean ± SEM;

4.6 ± 0.5%) and were significantly lower compared to

asthmatic cats, which ranged from 11.1% to 71.5% (37.8

± 3.8; p < 0.001). Individual cat data are summarized in

Supplementary Table 1.
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FIGURE 4

Volcano plot highlighting the most abundant families in the lower airways that were significantly di�erent (p < 0.05) and underwent at least a

2-fold change in abundance in asthmatic pet cats compared to healthy cats. The taxa on the top left were more abundant in health, whereas the

taxa on the right were more abundant in asthmatic pet cats.

Coverage and richness in BALF are
significantly lower and diversity higher in
asthmatic vs. healthy cats

Samples of BALF from asthmatic cats had significantly lower

depth of coverage than healthy cats (mean ± SEM of 2,172 ±

92 and 7,441 ± 216 sequences/sample, respectively, p < 0.001),

as well as richness (33 ± 1 and 50 ± 1, respectively; p =

0.019; Figures 1A,B). Asthmatic cats exhibited higher diversity

than healthy cats using Shannon (2.05 ± 9.19 and 1.24 ± 0.05,

respectively; p = 0.0061) and Simpson (0.70 ± 0.05 and 0.44 ±

0.02, respectively; p < 0.001; Figures 1C,D).

Microbial community composition is
significantly altered in asthmatic cats

Principal coordinate analysis (PCoA), used to assess the β-

diversity of microbial communities, showed no overlap between

healthy and asthmatic cats (Figure 2). One-way PERMANOVA

confirmed a significant difference in the microbial community

composition between the two groups (p = 0.0001; F =

10.03). Although the airways were predominated by the phyla

Proteobacteria, Bacteroidetes, and Firmicutes in healthy and

asthmatic cats, there were significant differences in the relative

abundance of these taxa between groups. In healthy compared

to asthmatic cats, changes were primarily attributed to a

decreased relative abundance of Pseudomonadaceae (phylum

Proteobacteria) from 78.3% ± 7.6% to 4.4% ± 0.3% (mean

± SEM); p < 0.001), and an increased relative abundance of

Moraxellaceae (phylum Proteobacteria) from 3.0% ± 0.4% to

24.2%± 0.1% (p< 0.001),Weeksellaceae (phylum Bacteroidetes)

from 0.1% ± 0.01% to 52.4% ± 2.2 % (p < 0.001) and

Chitinophagaceae (phylum Bacteroidetes) from 3.9% ± 1.0% to

22.5% ± 1.2 % (p < 0.001) (Figure 3). A volcano plot was used

to identify the phyla and families that had a significant (p< 0.05)

and at least a 2-fold change in relative abundance between health

and asthma (Figure 4); 13 families met these criteria (Figure 5).

The relative abundance of these taxa, as well as any taxa that were

present in any cat at > 40% at any time point are summarized in

Table 1.

Intra-Group variation in community
composition within asthmatic cats was
observed

In comparison to healthy cats, in which Pseudomonadaceae

(phylum Proteobacteria) was the dominating taxon, asthmatic

cats had a more variable composition of their microbial
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FIGURE 5

Box plots of families that were significantly di�erent including those with a greater than two-fold change or were significantly di�erent in

healthy compared to asthmatic pet cats.

communities. Sixty-one percent of asthmatic cats (16/26) had

one predominant taxon, comprising more than 40% of the

population. Relative abundance of Filobacterium spp. (family

Chitinophagaceae) ranged from 48.1% to 97.1% in eight cats,

Acinetobacter spp. (family Moraxellaceae) ranged from 42.4%

to 90.4% in six cats, and there was one cat each with

relative abundances of 59.2% Stenotrophomonas spp. (family

Xanthomonadaceae) and Pasteurellaceae at 39.5%, respectively.

The latter two cats had positive BALF cultures in agreement

with the predominant taxa at the taxonomic level of ASV and

family respectively (Supplementary Table 2). Additionally, four

other cats had a predominance of Acinetobacter spp. ranging

from 25.2% and 37.3% relative abundance.

Potential pathogens were detected in
asthmatic cats

Filobacterium spp. were sequenced in 2/11 (18%) healthy

cats with relative abundances of 6.4 and 36.0% compared to

12/26 (46%) asthmatic cats, with a relative abundances of

2.2 to 97.1%. Family Mycoplasmataceae, was not sequenced

in any healthy cat but was sequenced in 11/26 (42%) of

asthmatic cats with relative abundance ranging from 0.1 to

24.2%, including the three cats with positive BALF cultures.

Annotated to the ASV level, 5/11 cats had Mycoplasma

felis, 2/11 had Ureaplasma felinum, and 4/11 had both

taxa identified.
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TABLE 1 Relative abundance (mean ± SEM%) of taxa present in any BALF sample at a minimum of 0.5% in either health or asthma that underwent at

least a 2-fold and significant change (p < 0.05) when comparing healthy and asthmatic cats or comprised more than 40% relative abundance in any

sample.

Phylum

Family

Genus Species Health Asthma p-value Direction of change

Proteobacteria 91.4 ± 0.9 50.6 ± 1.2 <0.001 H

Pseudomonadaceae 78.3 ± 0.8 2.0 ± 0.1 <0.001 H

Pseudomonas 73.5 ± 0.8 0.2 ± 0.02 <0.001 H

Sphingomonadaceae 4.5 ± 0.1 0.8 ± 0.05 <0.001 H

Moraxellaceae 3.0 ± 0.1 24.7 ± 1.0 0.004 N

Acinetobacter 2.99 ± 0.1 23.5 ± 1.0 0.004 N

Xanthomonadaceae 2.3 ± 0.1 4.5 ± 0.4 0.006 N

Stenotrophomonas 0.0 ± 0.0 2.5 ± 0.5 0.003 N

Burkholderiaceae 1.3 ± 0.03 0.8 ± 0.03 0.02 H

Xanthobacteraceae 0.6 ± 0.01 0.1 ± 0.02 <0.001 N

Rhizobiaceae 0.1 ± 0.01 5.4 ± 0.4 0.007 N

Nitrosomonadaceae 0.0 ± 0.0 1.0 ± 0.1 0.01 N

Pasteurellaceae 0.1 ± 0.01 3.4 ± 0.3 0.02 N

Bacteroidetes 4.3 ± 1.0 32.5 ± 1.1 <0.001 N

Weeksellaceae 0.1 ± 0.01 0.8 ± 0.05 0.039 N

Chitinophagaceae 3.9 ± 1.0 23.8 ± 1.3 0.03 N

Filobacterium 3.9 ± 1.0 23.8 ± 1.3 0.03 N

Muribaculaceae 0.04 ± 0.01 5.7 ± 0.4 0.001 N

Porphyromonadaceae 0.03 ± 0.01 1.5 ± 0.1 0.018 N

Flavobacteriaceae 0.05 ± 0.01 0.6 ± 0.0 0.023 N

Sphingobacteriaceae 0.1 ± 0.004 0.05 ± 0.0 0.017 H

Firmicutes 1.8 ± 0.1 7.9 ± 0.4 0.0039 N

Streptococcaceae 0.4 ± 0.02 2.0 ± 0.2 0.016 N

Staphylococcaceae 0.4 ± 0.02 1.1 ± 0.01 0.004 N

Lachnospiraceae 0.1 ± 0.01 1.9 ± 0.1 0.0009 N

Clostridiaceae 1 0.1 ± 0.01 0.2 ± 0.02 0.033 N

Actinobacteria 2.3 ± 0.1 5.1 ± 0.3 0.445

Propionibacteriaceae 1.6 ± 0.1 2.4 ± 0.2 0.003 N

Corynebacteriaceae 0.2 ± 0.01 0.8 ± 0.06 0.015 N

Microbacteriaceae 0.2 ± 0.03 1.8 ± 0.2 0.022 N

Actinomycetaceae 0.12 ± 0.01 0.06 ± 0.01 0.009 H

Fusobacteria 0.15 ± 0.01 1.02 ± 0.1 0.0039 N

Fusobacteriaceae 0.14 ± 0.01 0.07 ± 0.1 0.044 H

Tenericutes 0.0 ± 0.0 1.8 ± 0.17 0.003 N

Mycoplasmataceae 0.0 ± 0.0 1.8 ± 0.2 0.004 N

Mycoplasma felis 0.0 ± 0.0 1.7 ± 0.2 0.004 N

Ureaplasma felinum 0.0 ± 0.0 0.1 ± 0.01 0.092

The arrows (N,H) indicate the direction of the change in asthma relative to health.

Discussion

Spontaneous feline asthma, estimated to affect 1–5% of the

pet cat population (36), is driven by T helper 2 cells, resulting

in airway eosinophilia, airway hyperresponsiveness, and airway

remodeling. It most closely resembles childhood-onset (type

2 high) asthma in humans (2) and has been proposed as a

large animal model with relevance to One Health (22). The

microbial composition and community structure of the lower

airways of humans significantly differ between asthmatic and
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healthy states (17, 37) supporting the concept that respiratory

dysbiosis occurs in human asthma. Similarly, in this study,

respiratory dysbiosis was noted in spontaneously asthmatic

cats and was characterized by decreased richness, increased α-

diversity, and changes in themicrobial community composition,

including intra-group heterogeneity of predominating taxa and

presence of taxa likely to be pathobionts or opportunistic

pathogens. The respiratory microbiota may be influenced by

environmental contributors (38), medications [antibiotics (39)

or corticosteroids (40)], or even perturbations at distant mucosal

sites such as the gut (41, 42). It is still unclear if altered

microbial community composition is caused by or contributes

to airway inflammation, but knowledge of altered bacterial

populations in asthmatic airways could open the door for novel

targeted therapies. Comprehensive characterization of microbial

communities in the respiratory tract is only possible with

sequencing, as evidenced by the high proportion of negative

cultures in asthmatic cats corresponding to rich sequenced

taxa. Compared to healthy cats and in parallel with human

asthmatics (9, 17, 43), richness in asthmatic cats decreased.

Many studies of human asthmatics cite inconsistent changes

[increases (44, 45) or decreases (46)] in airway bacterial

diversity as a key feature of dysbiosis compared with health.

Diversity metrics vary across studies and include numbers

of unique taxa present in each sample reflecting richness

and evenness (α-diversity; Shannon and Simpson indices) or

how many different taxa are shared between samples (β-

diversity; Jaccard and Bray Curtis dis(similarity) indices). In

spontaneously asthmatic cats compared to healthy cats, the

Shannon and Simpson indices showed significantly increased

alpha diversity. Taking into consideration the influence that

different bacteria taxa may have on the microenvironment (e.g.,

microbial factors leading to disruption of immune maturation),

β-diversity might provide a better insight into understanding

the lower airway microbiota when comparing healthy and

diseased states, especially when considering what taxa are

significantly altered in disease or present in health and absent

in disease. These changes in diversity may provide insight into

which organisms are supportive of a “healthy” environment,

potentially providing an avenue for intervention, in the way

of replenishing or supporting the taxa associated with health.

Using the Jaccard dissimilarity index, healthy and asthmatic

cats had no overlap in microbial communities, and asthmatic

cats had near obliteration of the Pseudomonadaceae family

(phylum Proteobacteria), the predominant taxa found in healthy

feline airways (27, 47). It is unclear if alterations in microbial

community composition set the stage to initiate allergic

airway inflammation culminating in spontaneous disease or

if allergic asthma results in respiratory dysbiosis, further

exacerbating and perpetuating the aberrant immune response.

Certain identified pathobionts gaining a foothold in asthmatic

airways, including Filobacterium and Acinetobacter spp., were

noted in the current study. Additionally, Mycoplasma felis, a

known lower airway pathogen of cats (48, 49) was identified

in 35% of asthmatic but not in healthy cats, supporting

that in addition to pathobionts, some opportunistic bacteria

may also contribute to the respiratory dysbiosis observed in

this study.

Asthma is a multifactorial heterogenous inflammatory

airway disease classified both according to phenotype (clinical

presentation) and endotype (distinct mechanistic pathways) (2,

50). While not universally recognized, two phenotypes are noted

in cats, namely, cough variant only or cough in combination

with clinical signs of airflow obstruction, including wheeze or

episodic respiratory distress (51). Spontaneous feline asthma

is orchestrated by T-helper 2 cells with allergen-specific IgE,

leading to airway hyperresponsiveness and structural changes of

the airways (22), modeling the atopic phenotype and T2 high

endotype described in humans (2). Endotype characterization

is important for therapy and prognosis and necessitates an

understanding of a number of determinants, including the

microbiome (50, 52, 53). Initial studies of the respiratory

microbiota in humans showed the microbial composition and

community structure of the lower airways were significantly

different between asthmatic and healthy humans; however,

these studies considered asthma as a single entity (17, 37,

54). More recently, the microbiota composition has been

associated with disease severity and specific inflammatory

pathways in humans with asthma underscoring the importance

of recognizing phenotypic and endotypic characteristics (7,

55–57). Whether cats with different phenotypes have yet

unrecognized differences in endotypes deserves further study

with a more thorough immunologic evaluation but could be

supported by the heterogeneity between bacterial taxa within

the asthmatic cats of this study. The respiratory microbiota

has been shown to help maintain mucosal homeostasis (10,

11) with microbiota being dynamic and competitive as they

interact with the mucosal immune system (16). In health,

the respiratory microbiota may directly inhibit pathogens

from causing disease by a number of mechanisms, including

competition for nutrients, biofilm formation, disruption of

signaling molecules, direct bactericidal activity, and spatial

occlusion (58). When homeostasis is disrupted by an infection,

steroids, antibiotics, or other environmental triggers, a dysbiotic

state can be established, which can foster a permissive

environment for certain organisms to thrive and contribute

to that dysbiotic state (10, 16). Certain commensal organisms

exerting specific effects on the host mucosal immune system

associated with the development of clinical disease are termed

pathobionts. It has been postulated that treating dysbiosis by

shifting the microbial community composition toward “health”

or a homeostatic state may provide a more holistic approach

than using antimicrobials to target an organism identified

via standard culture techniques (16). While dysbiosis was

demonstrated in all the asthmatic cats in this cohort, only 3 had

positive bacterial cultures, highlighting the poor utility of this
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test alone to understand the impact of microbes in this lower

airway disease of cats.

The majority of cats (69%) enrolled in this study had

a predominance by sequencing of either Filobacterium spp.

or Acinetobacter spp. Filobacterium spp., sometimes referred

to as cilia-associated respiratory bacillus (CARB), has been

recognized as a lower airway pathogen in several animal species

(59–64). The presence of organisms consistent with CARB

identified by light and electron microscopy was noted in a cat

with an anesthetic death having bronchitis and bronchiolitis

as well as in healthy cats (65), and in a larger group of

cats with chronic bronchitis35. Identifying CARB as part of

the healthy cat microbiota in a low relative abundance (3.9%

± 1.0%) and documenting the significant increase in relative

abundance in asthmatic cats (23.8%± 1.3%, p= 0.03), supports

the concept of Filobacterium spp. as a pathobiont. Similarly,

Acinetobacter spp., which has been detected in healthy research

cats (66) and cats with experimentally induced asthma (1),

were noted to have a significant increase in relative abundance

when comparing healthy to asthmatic cats in the current study

(2.99%± 0.1% and 23.5% ± 1.0%, respectively; p= 0.004). Like

Filobacterium spp., Acinetobacter spp. may be a pathobiont of

the feline lower airways and perhaps changes in the lower airway

microenvironment secondary to inflammation set the stage for

them to thrive and potentially contribute to the pathogenesis

of asthma. Mycoplasmas are considered commensals of the

upper airways of cats and play a role in secondary infections of

the upper respiratory tract and conjunctiva (67, 68). However,

Mycoplasma spp. has not been detected in the lower airways

of healthy cats using standard culture (69), PCR (23, 66), or

microbiota analysis (1, 27, 47). In humans, infections with

Mycoplasma can precede the onset of asthma, exacerbate

symptoms and complicate the management of the disease,

(70, 71) and successful treatment has led to improvement of lung

function in asthmatic patients (72). While several studies have

estimated the prevalence of Mycoplasma to be between 15%(48)

and 35% (49) in cats with respiratory disease, Mycoplasma

spp. has not been detected using sequencing in a cohort of

research cats before or after experimental asthma induction (1).

In contrast, it was detected in 9/26 (35%) of spontaneously

asthmatic cats in the current study; 6 of which had moderate to

severe clinical signs. While not technically fitting the definition

of a pathobiont, as Mycoplasma is not a commensal symbiont

of the lower airways, it stands to reason that either Mycoplasma

is a true opportunistic infection, or it may populate the lower

airways via extension from the upper airways to take advantage

of an altered commensal environment (73). Considering the

associations between Mycoplasma spp. detection and asthma

in humans and the high prevalence of this study, testing for

Mycoplasma in asthmatic cats is recommended as targeted

therapy may improve clinical outcomes.

This study demonstrates dysbiosis of the lower respiratory

microbiota in pet cats with spontaneous asthma and represents

the first step in exploring the role that some taxa may

play in the pathophysiology of feline asthma. Understanding

of the precise effects of the lower airway microbiota on

pulmonary health and the mechanisms by which it can

influence or regulate the immune system is limited. Future

studies including larger cohorts of pet cats with spontaneous

asthma, by characterizing the microbiota with complimentary

metabolomics and immune assays could further our knowledge

in understanding the mechanisms by which the microbiota

interacts with the host immune system. A larger cohort

could allow for further characterization of the potential

influence of steroids, antibiotics, or other comorbid conditions

may have on the respiratory microbiota of asthmatic pet

cats. This in turn may allow the development of novel

therapeutic or management strategies in asthmatic cats which

may serve as a large animal model for type 2 high asthma

in humans.
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