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Angiotensin-(1–7) infusion is associated with
increased blood pressure and adverse cardiac

remodelling in rats with subtotal nephrectomy
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A B S T R A C T

ACE (angiotensin-converting enzyme) 2 is expressed in the heart and kidney and metabolizes
Ang (angiotensin) II to Ang-(1–7) a peptide that acts via the Ang-(1–7) or mas receptor. The
aim of the present study was to assess the effect of Ang-(1–7) on blood pressure and cardiac
remodelling in a rat model of renal mass ablation. Male SD (Sprague–Dawley) rats underwent
STNx (subtotal nephrectomy) and were treated for 10 days with vehicle, the ACE inhibitor
ramipril (oral 1 mg · kg− 1 of body weight · day− 1) or Ang-(1–7) (subcutaneous 24 μg · kg− 1 of
body weight · h− 1) (all n = 15 per group). A control group (n = 10) of sham-operated rats were
also studied. STNx rats were hypertensive (P < 0.01) with renal impairment (P < 0.001), cardiac
hypertrophy (P < 0.001) and fibrosis (P < 0.05), and increased cardiac ACE (P < 0.001) and ACE2
activity (P < 0.05). Ramipril reduced blood pressure (P < 0.01), improved cardiac hypertrophy
(P < 0.001) and inhibited cardiac ACE (P < 0.001). By contrast, Ang-(1–7) infusion in STNx was
associated with further increases in blood pressure (P < 0.05), cardiac hypertrophy (P < 0.05)
and fibrosis (P < 0.01). Ang-(1–7) infusion also increased cardiac ACE activity (P < 0.001) and
reduced cardiac ACE2 activity (P < 0.05) compared with STNx-vehicle rats. Our results add to
the increasing evidence that Ang-(1–7) may have deleterious cardiovascular effects in kidney failure
and highlight the need for further in vivo studies of the ACE2/Ang-(1–7)/mas receptor axis in kidney
disease.

INTRODUCTION

Activation of the RAS (renin–angiotensin system) and
generation of Ang (angiotensin) II is pivotal for
the development and progression of renal disease
[1]. Current treatment based on RAS blockade using
ACE (angiotensin-converting enzyme) inhibitors and/or
ARBs (angiotensin receptor blockers) has benefits, but
cardiovascular disease remains the most frequent cause
of death in patients with chronic kidney disease [2].

New components of the RAS, including ACE2 and
Ang-(1–7), have been suggested to play a role in the
cardiac and renal consequences of kidney disease [3,4].
Ang-(1–7) is a peptide with antifibrotic effects [5,6]
produced from AngII by ACE2 [7–9]. As with ACE
and the AT1R (angiotensin type 1 receptor),
both ACE2 and the Ang-(1–7) receptors or mas receptor
[10] are highly expressed in the heart and kidney.
There is now significant data to support the notion that
the ACE2/Ang-(1–7)/mas receptor axis represents a
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counter-regulatory arm to the ACE/AngII/AT1R axis
that can protect injured tissues from the harmful effects
of locally produced AngII [7,11,12].

To date, few studies have assessed the effect of kidney
failure on the ACE2/Ang-(1–7)/mas receptor axis.
We have reported that renal mass reduction produced
by STNx (subtotal nephrectomy) [3,4] causes cardiac
remodelling, characterized by hypertrophy and fibrosis,
and marked increases in cardiac ACE2 activity [3].
Inhibition of cardiac ACE with ramipril lowered blood
pressure and abrogated the cardiac changes. As the
major role for ACE2 is to produce Ang-(1–7), these
results suggested a cardioprotective role for ACE2
in renal failure, possibly through increased cardiac
Ang-(1–7). Studies have shown that infusion
of Ang-(1–7) has significant cardioprotective effects in
various experimental models of heart disease. For ex-
ample, Ang-(1–7) improves remodelling after myocardial
infarction [13], improves recovery from ischaemia/
reperfusion injury in diabetic animals [14] and reverses
cardiac hypertrophy and fibrosis in experimental
hypertension [15].

There is limited information on the effect of Ang-(1–7)
in experimental models of renal disease, and the results
are quite variable. Ang-(1–7) infusion accelerated renal
damage in the streptozotocin-induced diabetic rat [16]
and increased mesangial area in a mouse model of renal
mass reduction induced by 5/6 STNx [17], but had no
effect on renal function or hypertension in the 2K1C
(two-kidney/one-clip) Goldblatt model [18]. In the only
study, to date, on the cardiac effects of Ang-(1–7) in
kidney failure, Ang-(1–7) reduced blood pressure and
improved cardiac remodelling in a mouse model of renal
mass reduction [19].

The aim of the present study was to examine the effect
of renal mass reduction on the cardiac ACE2/Ang-(1–7)/
mas receptor axis and assess the effect of Ang-(1–7)
infusion on blood pressure, cardiac structure/function
and plasma and cardiac tissue RAS components. We also
compared the effect of Ang-(1–7) infusion with that of
the ACE inhibitor ramipril.

MATERIALS AND METHODS

Experimental protocol
Experimental procedures were performed in accordance
with the National Health and Medical Research Council
of Australia guidelines for animal experimentation and
were approved by the Animal Ethics Committee, Austin
Health. Male SD (Sprague–Dawley) rats (200–250 g)
were housed in a 12:12 h light/dark cycle, with ad
libitum food containing 0.4–0.6 % NaCl (Norco) and
water. STNx (n = 45) or sham surgery (n = 10) was
performed in rats by right nephrectomy and ligation of
all but one of the extrarenal branches of the left renal

artery as described previously [3,4]. STNx rats were
randomly allocated to 10-day treatment with vehicle
(0.9 % saline, n = 15), the ACE inhibitor ramipril (oral
1 mg · kg− 1 of body weight · day− 1, n = 15) or Ang-(1–7)
(subcutaneous 24 μg · kg− 1 of body weight · h− 1, n = 15)
via osmotic mini-pump (model # 2002; Alzet). The dose
and mode of delivery of Ang-(1–7) used is the same as
previously published studies [13,15,20]. Sham-operated
rats (control) received vehicle.

On day 9, rats were housed in metabolic cages, and
24-h water intake and urine volume measured and a
urine sample collected for the measurement of creatinine
and sodium. On day 10, rats were anaesthetized with
an intraperitoneal sodium pentobarbitone (60 mg/kg
of body weight), and cardiac haemodynamics were
determined using a microtipped pressure transducer
catheter (Millar, 1.5F) inserted into the left carotid artery
and advanced into the LV (left ventricle). Data were
stored and analysed using Millar conductance data acquis-
ition and analysis software, and heart rate, systolic
blood pressure, maximal rate of ventricular contraction
(+dP/dt) and LVEDP (left ventricular end-diastolic
pressure) were determined. Diastolic function was
assessed by measuring the time constant of isovolumic
relaxation (Tau), which assess active relaxation with
higher values of Tau implying impaired relaxation
[21].

Rats were then killed by a lethal dose of sodium
pentobarbitone, decapitated and trunk blood collected
into EDTA and lithium heparin tubes. The residual
volume (approx. 20 μl) in the pump was removed
for analysis of Ang-(1–7) levels. The remnant kidney
and heart were removed and weighed. The LV was
transversely dissected into three pieces and one piece
fixed in 4 % paraformaldehyde and embedded in paraffin
for histopathology. The remainder was snap frozen
in isopentane and stored at − 80 ◦C for in vitro
autoradiographic studies, ACE2 activity assay and RNA
extraction.

In addition, to verify that infused Ang-(1–7) was
detectable in the circulation, a separate group of control
rats received vehicle (0.9 % saline, n = 5) or Ang-(1–7)
(subcutaneous 24 μg · kg− 1 of body weight · h− 1, n = 10)
via osmotic mini-pump for 10 days, and rats were killed
and plasma Ang-(1–7) levels measured.

Drugs
Sodium pentobarbitone was obtained from Boehringer
Ingelheim, Ang-(1–7) was from Auspep, and ramipril was
from Sanofi-Aventis.

Biochemical analysis
Urinary and plasma creatinine, urea and sodium were
measured using an autoanalyser (Beckman Instruments).
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Plasma ACE, Ang-(1–7), AngII and renin
activity
Blood samples for measurement of angiotensin peptides
were collected into tubes containing 20 μl/ml of blood
of an inhibitor cocktail [50 mM EDTA, 0.2 M N-ethyl-
maleimide and 1–2 TIU (trypsin inhibitory units)/ml
aprotinin made up in saline] and plasma was
snap-frozen and stored at − 80 ◦C. The RIAs for
AngII and Ang-(1–7) have been described previously
[4,22], and the antibodies used for AngII and
Ang-(1–7) were raised in rabbit and guinea pig
respectively, and the specific radioisotopes, 125I-AngII
and 125I-Ang-(1–7), were made by Prosearch. The
intra- and inter-assay coefficients of variation were 7.6
and 8.3 % for AngII, and 4.5 and 10 % for Ang-(1–7).
Plasma ACE activity was measured using a modification
of a previously published method [23]. Briefly, 5 μl of
plasma was incubated at 37 ◦C with the ACE substrate
hippuryl-His-Leu (1 mM) in a total volume of 50 μl of
buffer (0.4 M sodium borate buffer and 0.3 M NaCl,
pH 8.3) in the presence and absence of EDTA (10 μM)
for 30 min. Following incubation, 120 μl of 0.3 M NaOH
and 10 μl of o-phthalialehyde (20 mg/ml in methanol)
were added. After 10 min at room temperature (24 ◦C),
20 μl of 3 M HCl was added to stop the reaction,
the tubes were centrifuged at 30 000 g for 5 min and
the supernatants were transferred to a black 96-well
microtitre plate. Fluorescence was measured using a
FLUOstar Optima plate reader (BMG Labtech). The
rate of substrate cleavage was determined by comparison
with a standard curve of the product His-Leu and are
expressed as nmol of substrate · ml− 1 of plasma · min− 1.
PRA (plasma renin activity) was measured by RIA as
described previously [24].

QFS (quenched fluorescent substrate)
assay for plasma and cardiac ACE2 activity
We have developed an assay for ACE2 enzymatic activity
in tissue and plasma validated using Western blotting
and immunohistochemistry [25]. The left ventricular
membranes were prepared as described previously [3,25],
and 100 μg of protein was incubated in duplicate
with an ACE2-specific QFS, (7-methoxycoumarin-4-yl)-
acetyl-Ala-Pro-Lys (2,4-dintirophenyl) (Auspep), 10 μM
Z-Pro-prolinal (Auspep), with or without 100 μM
EDTA in a total volume of 200 μl [3]. The rate of
substrate cleavage was determined by comparison with
a standard curve of the free fluorophore MCA (4-amino-
methoxycoumarin; Sigma) and are expressed as nmol
of substrate cleaved · mg− 1 of protein · h− 1. For plasma
ACE2 activity, blood collected into heparinized tubes was
centrifuged at 4 ◦C and assayed using an ACE2-specific
QFS. Results are expressed as nmol of substrate · ml− 1 of
plasma · h− 1.

In vitro autoradiography for cardiac ACE
binding
Cardiac ACE activity was assessed by in vitro
autoradiography on LV sections (20 μm) in 10 rats/group
using the specific radioligand 125I-MK351A (K i =
30 pmol/l) as described previously [3,25]. Quantification
of ACE binding density in two LV sections from each
animal was performed using a microcomputer imaging
device (Imaging Research), which measures the relative
absorbance of the radioactive labelling. Results are
expressed as a percentage of binding in control rats, and
reflect ACE activity in the tissue.

Determination of cardiac collagen
Cardiac (LV) paraffin sections 4-μm thick were
deparaffinized, rehydrated and then stained with 0.1 %
Sirius Red (Polysciences) in saturated picric acid
(Picrosirius Red) for 1 h, differentiated in 0.01 % HCl for
30 s and rapidly dehydrated. Interstitial collagen volume
fraction was determined by measuring the area of stained
tissue within a given field, excluding vessels, artefacts,
minor scars or incomplete tissue fields; 15–20 fields were
analysed per animal in a blinded manner. To measure
perivascular collagen, all arteries in the LV section were
analysed, and the whole artery including the adventitia
was selected for assessment. For both interstitial and
perivascular collagen, the area stained was then calculated
as a percentage of the total area within a given field [25,26].

qRT (quantitative real-time)-PCR
Total RNA was isolated from the LV (n = 10/group) using
the RNeasy kit method (Qiagen). cDNA was synthesized
with a reverse transcriptase reaction using standard
techniques (Superscript II kit; Life Technologies) as de-
scribed previously [25]. All primers and probes for BNP
(brain natriuretic peptide), ACE, ACE2, mas receptor
AT1Rs and AT2Rs (angiotensin type 2 receptors) were
designed using the software program Primer Express (PE
Applied Biosystems), and sequences are shown in Sup-
plementary Table S1 (at http://www.clinsci.org/cs/120/
cs1200335add.htm). qRT-PCR was performed using
the multiplex method, and 18S VIC was used as the
endogenous control. A relative expression method was
applied in the present study using the control group as
the calibrator.

Statistical analysis
Values are presented as means +− S.E.M. P values were
calculated using an unpaired Student’s t test when
comparing the control with STNx, and ANOVA
followed by post hoc least significant difference analysis
when comparing STNx+vehicle with the treatment
groups. For analysis of cardiac ACE binding, results
were log-transformed to stabilize variance. Significant
differences were obtained when P < 0.05.
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Table 1 End-organ weights, physiological parameters, and plasma and urine biochemistry
Values are means+− S.E.M. *P < 0.05, **P < 0.01 and ***P < 0.001 compared with control vehicle; #P < 0.05 and ##P < 0.01 and ###P < 0.001 compared
with vehicle-treated STNx.

Control STNx

Parameter Vehicle (n = 10) Vehicle (n = 15)
Ramipril (1 mg · kg− 1 of body
weight · day− 1) (n = 15)

Ang-(1–7) (24 μg · kg− 1 of
body weight · h− 1) (n = 15)

Body weight (g) 267+− 6 224+− 10** 228+− 6 223+− 8
Renal parameter

Left kidney weight (g) 1.08+− 0.04 1.13+− 0.04 1.07+− 0.04 1.19+− 0.04
Left kidney/body weight (g/100 g) 0.40+− 0.01 0.51+− 0.02*** 0.47+− 0.01# 0.53+− 0.01
Water intake (ml · 100 g− 1 · 24 h− 1) 10.4+− 1.2 27.2+− 3.4*** 25.0+− 1.8 30.8+− 3.1
Urine output (ml · 100 g− 1 · 24 h− 1) 3.8+− 0.6 16.4+− 2.8*** 15.6+− 2.1 18.7+− 3.5
Urinary protein (mg/24 h) 9.5+− 1.3 15.8+− 1.8* 10.6+− 1.0# 12.5+− 1.1
Plasma creatinine (mmol/l) 0.014 +− 0.004 0.040+− 0.004*** 0.043+− 0.003 0.039+− 0.005
Plasma urea (mmol/l) 4.0+− 0.3 10.9+− 2.1*** 11.1+− 0.7 9.2 +− 0.6
Creatinine clearance (ml/min) 4.44+− 0.75 1.30+− 0.20*** 1.16+− 0.12 1.25+− 0.20
Sodium excretion (mmol/24 h) 0.11+− 0.04 0.43+− 0.1** 0.37+− 0.07 0.47+− 0.11

Plasma RAS component
PRA (ng · ml− 1 · h− 1) 19.5+− 1.8 38.7+− 5.3** 56.0+− 6.1## 26.5+− 2.3
ACE (nmol · ml− 1 · min− 1) 12.4+− 1.0 9.9 +− 0.7* 0.2+− 0.03### 9.2 +− 0.6
ACE2 (nmol · ml− 1 · h− 1) 14.4+− 1.2 13.8+− 0.9 10.7+− 0.7# 13.7+− 0.5
AngII (fmol/ml) 19.3+− 5.3 59.9+− 19.1* 88.4+− 9.9 39.5+− 12.5
Ang-(1–7) (fmol/ml) 327+− 71 561+− 138 1695+− 359# 491+− 126
Ang-(1–7)/AngII ratio 18.9+− 4.8 8.3 +− 1.1* 12.1+− 1.1 11.6+− 2.0

RESULTS

STNx and renal function
The changes in physiological and biochemical parameters
after STNx and the effect of intervention are shown
(Table 1). Following STNx, rats had poor weight gain
(P < 0.01) and hypertrophy of the remnant kidney
(P < 0.001). Renal impairment was present as indicated
by elevated plasma urea and creatinine (P < 0.001),
reduced creatinine clearance and increased urinary
protein (P < 0.05) compared with control rats. STNx rats
had increased water intake and urine volume (P < 0.001)
and increased sodium excretion (P < 0.01). Treatment
with ramipril reduced renal hypertrophy and urinary
protein (P < 0.05), whereas Ang-(1–7) did not affect any
of the renal parameters assessed.

Plasma RAS components
The changes in the circulating components of the RAS
after STNx and the effect of treatment are shown
(Table 1). STNx led to a significant increase in PRA
and AngII (P < 0.01 and P < 0.05 respectively), and a
reduction in plasma ACE (P < 0.05), but no change in
plasma ACE2 activity or plasma Ang-(1–7) compared
with control rats. We also calculated the Ang-(1–7)/AngII
ratio, which provides an index of the conversion of

AngII into Ang-(1–7); this ratio decreased significantly
(P < 0.05) in the STNx rats.

Ramipril increased PRA (P < 0.01) and plasma
Ang-(1–7) (P < 0.05), and reduced plasma ACE
(P < 0.001) and ACE2 (P < 0.05). Ang-(1–7) infusion
had no significant effect on plasma PRA, ACE, ACE2
or Ang-(1–7). At the end of the study, all pumps had
a minimal residual volume, and the concentration of
Ang-(1–7) in the residual volume was similar to that
originally added to the pump [baseline Ang-(1–7) con-
centration, 8 mg/ml; post-infusion residual volume Ang-
(1–7) concentration, 7.5 mg/ml], indicating a continued
delivery of Ang-(1–7) over the course of the study.

In a separate 10-day study in rats without STNx,
we showed infusion of Ang-(1–7) via a subcutaneous
mini-pump was associated with a 2-fold increase in
plasma Ang-(1–7) compared with rats that received
vehicle [147 +− 24 fmol/ml in the vehicle group compared
with 250 +− 27 fmol/ml in the Ang-(1–7)-treated group;
P < 0.05; n = 5–10 per group). There was no effect of Ang-
(1–7) on blood pressure, heart weight or cardiac fibrosis
(results not shown).

Blood pressure and cardiac function
The change in blood pressure and cardiac function after
STNx is shown (Figure 1). Compared with control rats,
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Figure 1 Systolic blood pressure (A), ventricular contractility (B), time constant of isovolumic relaxation (C) and LVEDP
(D) in control and STNx [vehicle, ramipril and Ang-(1–7)] rats
Values are means+− S.E.M. (n = 10 for the control group and n = 15 for the STNx groups). **P < 0.01 compared with control; #P < 0.05 and ##P < 0.01
compared with vehicle-treated STNx.

STNx resulted in a significant increase in systolic blood
pressure (Figure 1A; P < 0.01), associated with hypercon-
tractility and increased systolic function (Figure 1B, max.
dP/dt; P < 0.01). Diastolic dysfunction was present with
impaired active relaxation as shown by the significant
increase in the time constant for isovolumic relaxation
(Tau) (Figure 1C; P < 0.01). Elevated ventricular filling
pressure is the main physiological consequence of
diastolic dysfunction, but, at this early stage, there was
no increase in STNx rats (Figure 1D). There was no effect
of STNx on heart rate (results not shown).

Treatment with the ACE inhibitor ramipril had signi-
ficant cardiovascular benefits, decreasing blood pressure
(P < 0.01), returning the rate of systolic contraction to
levels observed in control rats (P < 0.01) and improving
diastolic function (P < 0.01). By contrast, Ang-(1–7)
infusion was associated with adverse cardiovascular
effects in STNx rats and significant increases in blood
pressure (Figure 1A; P < 0.05) and left ventricular
hypertrophy (Figure 2A; P < 0.05) over and above that
in STNx rats treated with vehicle. Rats receiving Ang-
(1–7) maintained the hypercontractile state (Figure 1B)
and had diastolic dysfunction (Figure 1C) with a non-
significant increase in LVEDP (Figure 1D). An indirect
marker of cardiac function, cardiac BNP, was increased at
the gene level in STNx rats and was only decreased with
ramipril treatment (Table 2).

Cardiac hypertrophy, fibrosis and
ACE/ACE2 activity
STNx was associated with marked cardiac (total, right
and left ventricular) hypertrophy, as well as significant
interstitial fibrosis (Figures 2A and 2B). The relative
quantification of cardiac ACE and ACE2 after STNx
and the effect of treatment are shown (Figure 2, right-
hand panels). STNx increased both left ventricular
ACE activity (Figure 2C, P < 0.001) and ACE2 activity
(Figure 2D; P < 0.05).

Treatment with the ACE inhibitor ramipril led to
a significant decrease in left ventricular hypertrophy
(Figure 2A; P < 0.001) and inhibited cardiac ACE activity
(Figure 2C; P < 0.001), with no change in cardiac ACE2
activity. The adverse effect of Ang-(1–7) infusion already
noted on blood pressure was associated with further
increases in left ventricular hypertrophy (P < 0.05) and
cardiac fibrosis (P < 0.01). Ang-(1–7) infusion led to a 3-
fold induction of cardiac ACE binding (P < 0.001) over
and above that observed in STNx-vehicle rats and a
significant reduction in ACE2 activity (P < 0.05).

Representative images of cardiac ACE binding using
autoradiography and total collagen staining are shown
(Figure 3); the degree of interstitial fibrosis follows the
intensity of cardiac ACE binding.

The gene expression of cardiac ACE, ACE2 and
the RAS receptors in STNx are shown (Table 2).
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Table 2 Cardiac expression of RAS genes
Values are means+− S.E.M. *P < 0.01 and **P < 0.05 compared with control vehicle; #P < 0.05 and ##P < 0.01 compared with vehicle-treated
STNx.

Control STNx

mRNA (arbitrary units) Vehicle (n = 10) Vehicle (n = 10)
Ramipril (1 mg · kg− 1 of body
weight · day− 1) (n = 10)

Ang-(1–7) (24 μg · kg− 1 of
body weight · h− 1) (n = 10)

BNP 1.00+− 0.18 2.14+− 0.23** 1.38+− 0.14# 1.91+− 0.19
ACE 1.00+− 0.13 0.87+− 0.07 0.66+− 0.05# 0.84+− 0.06
ACE2 1.00+− 0.15 1.65+− 0.19* 1.27+− 0.16 1.54+− 0.22
mas receptor 1.00+− 0.06 1.23+− 0.08* 0.85+− 0.07## 0.87+− 0.11#

AT1R 1.00+− 0.09 1.50+− 0.21* 1.13+− 0.08 1.18+− 0.11
AT2R 1.00+− 0.11 1.31+− 0.22 0.84+− 0.12 0.99+− 0.19

Cardiac ACE2 was significantly elevated after STNx
at the gene level (P < 0.05), as were mas receptor and
AT1R expression (P < 0.05), whereas ACE mRNA and
expression of the AT2R were unchanged. Ramipril
reduced the gene expression of ACE and the mas receptor,
whereas ACE2 mRNA was unchanged. Treatment with
Ang-(1–7) significantly reduced mas receptor expression.
AT1R and AT2R expression were unchanged in any
treatment group.

DISCUSSION

The present study confirms and extends our previous
work that an acute reduction in renal mass by STNx
increases blood pressure and leads to cardiac remodelling
with cardiac hypertrophy and fibrosis resulting in cardiac
dysfunction. These changes are associated with activation
of both the circulating RAS and the cardiac RAS and are
ameliorated with ACE inhibition.

Figure 2 Left ventricular hypertrophy (A), interstitial collagen (B), ACE binding (C) and ACE2 activity (D) in control and
STNx [vehicle, ramipril and Ang-(1–7)] rats
Values are means+− S.E.M. (n = 10 for the control group and n = 15 for the STNx groups) *P < 0.05 and ***P < 0.001 compared with control; #P < 0.05,
##P < 0.01 and ###P < 0.001 compared with vehicle-treated STNx.
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Figure 3 Representative photomicrographs of left ventricu-
lar total collagen content (red staining; left-hand panel) and
representative macroscopic autoradiographs demonstrating
ACE binding in the LV (right-hand panel)
The red colour denotes the highest density of radiolabelling, whereas the blue
colour represents background labelling.

Contrary to our expectation that Ang-(1–7) infusion
would alleviate the cardiac consequences of kidney
failure, we found that infusion of Ang-(1–7) in STNx rats
was associated with further increases in blood pressure
and acceleration of cardiac hypertrophy and fibrosis;
these changes occurred in association with a 3-fold
increase in cardiac ACE. As ACE is responsible for the
degradation of Ang-(1–7), increased ACE would negate
any benefit of exogenously infused Ang-(1–7) and,
indeed, we found no increase in circulating Ang-(1–7)
following Ang-(1–7) infusion. In addition, Ang-(1–7) sig-
nificantly decreased cardiac ACE2 activity, and the
imbalance in cardiac ACE/ACE2 is likely to contribute
to the adverse cardiac effects observed. Although we were
unable to measure tissue angiotensin peptide levels due to
a lack of available tissue, we can speculate that increased
cardiac ACE will not only increase the degradation
of cardiac Ang-(1–7), but also generate more of the
profibrotic peptide AngII. Attenuated expression of
cardiac ACE2 with Ang-(1–7) infusion will also favour
accumulation of tissue AngII and reduce the endogenous
generation of Ang-(1–7). The increase in cardiac fibrosis

observed would be consistent with this hypothesis. It is
also known from studies in ACE2-KO (knockout) mice
that a lack of ACE2 leads to increased cardiac AngII and
impaired cardiac function, and that inhibition of cardiac
ACE2 exacerbates cardiac hypertrophy and fibrosis [27].

By contrast, inhibition of ACE with ramipril reduced
cardiac ACE and maintained levels of cardiac ACE2,
leading to a more favourable ACE/ACE2 profile in the
direction of decreased AngII and increased Ang-(1–7).
The peptide Ang-(1–7) has a very short half-life (seconds)
[28], due to degradation by ACE, and ACE inhibition
increases circulating levels of Ang-(1–7).

There is limited information on the effect of
Ang-(1–7) in the kidney, whether at the cellular level
or in whole animals, and the results that are available
are at variance with the effect of Ang-(1–7) on the heart
[29–31]. Furthermore, in vitro studies have shown that
Ang-(1–7) has opposing effects on different cell types in
the kidney. In the proximal tubule, Ang-(1–7) displays
growth inhibitory properties and antagonizes the effects
of AngII [32], whereas, in mesangial cells, it stimulates
growth through increases in the profibrotic cytokine
TGF-β1 (transforming growth factor-β1), fibronectin
and collagen IV [33]. More recently, Ang-(1–7) infusion
has also been shown to increase relative mesangial area
in a mouse model of renal mass reduction induced by
5/6 STNx [17]. The renal effects of Ang-(1–7) differ
diametrically from its effects in cardiac fibroblasts, where
it exerts potential antifibrotic and antitrophic effects
[34]. With regard to the vasculature, in vitro results
with Ang-(1–7) cannot always be validated in long-term
in vivo studies; Ang-(1–7) attenuated AngII-induced
vasoconstriction in renal vessels in vitro, but in vivo,
it had no significant effect on renal vessels [35]. The
effects of Ang-(1–7) in the vasculature may also vary
according to prevailing blood pressure and the degree
of RAS activation. It has been reported recently that
Ang-(1–7) caused coronary constriction in spontaneously
hypertensive rats (but not in Wistar rats) in an AT2R-
dependent manner [36].

In vivo studies in experimental renal disease that
have examined the effect of Ang-(1–7) infusion on
the kidney have shown varying results in renal
disease. In streptozotocin-induced diabetic rats, a 6-
week infusion of Ang-(1–7) (intravenous 25 μg · kg− 1

of body weight · h− 1) accelerated renal damage and
increased profibrotic TGF-β1 mRNA and protein levels.
Interestingly, the adverse effects of Ang-(1–7) were
associated with increased renal ACE mRNA expression
and down-regulation of renal ACE2 and mas receptor
expression [16], results not dissimilar to our own, albeit
in the heart. In the 2K1C Goldblatt hypertensive rat [18],
neither of the two approaches used to increase Ang-(1–7)
including a 12-week subcutaneous Ang-(1–7) infusion
(50 μg/h) and transgenic rats expressing an Ang-(1–7)
producing fusion protein modified the course of
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Figure 4 Schematic representation of possible mechanisms responsible for the adverse effects of Ang-(1–7) administration
in STNx
Exogenous administration of Ang-(1–7) results in increased ACE activity (�1 ), leading to increased levels of AngII, which bind to AT1R (�2 ) and activate the pressor
arm of the RAS system. Furthermore, excess Ang-(1–7) can also be broken down to Ang-(3–7), a potent agonist of the AT4R (�3 ), which has been shown to
contribute to cardiovascular disease via the activation of the NF-κB (nuclear factor κB) pathway. Activation of the AT4R by AngIV, a metabolite of AngII may play a
role (�4 ). Finally, reduced renal excretion of angiotensin metabolites may also be contributing to the effects observed in the present study.

hypertension or altered renal function. One study
in renal disease that was positive found that a 5-
day infusion of Ang-(1–7) (subcutaneous 24 μg · kg− 1

of body weight · h− 1) improved glomerulosclerosis in
a rat model of glomerulonephritis induced with the
monoclonal anti-thy-1 antibody OX-7 [37], although
two lower doses of Ang-(1–7) failed to show a benefit.

Ang-(1–7) is thought to mediate its effects via the
mas receptor. In the present study, exogenous Ang-(1–7)
infusion resulted in reduced expression of the cardiac mas
receptor. As the mas receptor can hetero-oligomerize
with the AT1R to inhibit the effects of AngII [38],
down-regulation of the mas receptor may increase the
adverse effects of AngII and promote cardiac damage.
The mas receptor mediated actions of Ang-(1–7) can also
be influenced by AT2R-related mechanisms, suggesting
a complex interaction between these receptors and
highlighting the molecular complexity of this system [39].

The importance of the mas receptor in the progression
of renal disease is not clear-cut. For example, although
mas receptor KO mice have glomerular hyperfiltration
and renal fibrosis, suggesting a protective role for the
mas receptor [40], others have shown that mas receptor
KO mice actually have less renal damage after unilateral
ureteral obstruction [31]. Our own studies have demon-
strated involvement of the mas receptor in the transition
of tubulo-epithelial cells into myofibroblasts [tubular
EMT (epithelial-to-mesenchymal transition)], an
important contributor to renal fibrosis [41]. These in vitro

studies demonstrated that AngII-induced EMT in a nor-
mal rat kidney cell line was exclusively dependent on the
Ang-(1–7)/mas receptor pathway, with various
profibrotic cytokines up-regulated with Ang-(1–7)
and reversed with the mas receptor antagonist A779
[41]. These observations were supported further by in
vivo data showing increased renal expression of various
markers of EMT following infusion of Ang-(1–7) [41].

With regard to the heart, the results in experimental
heart disease have uniformly shown a beneficial effect of
infusion of Ang-(1–7) on the heart [13–15,42]. To date,
there has been only one other study to assess the effect
of Ang-(1–7) on the heart in renal disease. In a chronic
mouse model of renal mass reduction induced by removal
of both poles of the right kidney, followed a week later
by removal of the left kidney, a 12-week infusion of
Ang-(1–7) (subcutaneous 300 μg · kg− 1 of body
weight · day− 1) lowered blood pressure and improved
cardiac function and fibrosis [19]. The mechanism of
the benefit is unclear as both Ang-(1–7) and hydralazine
lowered blood pressure and improved renal function,
but only Ang-(1–7) improved cardiac hypertrophy and
fibrosis. The authors did not measure circulating or
cardiac ACE, ACE2 or Ang-(1–7). Major differences
between the two studies include the species used (rat
compared with mouse), the method of induction and
chronicity of kidney failure (acute compared with
chronic) and the duration of Ang-(1–7) infusion (10 days
compared with 12 weeks), while the dose and route
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of administration of Ang-(1–7) was the same in both
studies. It remains unknown whether the adverse effects
of Ang-(1–7) that we have reported in an acute model
of renal injury are also observed in chronic renal disease
secondary to renal mass reduction in the rat, but such
studies are important.

The potential mechanisms by which Ang-(1–7) infu-
sion leads to an imbalance of the cardiac ACE/ACE2/mas
receptor axis and acceleration of cardiac fibrosis and
hypertrophy after STNx are unclear, and a potential
schema is illustrated (Figure 4). The role of elevated
cardiac ACE (Figure 4 �1 ) and potentially AngII (Figure 4
�2 ) have been discussed previously. However, it is also
possible that renal failure results in an increase in Ang-
(1–7) metabolites, which would normally be excreted by
the kidney. Although the function of the angiotensin
fragments remain to be fully elucidated, increasing
evidence shows that they are biologically active [43].
Given the elevated levels of ACE, it is possible that
Ang-(1–7) is being metabolized to Ang-(1–5) as reported
previously [44]. Ang-(1–5) can then be further broken
down to Ang-(3–5) or Ang-(1–4) [45]. Ang-(1–7) can also
be directly converted into Ang-(3–7) by aminopepetidase
[46] (Figure 4 �3 ). Ang-(3–7) can elevate blood pressure
[43,47], by activating the AT4R ( [46,48], which signals
through the NF-κB (nuclear factor κB) pathway to
promote pro-inflammatory and pro-thrombotic effects
[49]. As AngIV (a product of AngII) [49] can also activate
the AT4 R, angiotensin metabolites may contribute to the
cardiac damage observed in this study (Figure 4 �4 ). To
date, this remains speculative, and more studies examining
these complex pathways are required.

In summary, we have shown that a 10-day infusion
of Ang-(1–7) in rats with STNx is associated with
deleterious effects on blood pressure and the heart,
with increases in cardiac ACE, and decreases in cardiac
ACE2 activity. As ACE2 both degrades AngII and
generates Ang-(1–7), the resultant imbalance in the
cardiac ACE/ACE2 axis favours the accumulation
of cardiac AngII and accelerates cardiac fibrosis and
hypertrophy. Our results add to the increasing evidence
that Ang-(1–7) may have deleterious effects in kidney
disease and highlight the need for further in vivo studies
of the alternative arm of the RAS in this increasingly
common condition. Future studies should investigate
whether enhancement of cardiac or renal ACE2 activity
may represent a better therapeutic strategy to address
both the cardiac and renal consequences of kidney
disease.
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Table S1 qRT-PCR probes and primers
F, forward; FAM, 6-carboxyfluorescein; masR, mas receptor; R, reverse; TAMRA,
6-carboxytetramethylrhodamine.

Gene Probe/primer Sequence (5′→3′)

ACE Probe FAM-CAACAAGACTGCCACCTGCTGGTCC-TAMRA
F-Primer CACCGGCAAGGTCTGCTT
R-Primer CTTGGCATAGTTTCGTGAGGAA

ACE2 Probe FAM-TTGTCTGCCACCCCACA-TAMRA
F-Primer GCCAGGAGATGACCGGAAA
R-Primer CTGAAGTCTCCATGTCCCAGATC

masR Probe FAM-CGGGATCCTCCTCTGG-TAMRA
F-Primer CATCTCTCCTCTCGGCTTTGTG
R-Primer CCTCATCCGGAAGCAAAGG

AT1R Probe FAM-CATCGGCCAAAAAGCCTGCGT-TAMRA
F-Primer CGGCCTTCGGATAACATG
R-Primer CCTGTCACTCCACCTCAAAACA

AT2R Probe FAM-CAACCCTTCCTCTCTGGGCAACCTATTACTCTTATA-TAMRA
F-Primer CAATCTGGCTGTGGCTGACTT
R-Primer TGCACATCACAGGTCCAAAGA

BNP Probe 6FAM-TCCTAGCCAGTCTCC-TAMRA
F-Primer GCCGCTGGGAGGTCACT
R-Primer AGCTTCTGCATCGTGGATTGT
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