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Abstract

We learn about population history and underlying evolutionary biology through patterns of

genetic polymorphism. Many approaches to reconstruct evolutionary histories focus on a

limited number of informative statistics describing distributions of allele frequencies or pat-

terns of linkage disequilibrium. We show that many commonly used statistics are part of a

broad family of two-locus moments whose expectation can be computed jointly and rapidly

under a wide range of scenarios, including complex multi-population demographies with

continuous migration and admixture events. A full inspection of these statistics reveals that

widely used models of human history fail to predict simple patterns of linkage disequilibrium.

To jointly capture the information contained in classical and novel statistics, we implemented

a tractable likelihood-based inference framework for demographic history. Using this

approach, we show that human evolutionary models that include archaic admixture in Africa,

Asia, and Europe provide a much better description of patterns of genetic diversity across

the human genome. We estimate that an unidentified, deeply diverged population admixed

with modern humans within Africa both before and after the split of African and Eurasian

populations, contributing 4 − 8% genetic ancestry to individuals in world-wide populations.

Author summary

Throughout human history, populations have expanded and contracted, split and merged,

and exchanged migrants. Because these events affected genetic diversity, we can learn

about human history by comparing predictions from evolutionary models to genetic data.

Here, we show how to rapidly compute such predictions for a wide range of diversity mea-

sures within and across populations under complex demographic scenarios. While widely

used models of human history accurately predict common measures of diversity, we show

that they strongly underestimate the co-occurence of low frequency mutations within

human populations in Asia, Europe, and Africa. Models allowing for archaic admixture,

the relatively recent mixing of human populations with deeply diverged human lineages,

resolve this discrepancy. We use such models to infer demographic models that include

both recent and ancient features of human history. We recover the well-characterized

admixture of Neanderthals in Eurasian populations, as well as admixture from an as-yet

unknown diverged human population within Africa, further suggesting that admixture
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with deeply diverged lineages occurred multiple times in human history. By simulta-

neously testing model predictions for a broad range of diversity statistics, we can assess

the robustness of common evolutionary models, identify missing historical events, and

build more informed models of human demography.

Introduction

The study of genetic diversity in human populations has shed light on the origins of our spe-

cies and our spread across the globe. With the growing abundance of sequencing data from

contemporary and ancient humans, coupled with archaeological evidence and detailed models

of human demography, we continue to refine our understanding of our intricate history.

Accurate demographic models also serve as a statistical foundation for the identification of loci

under natural selection and the design of biomedical and association studies.

Whole-genome sequencing data are high dimensional and noisy. In order to make infer-

ences of history and biology, we rely on summary statistics of variation across the entire

genome and in many sequenced individuals. One such statistic that is commonly used for

demographic inference is the distribution of SNP allele frequencies in one or more popula-

tions, called the sample or allele frequency spectrum (AFS) [1–4]. AFS-based inference has

proven to be a powerful inference approach, yet it assumes independence between SNPs and

therefore ignores information contained in correlations between neighboring linked loci,

which is also referred to as linkage disequilibrium (LD).

Measures of LD are also informative about demographic history, mutation, recombination,

and selection. A separate class of inference methods leverage observed LD across the genome

to infer local recombination rates [5–8] and demographic history [9–12].

While two-locus statistics have been extensively studied [13–22], most of this work focused

on a single population at equilibrium demography, precluding their application to realistic

demographic scenarios. Recently, approaches for computing the full two-locus sampling distri-

bution for a single population with non-equilibrium demography were developed via the coa-

lescent [8] or a numerical solution to the diffusion approximation [23], allowing for more

robust inference of fine-scale recombination rates and single population demographic history.

However, there remain significant limitations. Computing the full two-locus haplotype fre-

quency spectrum is computationally expensive, hindering its application to inference prob-

lems that require a large number of function evaluations. Alternatively, computationally

efficient low-order equations for specific LD statistics have been proposed [12, 14], but these

have seen limited application and only to single populations.

In this article, we show that the moment system of Hill and Robertson [14] can be expanded

to compute a large family of one- and two-locus statistics with flexible recombination, popula-

tion size history, and mutation models. Additionally, we show that the system can be extended

to multiple populations with continuous migration and discrete admixture events, and that

low order statistics can be accurately and efficiently computed for tens of populations with

complex demography.

We use this moment system together with likelihood-based optimization to infer multi-

population demographic histories. We reexamine how well widely used models of human

demographic history recover observed patterns of polymorphism, and find that these models

underestimate LD among low frequency variants in each population, sometimes by a large

amount. The inclusion of admixture from deeply diverged lineages in both Eurasian and Afri-

can populations resolves these differences, and we infer an archaic lineage contributed * 6
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− 8% genetic ancestry in two populations in Africa. By jointly modeling a wide range of sum-

mary statistics across human populations, we can reveal important aspects of our history that

are hidden from traditional analyses using individual statistics.

Models and methods

To compute a large set of summary statistics for genetic data, we use mathematical properties

of the Wright-Fisher model that are related to the look-down model of Donnelly and Kurtz

[24, 25]. To illustrate this process, we first build intuition through familiar equations from

population genetics and then explain how these fit within a larger hierarchy of tractable

models.

In this section, we therefore begin with evolution equations for heterozygosity and the fre-

quency spectrum, then turn to recursions for low-order LD statistics and show that the classi-

cal Hill-Robertson [14] system for D2 can be extended to arbitrary moments of D, multiple

populations, and even the full sampling distribution of two-locus haplotypes. Mathematical

details and expanded discussion for each result are given in S1 Appendix. Throughout this

article, we assume that human populations can be described, approximately, by a finite num-

ber of randomly mating populations. We also assume an infinite-sites model in the main text

and describe a reversible mutation model in Appendix S1.1.3.

Motivation: Single site statistics and the allele frequency spectrum

The most basic measure of diversity is expected heterozygosity E½H�, or the expected number

of differences between two haploid copies of the genome. Given E½H� at time t, population size

N(t) and mutation rate u, Wright [26] showed that enumerating all distinct ways to choose

parents among two lineages leads to a recursion for E½H�,

E½H�tþ1
¼ 1 �

1

2NðtÞ

� �

E½H�t þ 2u: ð1Þ

To leading order in 1/N and u, two copies of the genome are different if their parents were dis-

tinct (which has probability 1 � 1

2N) and carried different alleles (which has probability E½H�t),
or if there was a mutation along one of two lineages (which has probability 2u).

Heterozygosity is a low-order statistic: we require only two copies of the genome to estimate

E½H� genome-wide. More samples provide additional information that can be encoded in the

sample AFS Fn, the distribution of allele counts within a sample of size n. Specifically, Fn(i) is

the number (or proportion) of loci where the derived allele is observed in i copies out of n
samples.

A standard forward approach to compute Fn involves numerically solving the partial differ-

ential equation for the distribution of allele frequencies in the full population and then sam-

pling from this distribution for the given sample size n (e.g. Gutenkunst et al. [2]). By

enumerating mutation events and parental copying probabilities in a sample of size n, Jouga-

nous et al. [3] showed that Eq 1 can be generalized to a recursion for {Fn(i)}i=0,. . .,n (Fig 1).

E½H� can be seen as a special case equal to F2(1), the i = 1 bin in the size n = 2 frequency spec-

trum. These recursions can also be derived as moment equations for the diffusion approxima-

tion [3, 27, 28].

Two-locus statistics

We will use this same intuition for the two-locus theory. First consider the model for two loci

that each permit two alleles: alleles A/a at the left locus, and B/b at the right. There are four

Models of archaic admixture and recent history from two-locus statistics
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possible two-locus haplotypes, AB, Ab, aB, and ab, whose frequencies sum to 1 in the popula-

tion. LD between two loci is measured as the covariance of their allele frequencies:

D ¼ fABfab � fAbfaB:

Therefore D can also be interpreted as the probability of drawing two lineages from the popu-

lation and observing one lineage of type AB and the other of type ab, minus the probability of

observing the two cross types Ab and aB. As such, E½D� is a two-haplotype statistic, meaning

we require just two haploid copies of the genome (or a single phased diploid genome) to esti-

mate genome-wide E½D�, in the same way that the expected heterozygosity E½H� is a two-sam-

ple statistic of single-site variation.

Moment equations for D and D2. Enumerating possible copying, recombination, and

mutation events for two lineages also leads to a well-known recursion for E½D� [13]. The possi-

bility of sharing a common parent from the previous generation leads to the same 1

2N decay

familiar from Eq 1. E½D� also decays due to recombination with rate proportional to the proba-

bility r of a recombination event between two loci in a given generation. Throughout, we

assume r� 1, so that higher order terms may be ignored. For loosely linked or unlinked

linked loci (r = 1/2), higher order terms must be considered [14].

To leading order in r, u, and 1

2N, we have

E½D�tþ1
¼ 1 �

1

2NðtÞ
� r

� �

E½D�t: ð2Þ

Mutation doesn’t contribute to E½D� because any mutation event is equally likely to contribute

positively or negatively to the statistic. As a result, D is expected to be zero across the genome.

Fig 1. Hierarchy of even-order moments of Wright-Fisher evolution. Expected statistics under neutral Wright-Fisher

evolution depend on equal or lower-order statistics in the previous generation, allowing for a hierarchy of closed

recursion equations. Left: single-site statistics are represented as the entries in the size-n AFS,Fn, and depend only on

same-order statistics. Right: the corresponding two-locus statistics, including the Hill-Robertson system for E½D2�, rely on

statistics of the same or lower order. Closed recursions can be found for any given E½Dm�, leading to a sparse, linear system

of ODEs. We denote π2 = p(1 − p)q(1 − q), z = (1 − 2p)(1 − 2q), and σi = pi(1 − p)i + qi(1 − q)i. Arrows indicate

dependence of moments and highlighted moments indicate classical recursions. Odd-order moments are shown in Fig

A1. Here we are particularly interested in such closed recursions in multi-population settings.

https://doi.org/10.1371/journal.pgen.1008204.g001
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However, the second moment E½D2� is positive. Hill and Robertson [14] found a recursion

for a triplet of statistics including E½D2�, which we write as

y ¼

E½D2�

E½Dð1 � 2pÞð1 � 2qÞ�

E½pð1 � pÞqð1 � qÞ�

0

B
B
B
@

1

C
C
C
A
;

where p is the allele frequency of A, and q is the allele frequency of B. The recursion is

ytþ1
� yt ¼ ðDNðtÞ þRrÞyt; ð3Þ

where D and R are matrix operators for drift and recombination, respectively. To leading

order in 1

2N and r, these take the form

DNðtÞ ¼
1

2NðtÞ

� 3 1 1

4 � 5 0

0 1 � 2

0

B
@

1

C
A;

and

Rr ¼ r

� 2 0 0

0 � 1 0

0 0 0

0

B
@

1

C
A:

The three statistics in the Hill-Robertson system have a natural interpretation. E½D2� is the

variance of D and has received plenty of attention over the years. The second statistic includes

a term z = (1 − 2p)(1 − 2q) whose magnitude is largest when there are rare alleles at both loci,

and which is positive when p and q both correspond to the minor allele (or both to the major

allele). Thus E½Dð1 � 2pÞð1 � 2qÞ� ¼ E½Dz�measures positive covariance among low fre-

quency variants. Fig 2A–2C shows that the decay of E½D2� and E½Dz� are sensitive to demo-

graphic history. Fig A2 in S1 Appendix shows how the bulk of the Dz statistic is contributed by

pairs of variants where the rarest allele has frequency between 2 and 20%, while common vari-

ants comprises the bulk of D2.

E½p2� ¼ E½pð1 � pÞqð1 � qÞ� is the joint heterozygosity across pairs of SNPs. If we sample

four haplotypes from the population, this is proportional to the probability that the first pair

differ at the left locus, and the second pair differ at the right locus.

The applications in this article focus on generalizing the Hill-Robertson equations to multi-

population settings. However, we first outline generalizations to high-order moments and

non-neutral evolution, leaving theoretical developments and simulations to the Appendix.

Generalizing to higher moments of D. The existence of tractable higher-order moment

equations for one-locus statistics [3] suggests the existence of a similar high-order system for

two-locus statistics. Higher moments of D provide additional information about the distribu-

tion of two-locus haplotypes. Appendix S1.1 shows that the Hill-Robertson system can be

extended to compute any moment of D, and presents recursions for those systems of arbitrary

order Dm that closes under drift, recombination, and mutation.

This family of recursion equations takes a form similar to the D2 system: the evolution of

E½Dm� requires E½Dm� 1z� and E½Dm� 2p2�, with each of those terms depending on additional

terms of the same order and smaller orders (Fig 1). For any order m, Appendix S1.4.1 shows

the system closes and forms a hierarchy of moment equations, in that the Dm recursion

Models of archaic admixture and recent history from two-locus statistics
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contains the Dm−2 system, which itself contains the Dm−4 system, and so on (Fig A1 in S1

Appendix). Just as the Wright equation for heterozygosity generalizes naturally to equations

for the more informative distribution of allele frequency [3], the Hill and Robertson equations

for E½D� and E½D2� generalize to informative higher-order LD statistics.

Generalizing to arbitrary two-locus haplotype distribution. Given the analogy between

the frequency spectrum and the Hill-Robertson equations, it is natural to study the connection

between the moment equations for E½Dn� and the evolution of the two-locus haplotype fre-

quency distribution Cn(fAB, fAb, faB, fab).
While classical approaches for computing Cn [18, 20] were limited to neutrality and steady-

state demography, recent coalescent and diffusion developments allow forCn to be computed

under non-equilibrium demography and selection [8, 23]. These approaches are computation-

ally expensive and limited to one population, as Cn has size
ðnþ1Þðnþ2Þðnþ3Þ

6
, and the P-population

distribution grows asymptotically as n3P.

Generalizing the approach of Jouganous et al. [3], we can write a recursion equation on the

entries of Cn under drift, mutation, recombination, and selection at one or both loci (Appen-

dix S1.3). As expected, this recursion does not close under selection: to find Cn at time t + 1,

we require Cn+1 and Cn+2 at time t. It also does not close under recombination, requiring a

closure approximation. Using the same closure strategy for selection and recombination, how-

ever, we can approximate the entries of Cn+1 and Cn+2 as linear combinations of entries inCn

and obtain a closed equation. This approach provides accurate approximation for moderate n
under recombination and selection (Appendix S1.3.5) that represent a 10 to 100-fold speedup

over the numerical PDE implementation in [23] (Table A1 in S1 Appendix). However, closure

is inaccurate for small n.

By contrast to the full two-locus model, equations for moments of D close under recombi-

nation because the symmetric combination of haplotype frequencies that define D ensures the

Fig 2. LD curves are sensitive to demography. Demographic histories shown in (A) affect statistics in the Hill-Robertson system and their

dependance on recombination distance (B-C). Both the amplitude and shape of the LD curves differ between demographic models for (B)

E½D2� and (C) E½Dz� ¼ E½Dð1 � 2pÞð1 � 2qÞ�. (D) To illustrate the effect of admixture on LD curves, we consider two populations in isolation

for 2N generations, followed by an admixture event where the focal population receives 1% of lineages from the diverged population. (E) E½D2�

curves are largely unaffected by this low level of admixture. (F) However, E½Dz� is immediately and strongly elevated following admixture, and

remains significantly elevated for prolonged time T (in units of 2N generations) since the admixture event.

https://doi.org/10.1371/journal.pgen.1008204.g002
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cancellation of higher-order terms (Appendix S1.1.2). This makes the moments of D particu-

larly suitable for rapid computation of low-order statistics over a large number of populations.

The Hill-Robertson system does not close, however, if one or both loci are under selection.

Appendix S1.1.4 considers a model where one of the two loci is under additive selection. We

derive recursion equations for terms in the E½D2� system and describe the moment hierarchy

and a closure approximation, though we leave its development to future work. In the following

we focus on neutral evolution.

Multiple populations

While a large body of work exists for computing expected LD in a single population, little

progress has been made toward extending these models to multiple populations. Forward

equations for the full two-locus sampling distribution become computationally intractable

beyond just a single population, even with the moment-based approach described above.

Here, we extend the Hill-Robertson system to any number of populations, allowing for popula-

tion splits, admixture, and continuous migration.

Motivation: Heterozygosity across populations. To motivate our derivation of the

multi-population Hill-Robertson system and provide intuition, we begin with a model for het-

erozygosity across populations with migration. With two populations we consider the cross-

population heterozygosity, E½H12� ¼ E½p1ð1 � p2Þ� þ E½p2ð1 � p1Þ�, where pi and qi are allele

frequencies at the left and right loci, respectively, in population i. This is the probability that

two lineages, one drawn from each population, differ by state. At the time of split between pop-

ulations 1 and 2, E½H1� ¼ E½H2� ¼ E½H12�. Because coalescence between lineages in different

populations is unlikely, E½H12� is not directly affected by drift. In the absence of migration and

under the infinite-sites assumption used here, this statistic increases linearly with the mutation

rate over time (Fig A3 in S1 Appendix).

With migration, the evolution of E½H12� also depends on E½H1� and E½H2�. We define the

migration rate m12 to be the probability that a lineage in population 2 has its parent in popula-

tion 1. Assuming mij� 1, the probability that both lineages in E½H12� come from population 1

is m12 (to leading order), in which case E½H12�tþ1
is equal to E½H1�t, and the probability that

both come from population 2 is m21. Then to leading order in mij, we have

E½H12�tþ1
¼ m12E½H1�t þm21E½H2�t þ ð1 � m12 � m21ÞE½H12�t:

Similar intuition leads to recursions for E½H1� and E½H2� under migration, and this system eas-

ily extends to more than two populations.

The Hill-Robertson system with migration. We take the same approach to determine

transition probabilities in the multi-population Hill-Robertson system. Suppose that at some

time, a population splits into two populations. At the time of the split, expected two-locus sta-

tistics (D2, Dz, π2) in each population are each equal to those in the parental population at the

time of split (Appendix S1.2.1). Additionally, the covariance of D between the two populations,

E½D1D2�, is initially equal to E½D2� in the parental population. In the absence of migration,

Hill-Robertson statistics in each population evolve according to Eq 3, and

E½D1D2�tþ1
¼ 1 �

1

2N1ðtÞ
�

1

2N2ðtÞ
� 2r

� �

E½D1D2�t: ð4Þ

With migration, additional moments are needed to obtain a closed system. These additional

terms take the same general form as the original terms in the Hill-Robertson system, but

include cross-population statistics, analogous to H12 in the heterozygosity model with
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migration. Again using y to denote bases of Hill-Robertson moments, this basis is

y ¼

E½DiDj�

E½Dizj;k�

E½p2ði; j; k; lÞ�

E½Hi;j�

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; 1 � i; j; k; l � P; ð5Þ

where P is the number of populations, and we slightly abuse notation so that Di Dj stands in

for all index permutations (D2
1
, D2

2
, and D1 D2 in the two-populations case). We derive transi-

tion probabilities under continuous migration in Appendix S1.2.2 leading to the closed recur-

sion,

ytþ1
� yt ¼ ðDNðtÞ þMm þRr þ UuÞyt; ð6Þ

where D, M, R, and U are sparse matrices for drift, migration, recombination and mutation

that depend on the number of populations, population sizes N(t), and migration rates m.

Admixture. Patterns of LD are sensitive to migration and admixture events, and low

order LD statistics are commonly used to infer the parameters of admixture events [10, 29]. A

well-known result (e.g., example 2.7 in [30]) is that D in an admixed population can be non-

zero even when D is zero in both parental populations if allele frequencies differ between the

two parental populations. This is seen by enumerating all possible combinations of haplotype

sampling when a fraction f of lineages were contributed by population 1, and 1 − f by popula-

tion 2 (Appendix S1.2.3). More generally, immediately following the admixture event, the

expectation E½Dadm� in the admixed population is

E½Dadm� ¼ fE½D1� þ ð1 � f ÞE½D2� þ f ð1 � f ÞE½d�; ð7Þ

where δ = (p1 − p2)(q1 − q2) [31].

To integrate the multi-population D2 system after an admixture event, we require E½D2
adm�

and other second order terms in the basis (5) involving the admixed population. Using the

same enumeration approach as for Eq 7, the expectation immediately following the admixture

event is

E½D2
adm� ¼ f 2E½D2

1
� þ ð1 � f Þ2E½D2

2
� þ 2f ð1 � f ÞE½D1D2�

þ2f 2ð1 � f ÞE½D1d� þ 2f ð1 � f Þ2E½D2d� þ f 2ð1 � f Þ2E½d2
�:

ð8Þ

Each other required term can be found in a similar manner (Appendix S1.2.3). In this way, the

set of moments may be expanded to include the admixed population and integrated forward

in time using Eq 6.

Numerical implementation

We rescale time by 2Nref generations (Nref is an arbitrary reference population size, often the

ancestral population size), so that the recursion can be approximated as a differential equation

_y ¼ ðDνðtÞ þM ~m þRr=2 þ Uy=2Þy; ð9Þ

where ν are the relative population sizes at time t (νi(t) = Ni(t)/Nref), ~m are the population size-

scaled migration rates 2Nrefmij, ρ = 4Nrefr, and θ = 4Nrefu. Each matrix is sparse, and this equa-

tion can be solved efficiently using a standard Crank-Nicolson integration scheme. Our imple-

mentation allows users to define general models with standard demographic events

Models of archaic admixture and recent history from two-locus statistics
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(migrations, splits and mergers, size changes, etc.) similar to the interface familiar to @a@i
and moments [2, 3]. A single evaluation of the four-population model shown in Fig A4 in S1

Appendix can be computed in roughly 0.1 second. We packaged our method with moments
[3] as moments.LD, a python module that computes expected statistics and performs likeli-

hood-based inference from observed data (described below), available at bitbucket.org/
simongravel/moments.

Validation. We validated our numerical implementation and estimation of statistics from

simulated genomes using msprime [32]. Expectations for low-order statistics match closely

with coalescent simulations. For example, Fig A4 in S1 Appendix shows the agreement for a

four population model with non-constant demography, continuous migration, and an admix-

ture event, for which we computed expectations using moments.LD that matched estimates

from msprime. While approximating expectations from msprime required the time-con-

suming running and parsing of many simulations, expectations from moments.LD were

computed in seconds on a personal computer.

Data and inference

Genotype data. Computing D using the standard definition requires phased haplotype

data (Appendix S1.5). However, most currently available whole genome sequence data is

unphased, so that we must rely on two-locus statistics based on observed genotype counts

instead of haplotype counts. One could estimate haplotype statistics using the Weir [33] esti-

mator

D̂ ¼
1

2nd
2nAABB þ nAABb þ nAaBB þ

1

2
nAaBb

� �

�
nA

2nd

nB

2nd
; ð10Þ

where nA is the count of A at the left locus, nB the count of B at the right locus, nd the number

of diploid individuals in the sample, and {nAABB, nAABb, . . .} the counts of each observed geno-

type. However, the Weir estimator for D is biased. Fortunately, we can simply treat the Weir

estimator D̂ as a statistic and obtain an unbiased prediction for its expectation (Appendix

S1.7.3). Even though E½Dn� can be estimated from 2n phased haplotypes, more samples are

required to accurately estimate LD for a given pair of SNPs. However, as we are interested in

genome-wide averages of D̂ and other LD statistics, even when individual estimates are noisy,

by averaging over a very large number of pairs of SNPs we can accurately estimate LD from

relatively few diploid genomes.

1000 Genome Project data. We computed statistics from intergenic data in the Phase 3

1000 Genomes Project data [34]. The non-coding regions of the 1000 Genomes data is low

coverage, which can lead to significant underestimation of low frequency variant counts,

which distorts the frequency spectrum and can lead to biases in AFS-based demographic infer-

ence [35]. However, low-order statistics in the Hill-Robertson system are robust to low cover-

age data in a large enough sample size (Fig A6 in S1 Appendix), so that low coverage data are

well suited for inference from LD statistics (see also [12]).

To avoid possible confounding due to variable mutation rate across the genome, we calcu-

lated and compared statistics normalized by π2, the joint heterozygosity: s2
d ¼ E½D2�=E½p2�, as

in [12]. All figures showing s2
d-type statistics are normalized using π2(YRI), the joint heterozy-

gosity in the Yoruba from Ibidan, Nigeria (YRI). This normalization removes all dependence

of the statistics on the overall mutation rate, so that estimates of split times and population

sizes are calibrated by the recombination rate per generation instead of the mutation rate [23].

This is convenient given that genome-wide estimates of the recombination rate tend to be

more consistent across experimental approaches than estimates of the mutation rate.

Models of archaic admixture and recent history from two-locus statistics
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We considered all pairs of intergenic SNPs with 10−5� r� 2 × 10−3 using the African-

American recombination map estimated by Hinch et al. [36] using ancestry switch-points.

The lower bound was chosen to further reduce the potential effect of short-range correlations

of mutation rates, clustered mutations, experimental error, and low resolution of the recombi-

nation map at very short distances.

Likelihood-based inference on LD-curves. To compare observed LD statistics in the data

to model predictions, and thus to evaluate the fit of the model to data, we used a likelihood

approach. We binned pairs of SNPs based on the recombination distance separating them

(Appendix S1.7.2). Bins were defined by bin edges {r0, r1, . . ., rn}, roughly logarithmically

spaced. The model is defined by the set of demographic parameters Θ. We included the ances-

tral Nref as a parameter to be fit, which we also use to scale recombination bins as ρi = 4Nrefri.
For a given recombination bin (ρi, ρi+1], we computed statistics and normalized by π2 in

one population (we used π2(YRI)), and denote this set of normalized statistics v̂. We computed

expectations for normalized statistics from the model, Mi, and then estimated the likelihood as

LðYjv̂ iÞ ¼ N ðv̂ i;Mi;SiÞ;

taking the probability of observing data v̂ to be normally distributed with mean M and covari-

ance matrix S (the normal distribution assumption is validated in Fig A5 in S1 Appendix).

We estimated S directly from the data by constructing bootstrap replicates from sampled

subregions of the genome with replacement. This has the advantage of accounting for the

covariance of statistics in our basis, as well as non-independence between distinct neighboring

or overlapping pairs of SNPs. To compute the composite likelihood across ρ bins, we simply

took the product of likelihoods over values of recombination bins indexed by i, so that

LðYÞ ¼
Y

i

LðYjv̂ iÞ:

To compute confidence intervals on parameters, we used the approach proposed by Coffman

et al. [37], which adjusts uncertainty estimates to account for non-independence between

recombination bins and neighboring pairs of SNPs.

Results

Human expansion models underestimate LD between low frequency

variants

The demographic model for human out-of-Africa (OOA) expansion proposed and inferred by

Gutenkunst et al. [2] has been widely used for subsequent simulation studies, and parameter

estimates have been refined as more data became available [3, 35, 38]. These models have typi-

cally been fit to the single-locus joint AFS, with Yoruba of Ibidan, Nigeria (YRI), Utah resi-

dents of Western European ancestry (CEU), and Han Chinese from Beijing (CHB) as

representative panels. Gutenkunst et al. verified that the observed decay of r2 was consistent

with simulations under their inferred model.

We first asked if the OOA model (Fig 3A) is able to capture observed patterns of LD within

and between these three populations. When fitting to all statistics in the multi-population

basis, parameters diverged to infinite values, suggesting that the model is mis-specified. In par-

ticular, this model was unable to describe observed Dz statistics, with Dz-curves from the

model drastically underestimating observations. We refit the OOA model without including

Dz statistics, and we inferred best-fit parameters that generally align with estimates using the

joint AFS (Table 1, left, and Fig 3). This model underestimated observed Dz in each
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population, especially in the YRI population (Fig 3D). Using AFS-inferred parameters from

previous studies led to qualitatively similar results.

The Gutenkunst model is a vast oversimplification of human evolutionary history, so its

failure to account for Dz is not all that surprising. However, given the good agreement of the

model to both allele frequencies and r2 decay [2], we did not expect such a large discrepancy.

Having ruled out low coverage and spatial correlations in the mutation rate as explaining fac-

tors, our next hypothesis was a more complex demographic history. We generalized the

Gutenkunst model with a number of additional parameters accounting for recent events,

including size changes in the YRI population, recent mixture between populations, and sub-

structure within each continental population. None of these modifications provided satisfac-

tory fit to the data and some did not converge to biologically realistic parameters.

Inference of archaic admixture

E½Dz� is a measure of positive covariance between low-frequency alleles (Fig A2 in S1 Appen-

dix). We therefore expect this statistic to be sensitive to the presence of rare, deep-coalescing

lineages within the population, as those lineages will contribute haplotypes with a large num-

ber of tightly linked low frequency variants (see Discussion below).

Given prior genetic evidence for archaic admixture in Eurasia and Africa (reviewed in

[39]), we proposed a model that includes two deeply diverged human branches, with one

branch mixing with Eurasian ancestors beginning at the OOA event, and the second one mix-

ing with the ancestors of the Yoruba population over a time period that could include the

OOA event. In this scenario, this second branch could also contribute to Eurasians through

admixture prior to the OOA event (Fig 4A). Many human lineages coexisted on the African

continent, possibly until quite recently [40–42], and genetic evidence points to a history of

Fig 3. Standard out-of-Africa model underestimates LD among low frequency variants. (A) We fit the 13-parameter Gutenkunst et al. model

to statistics in the two-locus, multi-population Hill-Robertson system. The remaining 35 statistics from the Hill-Robertson basis used in the fit

are shown in Fig A7 in S1 Appendix, and residuals are shown in Fig A8 in S1 Appendix. Best fit values for labeled parameters are given in

Table 1. Most statistics were accurately predicted by this model, including (B) the decays of E½D2� in each population, (C) the decay of the

covariance of D between populations, and (E) the joint heterozygosity E½p2ðiÞ�. (D) However, E½Dið1 � 2piÞð1 � 2qiÞ� was fit poorly by this

model, and we were unable to find a three-population model that recovered these observed statistics, including with additional periods of

growth, recent admixture between modern human populations, or substructure within modern populations. Error bars represent bootstrapped

95% confidence intervals on the statistic estimate.

https://doi.org/10.1371/journal.pgen.1008204.g003
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archaic admixture or deep structure across many modern African populations [43–48]. It is

likely that modern humans have met and mixed with diverged lineages many times through

history, rather than receiving just a single pulse of migrants [49, 50]. We chose to model the

mixing of archaic and modern human branches as continuous and symmetric [51], parameter-

izing the migration rate between these branches and the times that migration began and

ended.

We considered two topologies for the archaic branches: 1) both branches split indepen-

dently from that leading to modern humans (Fig 4A and Table 1), and 2) one branch split

from the modern human branch, which some time later split into the two populations (Fig A9

and Table A2 in S1 Appendix). Both models fit the data well with little statistical evidence to

discriminate between these two models (Fig 4B–4E and Fig A8 in S1 Appendix). The differ-

ence in log-likelihood between the two models was ΔLL< 1, as opposed to ΔLL = 1,730

between models with and without archaic admixture. ΔLL between the best fit model with

archaic admixture and the fully saturated model (using observations as expectations) was 767.

Consistent among the inferred models was the age of the split between diverged and modern

human branches within Africa at * 500 kya, though uncertainty remains with regard to the

relationship between archaic human lineages in Africa and Eurasia. The sequencing of archaic

genomes within Africa would clearly be helpful in resolving these topologies.

We inferred an archaic population to have contributed measurably to Eurasian populations.

This branch (putatively Eurasian Neanderthal) split from the branch leading to modern

Table 1. Inferred parameters for OOA models. Two models for the out-of-Africa expansion. We fit the commonly used 13-parameter model to the multi-population

Hill-Robertson statistics (left). The best fit parameters shown here were fit to the set of statistics without the E½Dz� terms, because the inclusion of those terms led to run-

away parameter behavior in the optimization. This is often a sign of model mis-specification. On the right, the same 13-parameter model is augmented by the inclusion of

two deeply diverged branches, putatively Neanderthal and an unknown lineage within Africa. We inferred that these branches split from the branch leading to modern

humans roughly 460 − 650 kya, and contributed migrants until quite recently (*19 kya). Times reported here assume a generation time of 29 years and are calibrated by

the recombination (rather than mutation) rate. Confidence intervals were computed using the Godambe information matrix on bootstrap replicates of the data [37].

Model OOA (fit w/o Dz) archaic admixture

Parameter Estimates 95% CI Estimates 95% CI

N0 2360 2190 − 2530 3600 2380 − 3920

NYRI 13030 12200 − 13900 13900 12800 − 15000

NB 1080 810 − 1350 880 670 − 1090

NCEU0 1450 980 − 1920 2300 1810 − 2790

rCEU(%) 0.202 0.184 − 0.217 0.125 0.113 − 0.135

NCHB0 410 340 − 480 650 540 − 750

rCHB(%) 0.498 0.445 − 0.531 0.372 0.333 − 0.398

mAF—B(×10−5) 51.5 41.1 − 61.8 52.2 41.7 − 62.6

mYRI—CEU(×10−5) 1.72 0.54 − 2.9 2.48 1.84 − 3.13

mYRI—CHB(×10−5) 0 — 0 —

mCEU—CHB(×10−5) 15.3 11.5 − 19.1 11.3 8.70 − 13.8

TAF (kya) 208 196 − 220 300 277 − 323

TOOA (kya) 65.7 52.4 − 79.0 60.7 50.3 − 64.2

TCEU—CHB (kya) 31.9 28.8 − 35.0 36.0 32.3 − 39.6

TArch. Af. split (kya) 499 460 − 538

TArch. Af. mig. (kya) 125 89.2 − 160

mAF—Arch. Af.(×10−5) 1.98 1.15 − 2.82

TNean. split (kya) 559 470 − 648

mOOA—Nean(×10−5) 0.825 0.379 − 1.27

TArch. adm. end (kya) 18.7 15.1 − 22.4

https://doi.org/10.1371/journal.pgen.1008204.t001
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humans 470 − 650 thousand years ago (kya), which contributed 1.2 ± 0.6% ancestry in modern

CEU and CHB populations after the out-of-Africa split. This range of divergence dates from

our maximum-likelihood model overlaps with previous estimates of the time of divergence

between Neanderthals and human populations, estimated at 550 − 765 kya [52]. The diverged

African branch split from the ancestors of modern humans 460 − 540 kya and contributed to

both the pre-OOA human branch and the lineage leading to YRI. This admixture began

between 90 − 160 kya, well before the estimated split between Eurasian and the YRI lineages,

so that this archaic branch also contributed to the ancestors of Eurasian populations. We esti-

mated 4.7 − 9.2% ancestry contribution from this unknown population to YRI, and 1.9 − 6.6%

contribution to CEU and CHB.

We chose a separate population trio to validate our inference and compare levels of archaic

admixture with different representative populations. This second trio consisted of the Luhya

in Webuye, Kenya (LWK), Kinh in Ho Chi Minh City, Vietnam (KHV), and British in

England and Scotland (GBR). We inferred the KHV and GBR populations to have experienced

comparable levels of migration from the putatively Neanderthal branch. However, the LWK

population exhibited lower levels of admixture (* 6%) in comparison to YRI, possibly sug-

gesting population differences in archaic admixture events within the African continent

(Table A3).

Discussion

Multi-population two-locus diversity statistics

The application presented here relied on the four-haplotype statistics (D2, Dz, π2). Studying

these low-order multi-population statistics in a likelihood framework allowed us to infer a

demographic model with archaic admixture, even without reference genomes from those

Fig 4. Inferred OOA model with archaic admixture. (A) We fit a model for out-of-Africa expansion related to the standard model in Fig 3A.

Demographic events for the three modern human populations are parameterized as above, but we also include two branches with deep split

from the ancestral population to modern humans. A putatively Neanderthal branch that remains isolated until the Eurasian split from YRI, and

a deep branch within Africa that is allowed to be isolated for some time before continuously exchanging migrants with the common ancestral

branch and the YRI branch. (B-E) This model fits the data much better than the model without archaic admixture, and especially for the Dz
statistics (D). Fits to 35 more curves and statistics are shown in Fig A7 in S1 Appendix, and residuals are shown in Fig A8 in S1 Appendix. The

migration rates inferred between the diverged African branch and YRI provides an estimate of* 7.5% contribution.

https://doi.org/10.1371/journal.pgen.1008204.g004

Models of archaic admixture and recent history from two-locus statistics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008204 June 10, 2019 13 / 19

https://doi.org/10.1371/journal.pgen.1008204.g004
https://doi.org/10.1371/journal.pgen.1008204


diverged populations. We have also shown that higher order statistics may be computed

through this same framework. Extending higher order two-locus moment systems to multiple

populations would potentially provide further information about demography, particularly for

past encounters with archaic lineages.

Relation to other statistics. There are many approaches for computing expected statistics

for diversity under a wide range of scenarios. Single-site statistics, which include expected het-

erozygosity and the AFS, may be computed efficiently using forward- or reverse-time

approaches. Beyond the classical recursions for E½D� and E½D2� [12, 14], two-locus statistics

are difficult to compute for non-equilibrium, multi-population demographic models. Sved

[53] proposed an IBD based recursion to compute E½r2� across subdivided populations, but its

accuracy and interpretation remain debated [12].

The moments-based approach presented here generalizes the recursion for the single-site

AFS presented in [3]. The moments system includes all heterozygosity statistics, so we recover

expected F-statistics under arbitrary demography, which are commonly used to test for admix-

ture [54–56]. Long-range patterns of elevated LD in putatively admixed populations are used

to infer the timing of admixture events and relative contributions of parental populations [10,

29]. These approaches rely on the recursion for E½D� after admixture events that is used here

(Eqs 2 and 7). Thus the generalized Hill-Robertson system is sensitive to ancient admixture,

but also captures statistics used to identify recent admixture history, with fewer assumptions

about early history.

Plagnol and Wall [57, 58] introduced a statistic, S�, specifically designed to scan for intro-

gressed haplotypes without having sequence data from the diverged population. S� uses an ad-

hoc score to identify SNPs that likely arose on haplotypes contributed from a deeply diverged

population, and is estimated through simulation. These SNPs will tend to be rare and in high

LD, and therefore also contribute to Dz (Fig 2D–2F). Thus even a small amount of archaic

admixture will significantly elevate E½Dz� compared to that in an unadmixed population, and

Dz itself could be used as an ad-hoc statistic similar to S�. Given its conceptual relationship to

S�, it may not be so surprising that this previously overlooked statistic is particularly well suited

for model-based inference of archaic admixture.

Caveats. Like many inference approaches in population genetics, we approximate human

history using discrete, randomly mating populations with size and migration histories

described by relatively few parameters. History is much more complex than this. Thus statisti-

cal uncertainties estimated using bootstrap analysis masks much larger, systematic errors due

to model misspecification. In particular, some choices we made in modeling archaic admixture

are certainly oversimplified, such as the assumption of symmetric and constant migration

rates during the period of contact between archaic and modern humans.

Variability in fine-scale recombination rates between populations and over time contributes

another source of systematic error. While large-scale recombination rates are generally better

understood than the mutation rate in humans [for which current estimates vary over a factor

of two [59]], recombination rates can vary at short distances. Spence and Song [60] showed

that recombination maps are highly concordant across populations represented in the Thou-

sand Genomes Project [34], although this correlation surely decreases at shorter distances. We

filtered out pairs of mutations at very close distances (less than roughly 1kb) to reduce poten-

tial biases due to very fine scale variation. We therefore do not expect variation in recombina-

tion rate among human populations to explain the large differences in Dz compared to the

Gutenkunst et al. model. However, the effect of population-specific recombination maps may

play a role when considering finer-scale patterns and data from deeply diverged populations

such as the Neanderthal.
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Finally, our model and inferences assumed that mutations are evolving neutrally. We chose

to analyze SNPs in intergenic regions and excluded genic and intronic regions in an effort to

reduce biases due to selection acting on mutations included in the analysis or nearby selected

regions, although some intergenic regions are expected to be affected by selection or biased

gene conversion. While outside the scope of this study, a more detailed characterization of the

effects of linked selection on Hill-Robertson statistics is warranted.

Conclusion

We described an infinite hierarchy of multi-locus summaries of genomic diversity that are

easy to compute under arbitrary, multi-population demographies. Some of these statistics are

familiar, including expected heterozygosity, F-statistics, and LD decay, while others have been

largely unexplored in multi-population models, such as the degree of LD between low fre-

quency alleles (Dz) and the joint heterozygosity across sites and populations (π2). The one-

population Dz statistic, in particular, has an interesting history, as it has come up in early work

as a mathematical stepping-stone on the way to computing D2 [14], but was, to our knowledge,

never used in data analysis. As it happens, this ‘ghost’ statistic provides a unique window into

human history.

Using this set of summary statistics, we explored a commonly used model of human demo-

graphic history derived from single-site AFS and validated using LD decay curves. While

many statistics under this model fit the data well, the model dramatically underestimates levels

of LD among rare alleles. Modeling archaic admixture worldwide resolved this discrepancy.

We recovered the signal of Neanderthal admixture in Eurasian populations, and found evi-

dence for substantial and long-lasting admixture from a deeply diverged lineage in two African

populations that is consistent with evidence from previous studies [46–48, 57].

This model deserve a more thorough investigation, including data from ancient humans

and additional contemporary African populations. We leave this to future work for three rea-

sons. First, proposing a detailed multi-population model of evolution in Africa will require

carefully incorporating anthropological and archaeological evidence, which is a substantial

endeavor. Second, the inclusion of two-locus statistics from ancient genomes will require vet-

ting possible biases associated with ancient DNA sequencing, although we see no problem

with using two-locus statistics in modern populations jointly with one-locus statistics in

ancient DNA.

Third, and more importantly, archaic admixture can hide in the blind spot of classical sta-

tistics, and widely used demographic models for simulating genomes underestimate LD

between low frequency variants in populations around the globe, especially in Africa. This

large bias affects neither the distribution of allele frequencies nor the amount of correlation

measured by D2, but it may impact analyses aiming to identify disease variants based on over-

representation of rare variants in specific genes or pathways. Thus both statistical and popula-

tion geneticists would benefit from including archaic admixture into baseline models of

human genomic diversity.
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