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The RTS,S/AS01 vaccine provides partial protection against Plasmodium falciparum

infection but determinants of protection and/or disease are unclear. Previously, anti-

circumsporozoite protein (CSP) antibody titers and blood RNA signatures were

associated with RTS,S/AS01 efficacy against controlled human malaria infection (CHMI).

By analyzing host blood transcriptomes from five RTS,S vaccination CHMI studies,

we demonstrate that the transcript ratio MX2/GPR183, measured 1 day after third

immunization, discriminates protected from non-protected individuals. This ratiometric

signature provides information that is complementary to anti-CSP titer levels for

identifying RTS,S/AS01 immunized people who developed protective immunity and

suggests a role for interferon and oxysterol signaling in the RTS,S mode of action.

Keywords: malaria vaccines, clinical immunology, vaccine correlates, human challenge, systems vaccinology,

interferon response

BACKGROUND

Considerable progress has been made in the development of malaria vaccines (1). The most
clinically advanced of these is subunit-based RTS,S/AS01 (“RTS,S”), which protects against
infection in controlled human malaria infection (CHMI) studies (2–6) and against malaria disease
in clinical trials in Africa (7). While anti-circumsporozoite protein (CSP) antibodies correlate with
early protection (8), robust correlates of RTS,S efficacy have not been defined. Deep immunological
analysis of controlled human infection models provides an ideal setting for the delineation of
correlates of vaccine efficacy (9). In the specific case of malaria, CHMI studies capture a subset
of mechanisms that impact malaria vaccine efficacy in practice and therefore constitute a crucial
translational bridge for rapidly transitioning novelmalaria vaccine concepts from controlled animal
models to humans (10).
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For a wide variety of vaccines and vaccine candidates, analysis
of blood transcriptional profiles after vaccination has revealed
adjuvant-specific patterns of innate immune activation and
inflammation that, in some instances, correlate with vaccine
immunogenicity and/or efficacy (11–16). Previous analyses
of transcriptional responses after RTS,S vaccination revealed
strong AS01-driven peripheral innate immune activation and
candidate protection-associated signatures for individual studies
(17–21). While biomarker development and understanding of
pathogenesis for other infectious diseases have been accelerated
by multi-cohort transcriptional analyses (22–25), a multi-study
transcriptional analysis of RTS,S-mediated protection in CHMI
has not been undertaken. Identification of simple, yet robustly
predictive, signatures of RTS.S clinical activity would facilitate
evaluation of additional alternative malaria vaccine regimens,
providing preclinically testable hypotheses about the RTS,S mode
of action and refining candidate correlative variables for testing in
field studies.

To identify robust correlates of RTS,S-mediated protection,
we compiled blood transcriptome data from all RTS,S CHMI
trials that, to our knowledge, had this data available or had blood
samples available that could be used to generate transcriptomic
data. In total, we compiled microarray data from four RTS,S
CHMI studies, generated new RNA-sequencing data for one of
these, and generated RNA-Sequencing data for another study.
Each of these five independent studies evaluated the most
commonly employed RTS,S regimen of 3 monthly 50 µg doses
of RTS,S/AS01 (termed “RRR” herein) as well as alternative
regimens involving RTS,S. As each study involved relatively small
numbers of volunteers, it was not possible to identify robust
signatures by conventional training/test splits for signature
discovery and validation. Instead, we employed multivariate
modeling of pre-challenge data from RRR recipients to first
identify a set of candidate signatures that were then evaluated
using data from alternative regimen recipients. This analysis
identified a two-transcript ratiometric signature that consistently
discriminates RTS,S vaccine recipients that will be protected from
P. falciparummalaria challenge.

METHODS

Written informed consent was obtained from each subject
before study procedures were initiated. All laboratories received
deidentified samples and performed tests according to protocol,
and therefore their work was IRB-exempt.

Generation and Compilation of Host Blood
Gene Expression Profiles From Five
Independent RTS,S CHMI Studies
The following studies with blood transcriptome
data were analyzed (summarized in Figure 1A and
Supplementary Tables 1, 2): Study 1 (2), Study 2 (3), Study
3 (4), Study 4 (5), and Study 5 (6). Each study includes an “RRR”
RTS,S/AS01 arm (3 monthly 50 µg doses of RTS,S/AS01B),
and at least one alternative arm in which vaccine doses,
adjuvant, schedules, and/or modes of antigen presentation were

modified. PBMC microarray data for Study 1 and Study 2 were
obtained from Array Express E-MTAB-4629 (19) and GEO
GSE89292 (18), respectively. PBMC RNA-Seq data for Study 2
and 3 were generated and processed using standard methods
(26–29) (Supplementary Methods #1) and deposited into
GEO (GSE103401 and GSE102288, respectively). Whole blood
microarray data for Study 4 and Study 5 were obtained from
GSE103862 and GSE103874, respectively. Data were normalized
using standard methods (26–29) (Supplementary Methods #1)
and integrated in terms of gene symbols after normalization
(Supplementary Methods #1). For all studies with pre-existing
data, all available data that passed quality control was used
in the analyses; for studies with newly-generated RNA-Seq
data, all samples with sufficient RNA were submitted for
sequencing, and all samples with RNA-Seq data that passed
quality control were analyzed. No subselection of samples or
participants was performed; the number of data points for
each condition are enumerated in Supplementary Table 2.
The final 5-study integrated dataset was deposited into GEO
(GSE107672). Expression patterns for transcriptional modules
were derived using published module definitions (13, 30–32)
(Supplementary Methods #2; Supplementary Table 4).

Quantitative Real-Time PCR
To assess the veracity of the new RNA-Seq data generated
for Study 2 (3) and Study 3 (4), we performed multiplex
quantitative real-time PCR (qRT-PCR) on a panel of 31 genes
with roles in the inflammatory, immune response, and other
diverse functions. Reference (“housekeeping”) genes for internal
normalization of the PCR data were identified from the RNA-
Seq data by minimizing the coefficient of variation. Genes and
corresponding commercial TaqMan primer/probe sets (Thermo
Fisher Scientific) are listed in Supplementary Table 3. qRT-
PCR data was generated using the BioMark HD multiplex
microfluidic instrument (Fluidigm, Inc.) in 48 sample X 48
assay multiplex format, as described (33). Data was normalized
using the delta-delta cycle threshold (Ct) method (34), using
the average Ct of the reference genes for standardization.
This analysis was performed using backup or excess RNA
samples that remained after completing transcriptomics and
comprised 38 samples from Study 2 (21 participants at pre-
vaccination and/or the day of the 3rd vaccination) and 110
samples from Study 3 (33 participants at one or more of
the following five time points: pre-vaccination, the day of the
third vaccination, 3 or 14 days after the third vaccination,
and/or the day of challenge). One-sided Spearman rank
correlation analysis was used to compare qRT-PCR data to
the other platforms for individual genes or z-transformed
datasets overall.

Statistical Tests
The modeling strategy is shown in Figure 1A. Although
a variety of time points post-vaccination were profiled in
each study, the only time points consistently profiled in
all five studies were pre-vaccination and 24 h after the
3rd vaccination (Supplementary Table 2). For this reason,
analyses were performed using log2 fold-changes computed
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FIGURE 1 | Identification of the ratiometric transcript signature MX2/GPR183 as a consistent discriminator for RTS,S vaccine recipients that will be protected from

CHMI. (A) RTS,S CHMI studies evaluated and analysis schematic. Pre- and post-challenge blood transcriptomes from five independent RTS,S vaccination CHMI

studies were integrated and interrogated for transcript signatures that consistently discriminate vaccine recipients that would be protected from those who would not

be protected. The first stage of the analysis (left) involved discovery of signatures through analysis of RRR regimen RTS,S recipients. These signatures were then

evaluated using data from recipients of alternative vaccine regimens involving RTS,S (right). Prot, binary protection variable (protected or not). BTM, blood

transcriptional module. Definition of vaccine regimens: RRR, 3 monthly 50 µg doses of RTS,S/AS01; RRR_AS02A, 3 monthly 50 µg doses of RTS,S/AS02A; ARR,

One dose with Ad35.CS.01 followed 1 month later by 2 monthly doses of 50 µg RTS,S/AS01; RRr, 2 monthly doses of 50 µg RTS,S/AS01 followed 5 months later by

a third dose of 10 µg RTS,S/AS01; G2, 2 monthly 50 µg doses of RTS,S/AS01 followed 1 month later by a 10 µg dose of RTS,S/AS01; G3, a 50 µg dose of

RTS,S/AS01 co-administered with ChAd63 ME-TRAP followed 1 month later by 2 monthly doses of 50 µg RTS,S/AS01 co-administered with MVA ME-TRAP; G4, a

50 µg dose of RTS,S/AS01 co-administered with ChAd63 ME-TRAP followed 1 month later by a 50 µg dose of RTS,S co-administered with MVA ME-TRAP followed

1 month later by a 10 µg dose of RTS,S co-administered with MVA ME-TRAP. (B,C) Scatterplots for log2 fold-changes in MX2 plotted against log2 fold-changes in

GPR183 for recipients of RRR regimen RTS,S (B) or alternative regimen RTS,S (C). Fold-changes were computed comparing expression levels on Day 1 post-3rd

vaccination compared to pre-vaccination values. For visualization purposes, the log2 fold-changes for GPR183 were transformed to study-adjusted values

(“GPR183*”) using parameter estimates from the logistic regression models (Supplementary Methods). Colors indicate whether the participants were protected

(blue) or not protected (red) after CHMI. Shapes indicate study and vaccine arm. For (B) upside-down triangles, Study 1 microarray; circles, Study 2 microarray;

triangles, Study 3 RNA-Seq; squares, Study 4 microarray; and diamonds, Study 5 microarray data. For (C) circles, Study 2 ARR microarray; triangles, Study 3 RRr

RNA-Seq; diamonds, microarray data from Study 5 G2; and squares, Study 5 G3. Dashed line indicates the decision boundary that maximizes the sum of sensitivity

and specificity.

between these two time points. Logistic regression (LR)
was used to model challenge outcome (protected or not
protected) as a function of transcriptional readouts and
categorical study terms and significance of discrimination

was assessed using Chi-squared tests. Discrimination accuracy
was assessed using overall and study-specific ROC AUCs.
These analyses were first performed for recipients of the
RRR regimen using modules, individual transcripts, ratios
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FIGURE 2 | MX2/GPR183 is a transcriptionally dynamic signature that complements anti-CSP titers for identifying which RTS,S vaccine recipients will be protected

from CHMI. (A) RNA-Seq temporal profile for log2 fold-changes in the MX2/GPR183 expression ratio for RRR regimen RTS,S in Study 2. Magenta lines indicate

participants that were not protected, green lines indicate participants that were protected after challenge. Shaded areas indicate 90% confidence intervals for linear

mixed models for protected and non-protected vaccine recipients. RTS,S vaccinations were performed on D0, D28, and D56; CHMI was performed on D77. The

shaded area highlights D57, which for RRR corresponds to Day 1 after the third vaccination which is the time point used to identify the Log2(MX2/GPR183) as being

consistently associated with RTS,S-mediated protection. (B,C) Scatterplots of Z-transformed day-of-challenge anti-CSP (repeat region) titers plotted against log2

fold-changes for the MX2/GPR183 ratio for recipients of RRR regimen RTS,S (B) or alternative regimen RTS,S (C). Fold-changes for MX2/GPR183 were computed

comparing expression levels on Day 1 post-3rd vaccination compared to pre-vaccination values. For visualization purposes, the log2 fold-changes for MX2/GPR183

were transformed to study-adjusted values (“MX2/GPR183*”) using parameter estimates from the logistic regression models (Supplementary Methods). Colors

indicate whether the participants were protected (blue) or not protected (red) after CHMI. Shapes indicate study and vaccine arm. For (B) circles, Study 2 microarray;

triangles, Study 3 RNA-Seq; squares, Study 4 microarray; and diamonds, Study 5 microarray data. For (C) circles, Study 2 ARR microarray; triangles, Study 3 RRr

RNA-Seq; diamonds, microarray data from Study 5 G2; squares, microarray data from Study 5 G3. Dashed line indicates the decision boundary that maximizes the

sum of sensitivity and specificity.

between modules, and ratios between transcripts and modules
as transcriptional readouts (Supplementary Methods #3). As
PBMC transcriptomes for Study 2 participants were analyzed
by both microarray and RNA-Seq, parallel analyses were
performed in which Study 2 data from either platform
were modeled with the other studies and worst-case p-
values and ROC AUCs for the two analyses were taken
as summary statistics. Significant transcript/module ratios
were expanded to transcript/transcript ratios by evaluating
all members of the modules and retaining those that passed
the original filtering criteria. Surviving transcript/transcript
ratios were evaluated on data for alternative RTS,S regimens
(Supplementary Methods #4). Complementarity between the
top transcript ratio (MX2/GPR183) and anti-CSP titers for

predicting challenge outcome was assessed by Chi-squared test

comparing LR models containing terms for study and anti-
CSP titers to models containing the transcript ratio, study, and
anti-CSP terms (Supplementary Methods #5). For all analyses,
p-values were adjusted using the Benjamini-Hochberg false
discovery rate (FDR) algorithm.

Assessment of RNA/Protein Correlations
Using Pre-existing Proteogenomic
Datasets
We mined three public proteogenomic datasets to determine
whether transcript and protein levels of MX2 and GPR183 were
generally correlated across diverse human tissue samples. The
first was a breast cancer cohort (35) in which transcript and
protein (MX2) or phosphopeptide (GPR183:S343) levels were
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FIGURE 3 | Mining public proteomic and public single-cell RNA-Seq datasets provides support for protein/RNA correlations and cell type-specific expression of MX2

and GPR183. (A,B) Correlations between protein or phosphopeptide abundance and transcript abundance across diverse breast cancer tissues (35). (A) Correlation

between MX2 protein abundance and MX2 transcript (Spearman Rho = 0.58, p = 2.4 × 10−8, N = 77). (B) Correlation between GPR183:S343 phosphopeptide

abundance and GPR183 transcript (Spearman Rho = 0.60, p = 3.8 × 10−6, N = 49). Data from Mertins et al. (35) was obtained through the data portal provided

(http://prot-shiny-vm.broadinstitute.org:3838/CPTAC-BRCA2016/). (C,E) Expression of MX2 and GPR183 in individual PBMC cells measured by single-cell RNA-Seq

reported in Liu et al. (38). (C,D) t-distributed stochastic neighbor embedding (t-SNE) scatterplots demonstrating that MX2 (C) is detected sporadically in many

lineages, while GPR183 (D) is enriched in clusters annotated as DCs, pDCs, B cells, and CD4+ T cells. (E) Dotplot depicting frequency of MX2 and GPR183

expression specific annotated cell lineages. Numbers and circle sizes depict the percentages of cells from a given linege are positive for a given marker. (F–H)

Expression of MX2 and GPR183 in individual DCs and monocytes measured by single-cell RNA-Seq reported in Villani et al. (39). (F–H) t-SNE scatterplots

demonstrating that MX2 (F) is frequently detected in all lineages, while GPR183 (G) is enriched in all DC clusters (except DC4) but not monocytes. (H) Summary

dotplot depicting average transcript levels (color) and frequency of detection (numbers) for MX2 and GPR183 in DC and monocyte lineages. For (C–H), data and

visualizations were obtained from the Broad Single Cell portal (https://singlecell.broadinstitute.org/single_cell).

available for 77 patients via a web-based portal (http://prot-
shiny-vm.broadinstitute.org:3838/CPTAC-BRCA2016/). The
second was a large cohort of hepatitis B virus (HBV)-related
hepatocellular carcinoma (HCC) patients (36) for whom
transcript and protein (MX2) or phosphopeptide (GPR183:
S328, S333, S337, and S343) levels were available. Data for this
cohort was obtained from the manuscript online supporting

material and associated database and consisted of 298 paired
samples after excluding samples with ambiguous matches or
mismatches between the metadata gender or inferred gender
from the transcriptomics. The third study assessed a panel of 29
healthy tissue samples by paired transcriptomics and proteomics
(37). Data for proteomics and transcriptomics for both
MX2 and GPR183 was obtained from the manuscript online
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supporting material. One-sided Spearman rank correlation
analysis was performed for all RNA vs. protein or RNA vs.
phosphopeptide comparisons.

Assessment of Gene Expression in
Immune Cell Populations Using
Pre-existing Single Cell RNA-Seq Datasets
Previously-published single-cell RNA-Seq data from human
PBMCs (38) and human blood dendritic cell (DC) and monocyte
populations (39) was mined to determine potential cellular
origins of the MX2 and GPR183 transcripts in blood. For both
studies, processed data and t-distributed stochastic neighbor
embedding (t-SNE) (40) visualizations of annotated cell clusters
were obtained through the Broad Single Cell Portal (https://
singlecell.broadinstitute.org/single_cell).

RESULTS

We compiled microarray datasets and generated new RNA-
Seq datasets for blood samples from all RTS,S-based CHMI
studies that, to our knowledge, either had this data available
or had materials available to generate this data: Study 1 (2),
Study 2 (3), Study 3 (4), Study 4 (5), and Study 5 (6). In
total 86 and 124 volunteers were profiled that had received
RRR or alternative regimen RTS,S, respectively (Figure 1A;
Supplementary Tables 1, 2) and underwent controlled malaria
challenge. To confirm the veracity of the new RNA-Seq data
that was generated for Study 2 and Study 3, we performed
multiplex qRT-PCR analysis of a panel of 31 genes with roles
in the inflammatory, immune response, and other diverse
functions (Supplementary Table 3) for a subset of time points
and participants. Gene-level correlations between qRT-PCR
and RNA-Seq were statistically significant and generally high
magnitude for both Study 2 (median Spearman Rho = 0.75,
IQR = 0.63–0.84) and Study 3 (median Spearman Rho = 0.83,
IQR = 0.73–0.91) (Supplementary Table 3). Furthermore,
overall correlations between matching z-transformed qRT-PCR
and RNA-Seq datasets were significant and high magnitude
(Study 2: Spearman Rho = 0.74; Study 3: Spearman Rho =

0.81) (Supplementary Figure 1). To facilitate interpretation
of the high dimensional transcriptomics data, we determined
which pre-defined blood transcriptional modules (BTMs,
Supplementary Methods #2) were coherently expressed across
all studies (Supplementary Table 4; Supplementary Figure 2),
revealing many modules previously found to be differentially
expressed after RTS,S vaccination such as interferon
response (17–20).

We next determined whether post-vaccination/pre-challenge
expression profiles could discriminate protected from non-
protected RRR vaccine recipients. These analyses were
performed using fold changes comparing expression levels 1 day
after the 3rd immunization (“D1-post-3rd”) to pre-vaccination
levels, as these time points were assessed in all five studies
(Supplementary Table 2). Analysis of this particular fold-change
also has the advantage of potentially capturing both vaccine
adjuvant-driven innate immune responses and vaccine antigen-
driven adaptive immune recall responses that were primed by

the first two doses. While low accuracy discrimination was
achieved for transcriptional signatures comprised of individual
modules, individual transcripts, or ratios between pairs of
modules (Supplementary Table 5), moderate but consistent
discrimination accuracy (min(ROC AUC) > 0.65) across all
studies and platforms was achieved by considering ratios
between modules and transcripts, with 241 transcript/module
signatures surviving multiple testing correction at FDR
= 20.1 % (Figure 1A, Supplementary Table 6). The most
discriminatory signatures were ratios between the microfibrillar
transcript MFAP3 and lymphoid lineage (overall ROC AUC
= 0.74, FDR = 20.1%), and ratios between the oxysterol
receptor GPR183 and innate immunity/interferon- modules
(overall ROC AUC = 0.74, FDR = 20%). The top five most
frequently selected transcripts (GPR183, AGPAT4, NLRP3,
RIPK2, and TNF) were paired with interferon response
(Supplementary Figure 3). Given that the transcriptional
modules are each comprised of multiple transcripts
(Supplementary Methods #2; Supplementary Table 4) we
expanded the transcript/module ratios into transcript/transcript
ratios (Supplementary Methods #3) to enable future adaptation
to alternative platforms (such as transcript-based quantitative
PCR). At the original significance thresholds (p < 0.0025, FDR
= 20.1%) 247 transcript/transcript signatures were obtained
(Supplementary Table 7) and are depicted as a Cytoscape
interaction network (41) in Supplementary Figure 4.

We tested the 247 transcript ratio signatures for ability
to discriminate protected from non-protected recipients

of alternative RTS,S regimens (Supplementary Tables 1,

2) constructing the validation testing strategy to the

detect transcript ratio signatures that were discriminatory

for most (but not necessarily all) of the modified
regimens (Supplementary Methods #5). The top signature

resulting from the analysis was the ratio between MX2

(an interferon response module transcript) and the
oxysterol receptor GPR183. MX2/GPR183 achieved

discrimination for alternative RTS,S regimen recipients
in Study 2 (“ARR”), Study 3 (“RRr”), and Study 5
(“G2” & “G3”) in a manner consistent with the RRR
regimen recipients (Figures 1B,C; Supplementary Table 8;
Supplementary Figures 5, 6). For both the RRR regimen
and these alternative regimens, patients that exhibited higher
D1 post-3rd fold-changes in the MX2/GPR183 ratio were
more likely to be protected after challenge (Figures 1B,C;
Supplementary Figure 5).

MX2 is a canonical interferon-response gene and belongs
to several innate immune response and interferon-associated
transcriptional modules [Supplementary Table 4 (13, 31, 32)]
that can be induced by a variety of vaccine adjuvants and
inflammatory stimuli. Even though RTS,S/AS01 vaccination
led to robust induction of these modules after each vaccination
(Supplementary Figure 2), the fold changes for these modules
at 24 h post-3rd vaccination were not consistently associated
with protection against CHMI for RRR recipients, with the
two best performing MX2-containing modules achieving
minimum ROC AUC across RRR cohorts of 0.59 and 0.52 for
“M165_ENRICHED IN ACTIVATED DENDRITIC CELLS (II)”
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(13) and “HALLMARK_INTERFERON_GAMMA_RESPONSE”
(32), respectively (Supplementary Table 5). Furthermore,
comparing the fit of logistic regression models to the entire
dataset (RRR + alternative RTS,S regimen recipients) showed
that the MX2/GPR183 ratio appreciably outperformed
the individual genes MX2 and GPR183 as well as three
top-performing interferon-response-associated modules
(“HALLMARK_INTERFERON_GAMMA_RESPONSE,”
“HALLMARK_INTERFERON_ALPHA_RESPONSE,” and
“M165_ENRICHED IN ACTIVATED DENDRITIC CELLS (II)”)
(Supplementary Figure 7).

Analysis of the fold-change profile of MX2/GPR183 at
additional time points suggested broad discrimination
post-vaccination and post-challenge, including D1 post 2nd
vaccination, the day of the 3rd vaccination, 3 days after 3rd
vaccination, and 5 days after challenge (Supplementary Table 9).
Within densely-profiled Study 2, MX2/GPR183 exhibited
complex kinetics (Figure 2A) that derive from variable patterns
of down-regulation of GPR183 and consistent up-regulation of
MX2 (Supplementary Figure 8). Interestingly, analysis of pre-
vaccination expression profiles suggested a baseline association
between the MX2/GPR183 ratio and protection, but this trend
was not observed consistently (e.g., the Study 4 ROC AUC
obtained using baseline MX2/GPR183 expression was 0.41,
which is markedly reduced compared to the Study 4 ROC AUC
of 0.74 obtained using the fold change, Supplementary Table 9).

Given that anti-CSP titers induced after RTS,S vaccination
are associated with protective responses (8), we tested whether
combining this measurement with the MX2/GPR183 ratio
significantly improved discrimination. For both RRR and
alternative regimens, including MX2/GPR183 fold changes
at Day 1 post-3rd vaccination with day of challenge anti-
CSP titers led to statistically significant improvements in
discrimination between protected and non-protected vaccine
recipients compared to anti-CSP titers alone (p = 0.005 and
0.003 for RRR and alternative regimens, respectively; Figure 2;
Supplementary Figure 9). Importantly, the MX2/GPR183
expression ratio and anti-CSP titers are not correlated for either
RRR or alternative regimens, suggesting that these two readouts
capture distinct aspects of the RTS,S-driven immune response.

The practical utility of the MX2/GPR183 signature for
assessing immune responses in future malaria vaccine and CHMI
studies is reinforced by the ability to measure it using various
platforms, given that it was discovered through integrated
analysis of cohorts employing three different transcript profiling
platforms and two sample types (PBMCs and whole blood),
and that the overall veracity of the RNA-Seq measurements
used for discovery of the signature was confirmed by qRT-
PCR (Supplementary Figure 1). As a further examination of the
cross-platform concordance for MX2/GPR183 quantification,
we directly compared 613 samples from Study 2 that were
assessed by both RNA-Seq and Affymetrix microarrays. Cross-
platform correlations for MX2, GPR183, and MX2/GPR183
were high (Spearman rho = 0.96, 0.86, and 0.92, respectively,
Supplementary Figure 10), which is remarkable given that the
two platforms do not target the same region of either transcript
(whole-transcript quantification by RNA-Seq, 3′ transcript
targeting by Affymetrix microarray).

Further functional interpretation of the MX2/GPR183
signature for RTS,S induced immune responses requires
confirmation that the transcript levels of MX2 and GPR183
are representative of cognate functional protein levels and
identification of the specific immune cell populations from
which the signature derives. While material constraints prohibit
proteomic and single-cell assessments of samples from the
five CHMI clinical trials analyzed herein, we mined public
proteogenomic and single cell RNA-Seq datasets to inform
these considerations for MX2 and GPR183. For protein/RNA
correlations, we analyzed data from studies that performed
paired transcriptomic and proteomic/phosphoproteomic
analysis of human tissues from large scale breast cancer (BrCa)
(35), hepatocellular cancer (HCC) (36), or healthy tissue (HT)
(37) cohorts (Figures 3A,B). MX2 protein was detected in
all three datasets and strong protein/RNA correlations were
observed: Spearman Rho for BrCa = 0.58 (p = 2.4 × 10−8, N =

77, Figure 3A); for HCC = 0.62 (p = 0, N = 298); and for HT =

0.71 (p= 7.5× 10−6, N = 29). MX2 (S676) phosphopeptide was
also detected in the BrCa and HCC cohorts and was correlated
with MX2 transcript in both cases: Spearman Rho for BrCa =

0.46 (p = 2.9 × 10−5, N = 73); and for HCC = 0.58 (p = 2.3 ×
10−21, N = 222). GPR183 bulk protein was detected only in the
HT cohort and was correlated with GPR183 transcript: Spearman
Rho = 0.43 (p = 0.01, N = 29). GPR183 phosphopeptides were
detected in both BrCa andHCC cohorts and were correlated with
GPR183 transcript in all cases: Spearman Rho for GPR183:S343
in BrCa = 0.60 (p = 3.8 × 10−6, N = 49, Figure 3B); and
Spearman Rho in HCC for GPR183:S343 = 0.39 (p = 1.6 ×

10−9, N = 212), for GPR183:S328=0.49 (p = 1.6 × 10−15, N =

232), for GPR183:S333 = 0.46 (p = 4.8 × 10−14, N = 232), and
for GPR183:S337= 0.49 (p= 8.0× 10−20, N = 298).

To gain insight into the immune cell populations expressing
MX2 and GPR183, we mined data from single cell RNA-Seq
analyses of human PBMCs (38) and human blood dendritic
cell (DC) and monocyte sub-populations (39). MX2 exhibited
moderately enhanced expression in innate immune cells
compared to other PBMCs (Figures 3C,E) but did not exhibit
preferential expression between DC or monocyte subpopulations
(Figures 3F,H). In contrast, GPR183 displayed preferential
expression in DCs, plasmacytoid DCs (pDCs) and, to a lesser
extent, B cell and CD4+ T cells compared to other PBMCs
(Figures 3D,E). Within DC and monocyte populations, GPR183
was abundantly expressed in all DC subpopulations except
monocyte-associated DC4 (39) and exhibited limited expression
in monocytes (Figures 3G,H).

DISCUSSION

RTS,S/AS01 is currently the most advanced subunit vaccine to
demonstrate protective efficacy against Plasmodium falciparum
(Pf ) infection, but the basis for protection is unclear (7).
Identification of predictive correlates for RTS,S efficacy could
enable accelerated malaria vaccine development by clarifying
additional protective immune responses and thereby facilitating
screening and differentiation of novel vaccine candidates. From
the integrated transcriptomic analysis of five independent CHMI
studies that evaluated the efficacy of RTS,S (2–6) we identified
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the transcript ratio MX2/GPR183 as a signature that consistently
discriminates protected from non-protected recipients of RRR
regimen and several alternative RTS,S regimens. Discovery
and assessment of the signature was made using fold-changes
computed between pre-vaccination and 24 h after the third
vaccination, the two time points that were consistently assessed
in all five studies (Supplementary Table 2). This time point may
nevertheless be advantageous because it has the potential to
capture both early inflammatory changes driven by the AS01
adjuvant and recall of adaptive immune responses primed by
the first two vaccinations. This conjecture is supported by
the observation that enhanced up-regulation of IFN-associated
signaling pathways is generally observed in adults after the
second dose of AS01-containing vaccines compared to the first
dose (42). While the association of MX2/GPR183 with RTS,S-
mediated protection against CHMI could not be assessed for
other time points for all of the studies, exploratory analysis
of the available data suggests that the association is not
restricted to 24 h after the third dose (Supplementary Table 9).
Notably, the MX2/GPR183 ratio provides information that is
complementary to and not redundant with, anti-CSP levels
for predicting which vaccine recipients will be protected—
with protected volunteers having relatively higher anti-CSP
levels and/or higher MX2/GPR183 fold-changes compared to
non-protected volunteers (Figures 2B,C). This result suggests
that MX2/GPR183 may capture other aspects of RTS,S-driven
immunity besides binding antibody titer, such as aspects of RTS,S
driven cellular immunity (43), and/or antibody post-translational
modifications and Fc effector function (44). Up-regulation of
MX2/GPR183 after vaccination with subunit vaccines for other
indications also may be associated with protective responses
if those same immune mechanisms are protective against the
relevant pathogen (for example,Mycobacterium tuberculosis).

These data support including quantitative PCR-based
assays targeting MX2 and GPR183 alongside assessments of
RTS,S-induced humoral and cellular immune responses within
biomarkers strategies for CHMI studies of novel vaccines
and RTS,S field trials to inform how other variables (such
as age and health status of the subject) influence RTS,S -
induced immunity. While material limitations precluded
qRT-PCR assessment of MX2/GPR183 in the CHMI studies
described herein, the discovery of MX2/GPR183 from
integrated analysis of three different transcriptomics platforms
(Supplementary Table 1), the overall concordance between
Study 2 and Study 3 RNA-Seq and qRT-PCR measurements
(Supplementary Table 3; Supplementary Figure 1), and
the very robust correlation between MX2, GPR183, and
MX2/GPR183 levels measured by RNA-Seq and Affymetrix
microarray in Study 2 (Supplementary Figure 10) support the
robustness of the signature. Furthermore, mining published
proteogenomic datasets for healthy tissues (37) and tumor
tissues (35, 36) from indications with appreciable immune
cell involvement (45, 46) revealed significant and consistent
correlations between protein (or phosphopeptide) levels
and RNA levels for both MX2 and GPR183 (Figures 3A,B),
suggesting that protein-based assessment of the MX2/GPR183
may be feasible.

Notably, signatures that consistently discriminated
protected from non-protected RTS,S recipients were only
identified when ratios between genes and transcriptional
modules were considered, not individual modules or genes
(Supplementary Tables 5, 6). This result suggests that a balance
between the implicated pathways, rather than the absolute
pathway activation levels, may be a determinant and/or readout
of RTS,S-induced protective immunity. The utility of signatures
based on transcript ratios or ensembles of transcript ratios has
been demonstrated for other infectious diseases (22–24, 26),
suggesting that assessing balance between biological process
captured by transcriptomics may be a broadly practical and
informative diagnostics strategy.

Given that MX2 is an exemplar interferon-response gene
(13, 31, 32) that is induced by numerous immunogenic
stimuli, with consistent induction after each dose of RTS,S
(Supplementary Figure 8B), a possible hypothesis is that
the MX2/GPR183 ratio simply represents generic adjuvant-
driven inflammation. This hypothesis is not supported by
our data, however, as the expression of interferon or innate
immune response modules by themselves were not consistently
associated with RTS,S-mediated protection against CHMI
(Supplementary Table 5; Supplementary Figure 7). While
activation of interferon response may be a necessary component
of an RTS,S protection signature, our data indicates that this
alone is not sufficient for consistent discrimination between
protected and non-protected volunteers across multiple studies.
This observation is consistent with the results of a detailed
comparative analysis of AS01 adjuvants that revealed that the
magnitude of the innate immune response did not correlate
with the subsequent adaptive immune response magnitude (42).
This is in contrast to prior studies of influenza vaccines, where
induction of interferon response genes generally correlated
with the humoral response (12, 14, 47). Indeed, the relationship
between the innate and adaptive immune responses triggered
by vaccines is likely to be vaccine-specific, given that these and
other varied and apparently contradictory associations have been
reported (11, 48, 49), and resolving the underlying circuitry is a
critical area of inquiry for systems analysis (50).

GPR183 (also known as EBI2), encodes a pleiotropic GPCR
that is both a negative regulator of interferon responses (51, 52)
and a chemotactic oxysterol receptor expressed on B cells and
T cells (53) and DCs (52, 54). A critical role for GPR183 in
B cell activation and germinal center development is suggested
by the requirement for GPR183 down-regulation for B cell
migration into central follicular areas, and defective antibody
responses in GPR183 deficient B cells (53). Furthermore,
GPR183 expression on T cells and DCs promotes appropriate
localization of these cells in lymphoid organs to promote CD4+

T cell responses (55, 56). By mining public data from two
proteogenomic tumor tissue analyses of tumor tissues (35,
36) we found that GPR183 phosphopeptides are frequently
detected and were significantly correlated with GPR183 RNA
in all instances (Figure 3B), adding a potentially novel post-
translational regulatory mode for GPR183 function that is
reflected in transcript profiles. Unlike MX2, which was induced
24 h after each RTS,S vaccination (Supplementary Figure 8B),
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GPR183 exhibited a complex expression response pattern that
differed for each dose, with GPR183 levels generally being lower
in volunteers that would ultimately be protected (Figures 1B,C;
Supplementary Figure 8A). To gain insight into the immune cell
populations in blood that may predominantly express GPR183,
we mined data from two published single cell RNA-Seq datasets
(38, 39). Consistent with the reported expression patterns (52–
54), GPR183 was preferentially expressed in DCs, B cells and
CD4T cells (Figure 3D), with DCs having the highest positivity
(42 and 37% for DCs and pDCs, respectively, Figure 3E).
Amongst blood DC and monocyte populations, GPR183 was
abundantly expressed in all but one of the six DCs populations
and more sporadically expressed in monocytes (Figures 3G,H).
Future single cell RNA-Seq or flow cytometry-based analyses of
RTS,S trials are needed to resolve whether changes in blood DC
populations (which are rare but express high levels of GPR183)
and/or changes in blood B cells and CD4+ T cells (which are
more common but express GPR183 less frequently) underlie the
expression changes observed in PBMCs and whole blood. In
either case, given the prominent role for GPR183 in immune
cell chemotaxis to lymphoid tissues, a plausible interpretation of
the reduced blood GPR183 RNA levels in protected individuals
would be enhanced migration that can lead to a more robust
adaptive immune response.

CONCLUSIONS

Through integrated transcriptomic analysis of five independent
CHMI studies we have identified a post-vaccination/pre-
challenge transcript ratio signature that consistently
discriminates protected from non-protected recipients of
RTS,S vaccination. This signature generates hypotheses about
the RTS,S clinical mode of action and complements anti-CSP
antibody levels for predicting which vaccine recipients will
be protected—thereby providing a convenient readout for
currently uncharacterized immune mechanisms that, together
with binding antibodies, protect against malaria challenge.
The relevance of the MX2/GPR183 ratio to RTS,S-mediated
protection against Plasmodium falciparum. nevertheless needs to
be assessed in real world settings in pediatric populations that
are subject to complex environmental factors and other variables
that influence the host:pathogen interface, including innate
immune responses triggered by exposure to the malaria parasite
itself (57).
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Supplementary Figure 1 | Overall correlation between quantitative real-time PCR

(qRT-PCR) and microarray or RNA-Seq data for Study 2 and Study 3. For a panel

of 31 genes with roles in the inflammatory, immune response, and other diverse

functions (Supplementary Table 3), qRT-PCR data was generated for 21

participants from Study 2 at up to two time points (pre-vaccination and day of 3rd

vaccination) and for 33 participants from Study 3 at one or more of 5 time points

(pre-vaccination, the day of the third vaccination, 3 or 14 days after the third

vaccination, and the day of challenge), giving a total of 1,178 data points for Study

2 and 3,410 data points for Study 3. For overall cross-platform comparisons,

normalized data on the log2 scale were z-transformed for each gene and then

combined. (A) Study 2 microarray vs. qRT-PCR (Spearman Rho = 0.73, p = 0, N

= 1178), (B) Study 2 RNA-Seq vs. qRT-PCR (Spearman Rho = 0.74, p = 0, N =

1178), (C) Study 3 RNA-Seq vs. qRT-PCR (Spearman Rho = 0.81, p = 0, N =

3410). Individual gene-level correlations are provided in Supplementary Table 3.

Supplementary Figure 2 | Temporal expression profiles for coherent

transcriptional modules in all studies. For each coherent module defined in

Supplementary Table 4, Log2 expression fold changes across all genes within

the module were computed for each volunteer at each time point. Time course

plots depict trajectories of module-average expression for each volunteer (thin

lines) and the overall averages across all volunteers. Shown is a representative plot

for an individual module (“HALLMARK_INTERFERON_GAMMA_RESPONSE”). For

the complete set of module expression profiles, please see:

Supplementary Tables 1–9.

Supplementary Figure 3 | Frequency of individual modules and transcripts in the

transcript/module ratios associated with protection after RTS,S vaccination. (A)
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Barplot depicting the number of significant transcript/module ratios in which

specific modules appeared. While a lymphoid lineage module was individually the

most frequent module, numerous antiviral/interferon response modules appeared

frequently (shown in green). (B) Barplot depicting the number of significant

transcript/module ratios in which specific transcripts appeared. The oxysterol

receptor GPR183 was the most frequently selected gene. (C) Heatmap depicting

the transcript/module ratios for transcripts and modules that were selected

frequently. The top 5 transcripts (GPR183, AGPAT4, NLRP3, RIPK2, and TNF)

appeared in significant ratios with interferon and viral response-associated

modules.

Supplementary Figure 4 | Network representation of 247 transcript/transcript

ratios that were selected based on consistent discrimination of protected from

non-protected recipients of alternative regimen RTS,S vaccination. Each node

(circle) represents an individual gene. The presence of an edge (line) between

nodes indicates that transcriptional fold-change ratios (Day 1 after 3rd vaccination

compared to pre-vaccination) between those genes consistently discriminate

protected from non-protected recipients of RRR regimen RTS,S

(Supplementary Table 7). Node color indicates whether the fold-change for the

gene is nominally higher in protected vaccine recipients (green) or non-protected

vaccine recipients (red). Node size is proportional to the number of ratios that the

particular gene appears in. Network visualization was created using

Cytoscape (41).

Supplementary Figure 5 | Expression profile of Log2(MX2/GPR183) fold-change

for RRR and alternative regimen RTS,S vaccine strategies. Shown is the log2

gene expression fold-change for the MX2/GPR183 ratio separated by

post-challenge protection status (blue=protected, red=non-protected), Study,

and RTS,S vaccination regimen (RRR or alternative). Log2 Fold-changes for

MX2/GPR183 were computed comparing expression ratios on Day 1 post-3rd

vaccination to pre-vaccination values. Red boxes indicate the two modified RTS,S

regimen arms (Study 1 AS02A and Study 5 G4) that did not demonstrate

associations between Log2(MX2/GPR183) fold-changes and protection that were

observed for the other regimens and studies.

Supplementary Figure 6 | Discrimination of protected from non-protected RTS,S

recipients based on the Log2(MX2/GPR183) expression fold-change, measured

24 h after the 3rd vaccination. In all plots, the blue line shows the ROC for the

logistic regression model fit for the null (STUDY only) model and the green shows

the ROC for the logistic regression fit for the full [STUDY+Log2(MX2/GPR183)]

model. (A,B) ROC for RRR regimen RTS,S for Study 1 (microarray), Study 3

(RNA-Seq), Study 4 (microarray), Study 5 (microarray), and Study 2 RNA-Seq (A)

or Study 2 microarray (B). (A) ROC AUC for null (STUDY only) model (blue) =

0.59, ROC AUC for the STUDY+Log2(MX2/GPR183) model (green) = 0.76,

p(ChiSq) = 2 × 10−5. (B) ROC AUC for null (STUDY only) model (blue) = 0.60,

ROC AUC for STUDY+Log2(MX2/GPR183) model (green) = 0.75, p(ChiSq) = 8 ×

10−5. (C,D) ROC for alternative regimen RTS,S for Study 3 RRr (RNA-Seq), Study

5 G2 & G3 (microarray) and Study 2 ARR RNA-Seq (C) or Study 2 ARR

microarray (D). (C) ROC AUC for null (STUDY only) model (blue) = 0.74, ROC

AUC for the STUDY+Log2(MX2/GPR183) model (green) = 0.83, p(ChiSq) = 2 ×

10−6. (D) ROC AUC for null (STUDY only) model (blue) = 0.71, ROC AUC for the

STUDY+Log2(MX2/GPR183) model (green) = 0.80, p(ChiSq) = 3 × 10−5.

Supplementary Figure 7 | Overall discrimination of protected from non-protected

RTS,S and alternative regimen RTS,S recipients achieved using individual genes,

the MX2/GPR183 ratio, or interferon response associated modules. Each line

shows the overall ROC for logistic regression model fits obtained for all RRR

datasets and the alternative regimen RTS,S groups where MX2/GPR183 behavior

was concordant with the RRR group (Study 2 ARR, Study 3 RRr, and Study 5 G2

& G3, as shown in Supplementary Figure 5). For this visualization, both

microarray and RNA-Seq data for Study 2 were used. The blue line shows the

ROC for the logistic regression model fit for the null (STUDY only) model (ROC

AUC = 0.67), the orange line depicts the ROC for the MX2+STUDY model (ROC

AUC = 0.78), the purple line depicts the ROC for the GPR183+STUDY model

(ROC AUC = 0.76), the red line depicts the ROC for the MX2/GPR183+STUDY

model (ROC AUC = 0.82), the bright green line depicts the ROC for a model

comprised of the HALLMARK_INTERFERON_GAMMA_RESPONSE

module+STUDY (ROC AUC = 0.74), the dark forest green line depicts the ROC

for a model comprised of the HALLMARK_INTERFERON_ALPHA_RESPONSE

module+STUDY (ROC AUC = 0.74), and the olive green line depicts the ROC for

a model comprised of the “M165_enriched in activated dendritic cells (II)”

module+STUDY (ROC AUC = 0.72).

Supplementary Figure 8 | Temporal Log2 expression fold-change RNA-Seq

profile for GPR183 (A) and MX2 (B) for RRR regimen RTS,S in Study 2. Red lines

indicate participants that were not protected, green lines indicate participants that

were protected after challenge. Shaded areas indicate 90% confidence intervals

for linear mixed models for protected and non-protected vaccine recipients.

RTS,S vaccinations were performed on D0, D28, and D56; CHMI was performed

on D77. D57 corresponds to Day 1 after the third vaccination, which is the time

point used to identify the association between RTS,S-mediated protection and the

Log2(MX2/GPR183) score.

Supplementary Figure 9 | Discrimination of protected from non-protected

RTS,S recipients based on the Log2(MX2/GPR183) expression fold-change

(measured 24 h after the 3rd vaccination) in combination with anti-CSP titers

(measured on the day of challenge). In all plots, blue line shows the ROC for the

logistic regression model fit for a null (STUDY only) model; the purple line shows

the ROC for the logistic regression model fit for the model including STUDY and

Z-transformed anti-CSP titers (STUDY+ANTI-CSP); the green line shows the ROC

for the logistic regression fit of the STUDY+Log2(MX2/GPR183) model; and the

red line shows the ROC for the logistic regression fit for the full model

[STUDY+ANTI-CSP+Log2(MX2/GPR183)]. (A,B) ROC for RRR regimen RTS,S

for Study 3 (RNA-Seq), Study 4 (microarray), Study 5 (microarray), and Study 2

RNA-Seq (A) or Study 2 microarray (B). (A) ROC AUC for null (STUDY only) model

(blue) = 0.60, ROC AUC for STUDY+ANTI-CSP model (purple) = 0.80, ROC AUC

for STUDY+Log2(MX2/GPR183) model (green) = 0.78, ROC AUC for full model

(red) = 0.87. p[ChiSq, red [STUDY+ANTI-CSP+Log2(MX2/GPR183) vs. purple

(STUDY+ANTI-CSP)] = 0.001. (B) ROC AUC for the null (STUDY only) model

(blue) = 0.60, ROC AUC for the STUDY+ANTI-CSP model (purple) = 0.81, ROC

AUC for the STUDY+Log2(MX2/GPR183) model (green) = 0.76, ROC AUC for the

full model (red) = 0.87. p[ChiSq, red [STUDY+ANTI-CSP+Log2(MX2/GPR183)]

vs. purple (STUDY+ANTI-CSP)] = 0.005. (C,D) ROC for alternative regimen

RTS,S for Study 3 RRr (RNA-Seq), Study 5 G2 & G3 (microarray, treated together)

and Study 2 ARR RNA-Seq (C) or Study 2 ARR microarray (D). (C) ROC AUC for

null (STUDY only) model (blue) = 0.74, ROC AUC for the STUDY+ANTI-CSP

model (purple) = 0.81, ROC AUC for the STUDY+Log2(MX2/GPR183) model

(green) = 0.83, ROC AUC for the full model (red) = 0.86. p(ChiSq, red)

[STUDY+ANTI-CSP+Log2(MX2/GPR183)] vs. purple (STUDY+ANTI-CSP)] =

0.002. (D) ROC AUC for null (STUDY only) model (blue) = 0.71, ROC AUC for the

STUDY+ANTI-CSP model (purple) = 0.78, ROC AUC for the

STUDY+Log2(MX2/GPR183) model (green) = 0.80, ROC AUC for the full model

(red) = 0.84. p(ChiSq, red) [STUDY+ANTI-CSP+Log2(MX2/GPR183)] vs. purple

(STUDY+ANTI-CSP) = 0.003.

Supplementary Figure 10 | Correlation between RNA-Seq and

microarray-based assessments of MX2, GPR183, and the MX2/GPR183 ratio in

Study 2. Within the totality of the Study 2 dataset (all time points, all participants,

both RRR and ARR study arms) there were 613 samples with matching RNA-Seq

and microarray measurements, allowing for robust cross-platform correlation of

normalized data. (A) RNA-Seq vs. microarray correlation for MX2 (Spearman Rho

= 0.96, p = 0, N = 613); (B) RNA-Seq RNA-Seq vs. microarray correlation for

GPR183 (Spearman Rho = 0.86, p = 0, N = 613), (C) RNA-Seq vs. microarray

correlation for the MX2/GPR183 ratio (Spearman Rho = 0.92, p = 0, N = 613).

Supplementary Table 1 | Experimental design summaries for the five RTS,S

CHMI transcriptional profiling studies evaluated in the meta-analysis.

Supplementary Table 2 | Transcriptional analysis time points for the five RTS,S

CHMI studies and how the time points relate to each vaccination. Time points that

were assessed in more than one study are highlighted in orange; the two time

points that were assessed in all studies are highlighted in yellow. Alternative arms

lacking samples for protected or non-protected subjects are highlighted in red.

The number of samples for non-protected (“NP”) or protected (“P”) subjects

are indicated.

Supplementary Table 3 | quantitative real-time PCR (qRT-PCR) confirmation of

Study 2 and Study 3 RNA-Seq. (Top) Genes and associated Taqman primer/probe

sets that were used as housekeeping genes to normalize Ct values. (Bottom)

Gene-level spearman rank correlation statistics (Rho, p-value, and number of data

points) for correlations between normalized qRT-PCR data and (Left) Study 2

microarray data, (Middle) Study 2 RNA-Seq data, and (Right) Study 3 RNA-Seq

data. Taqman primer/probe sets used for each individual gene are indicated. For
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Study 2, data for 21 participants at up to two time points (pre-vaccination and day

of 3rd vaccination) were assessed for a total of 38 data points for each gene. For

Study 3, data for 33 participants at one or more of 5 time points (pre-vaccination,

the day of the third vaccination, 3 or 14 days after the third vaccination, and the

day of challenge) were assessed for a total of 110 data points for each gene.

Supplementary Table 4 | Transcriptional modules exhibiting coherent patterns of

expression within the five RTS,S CHMI studies.

Supplementary Table 5 | Logistic regression statistics for discriminating

protected from non-protected recipients of RRR regimen RTS,S. Shown are

results for all 79 modules and representative data for ratios between modules and

individual genes that achieved ROC AUC > 0.5. All analyses used log2

fold-changes comparing the expression values of the transcriptional variable at

Day 1 post-3rd vaccination to pre-vaccination values.

Supplementary Table 6 | Logistic regression statistics for discriminating

protected from non-protected recipients of RRR regimen RTS,S based on

transcriptional signatures comprised of ratios between genes and transcriptional

modules. Shown are results for 241 selected gene/module ratios that survived

multiple testing correction at FDR <20.1% and the minimum ROC AUC across all

studies and platforms was >0.65. All analyses used log2 fold-changes comparing

the expression values of the transcriptional variable at Day 1 post-3rd vaccination

to pre-vaccination values.

Supplementary Table 7 | Logistic regression statistics for discriminating

protected from non-protected recipients of RRR regimen RTS,S based on

transcriptional signatures comprised of ratios between pairs of transcripts. These

transcript pairs were generated by expanding the modules in the selected

gene/module ratios (Supplementary Table 6) by the cognate genes that

comprise each module (Supplementary Table 4). Some transcripts may appear

in more than one module. Shown are results for all 2,727 transcript/transcript

ratios that are derived in this manner. All analyses used log2 fold-changes

comparing the expression values of the transcriptional variable at Day 1 post-3rd

vaccination to pre-vaccination values.

Supplementary Table 8 | Logistic regression statistics for discriminating

protected from non-protected recipients of alternative regimen RTS,S vaccination

strategies using the 247 transcript/transcript signatures that were selected from

the RRR regimen analysis (Supplementary Table 7). All analyses used Log2

fold-changes comparing the expression values of the transcriptional variable at

Day 1 post-3rd vaccination to pre-vaccination values.

Supplementary Table 9 | Area under the receiver operating characteristic curves

(ROC AUC) for discriminating protected from non-protected recipients of RRR and

alternative regimen RTS,S vaccinations using MX2/GPR183 fold-changes

measured at alternative time points. Shown are ROC AUCs for time points that

were assessed in more than one independent study. ROC AUC values in bold

indicate moderate discrimination (ROC AUC > 0.65); ROC AUC values in red

indicate anti-prediction (discrimination in the wrong direction; ROC AUC < 0.5).

Measurements of MX2/GPR183 fold-changes at the time points highlighted in

yellow achieve nominally significant discrimination for at least two RRR regimen

RTS,S cohorts.
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