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Transcriptionally active enhancers in human
cancer cells
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Abstract

The growth of human cancer cells is driven by aberrant enhancer
and gene transcription activity. Here, we use transient transcrip-
tome sequencing (TT-seq) to map thousands of transcriptionally
active putative enhancers in fourteen human cancer cell lines
covering seven types of cancer. These enhancers were associated
with cell type-specific gene expression, enriched for genetic vari-
ants that predispose to cancer, and included functionally verified
enhancers. Enhancer–promoter (E–P) pairing by correlation of
transcription activity revealed ~ 40,000 putative E–P pairs, which
were depleted for housekeeping genes and enriched for transcrip-
tion factors, cancer-associated genes, and 3D conformational
proximity. The cell type specificity and transcription activity of
target genes increased with the number of paired putative enhan-
cers. Our results represent a rich resource for future studies of
gene regulation by enhancers and their role in driving cancerous
cell growth.
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Introduction

In metazoans, the spatiotemporal regulation of gene expression

governs development and homeostasis, and its misregulation contri-

butes to a wide range of human diseases. The underlying cell type-

specific gene expression programs are controlled by enhancer

elements, which are short segments of cis-regulatory DNA (Bulger &

Groudine, 2010). Enhancers are typically 100 base pairs (bp) to

1 kbp in length, contain binding sites for sequence-specific tran-

scription factors, and enable regulation of target gene transcription

(Furlong & Levine, 2018). The activity of enhancers is to a large

extent cell type specific, and tens of thousands of enhancers are

thought to be active in any one cell type (Heintzman et al, 2009;

Dunham et al, 2012; Andersson et al, 2014).

Gene dysregulation is a hallmark of cancer and is caused by

aberrant combinations of transcription factors, co-factors, and

enhancers, which change transcriptional networks and cause a

pathological cell state (Sur & Taipale, 2016; Bradner et al, 2017;

Wouters et al, 2017). Recently, several studies of transcription

dysregulation in tumor cells have revealed how dysfunctions of

enhancers contribute to tumor risk, tumorigenesis, progression, and

survival (Cohen et al, 2017; Chen et al, 2018; Chu et al, 2018; Corces

et al, 2018). Enhancer dysfunction can be caused in cis by mutations

in enhancers that alter their activity or target gene specificity.

However, more commonly, enhancer dysfunction is caused in trans

by mutations in transcription factors, chromatin remodelers, or

DNA modifiers that can also alter enhancer activity (Sur & Taipale,

2016). Both, cis and trans mutations, can lead to loss of tumor-

suppressive enhancers and activation of oncogenic enhancers. A

current question in cancer genomics is therefore to understand how

somatic mutations in cis and in trans alter transcription programs to

cause a cancer phenotype (Kolch et al, 2015), and addressing it

requires quantitative analysis of the activity of enhancers in human

cancer cells.

Enhancers act in the recruitment of RNA polymerase II (Pol II) to

target gene promoters and stimulate gene transcription (Levine,

2010; Spitz & Furlong, 2012; Vernimmen & Bickmore, 2015; Li et al,

2016; Field & Adelman, 2020). Enhancer function depends on their

DNA sequence, local chromatin modifications, binding of transcrip-

tion factors, and transcriptional co-activators. Enhancers can be

located upstream or downstream of their target genes, or within

introns. Moreover, they can be located at large distances from their

target gene, even 1 Mbp away. The putative location of enhancers

may be identified through genome-wide mapping of histone modifi-

cations that are enriched in enhancer regions, in particular acetylation

of histone H3 at residue lysine 27 (H3K27ac), and monomethylation
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of H3 lysine 4 (H3K4me1), which often coincides with the absence

of the trimethylated form of H3 lysine 4 (H3K4me3) (Heintzman

et al, 2007; Heintzman et al, 2009; Rada-Iglesias et al, 2011). Active

enhancers are also typically located within open chromatin

regions, which can be identified by DNase-seq (DNase I digestion

and sequencing) or ATAC-seq (assay for transposase-accessible

chromatin with high-throughput sequencing) (Boyle et al, 2008;

Buenrostro et al, 2013).

Enhancers can themselves be transcribed by Pol II, which

produces enhancer RNA (eRNA) (Tuan et al, 1992; Ashe et al, 1997;

Routledge & Proudfoot, 2002; de Santa et al, 2010; Kim et al, 2010;

Koch et al, 2011). eRNAs are non-coding RNAs with an average

length of 1,000–5,000 nucleotides (nt) (de Santa et al, 2010; Kim

et al, 2010; Schwalb et al, 2016). They are generally unspliced, not

polyadenylated, and short-lived due to their rapid degradation by

the nuclear exosome (de Santa et al, 2010; Kaikkonen et al, 2013;

Andersson et al, 2014; Core et al, 2014; Lubas et al, 2015; Schwalb

et al, 2016). The possible functions of enhancer transcription and

eRNAs remain unclear (Natoli & Andrau, 2012; Li et al, 2016; Lewis

et al, 2019). Enhancer transcription might be a by-product of

random engagement of Pol II with open chromatin. Alternatively,

the process of enhancer transcription may help in creating or main-

taining an open and active chromatin environment by recruiting

chromatin remodelers through their association with transcribing

Pol II (Wilson et al, 1996; Cho et al, 1998; Gribnau et al, 2000;

Kaikkonen et al, 2013). It is also possible that eRNAs have func-

tional roles in target gene transcription because depletion of specific

eRNAs has been reported to decrease mRNA transcription (Lam

et al, 2013; Melo et al, 2013; Schaukowitch et al, 2014; Carullo et al,

2020). eRNAs may also facilitate enhancer–promoter looping (Lai

et al, 2013; Li et al, 2013; Hsieh et al, 2014) or the recruitment of

transcription factors (Sigova et al, 2015).

eRNAs can be used to map active enhancers (de Santa et al,

2010; Kim et al, 2010; Wang et al, 2011; Kaikkonen et al, 2013; Wu

et al, 2014; Arner et al, 2015; Schwalb et al, 2016; Michel et al,

2017). eRNAs as enhancer marks have the advantage to identify

enhancers that are transcriptionally active, and this has been related

to the transactivating function of enhancers on their target promot-

ers (Kim et al, 2010; Wang et al, 2011; Franco et al, 2015; Hah et al,

2015; Michel et al, 2017). This functional indication from the pres-

ence of eRNAs is not evident from other enhancer marks (e.g., open

chromatin, histone modifications) (Hah et al, 2013; Zhu et al, 2013;

Andersson et al, 2014; Core et al, 2014; Franco et al, 2015; Franco

et al, 2018; Henriques et al, 2018; Fitz et al, 2020). However, eRNAs

are difficult to detect, due to their rapid degradation and low expres-

sion levels. Transcriptomic techniques measuring RNA abundance

such as RNA-seq or cap analysis of gene expression (CAGE) can also

detect eRNAs (Kodzius et al, 2006; Andersson et al, 2014), but are

often less sensitive. Detection of unstable eRNAs is, however, facili-

tated by techniques that monitor newly synthesized RNA (Core

et al, 2014; Mahat et al, 2016; Wouters et al, 2017; Franco et al,

2018; Hirabayashi et al, 2019), such as transient transcriptome

sequencing (TT-seq) (Schwalb et al, 2016; Michel et al, 2017). TT-

seq combines a short 4-thiouridine (4sU) RNA labeling pulse with a

RNA fragmentation step to enrich for newly synthesized RNA, and

thereby detects short-lived transcripts with high sensitivity. TT-seq

monitors transcription genome wide in an unbiased manner and

thus measures transcription at both enhancers and their target genes

simultaneously (Schwalb et al, 2016; Michel et al, 2017; Gressel

et al, 2019b; Żylicz et al, 2019). TT-seq is therefore ideally suited to

map transcriptionally active enhancers in cancer cells and to study

gene regulation in cancer.

Here, we use TT-seq to map thousands of transcriptionally

active, putative enhancers in fourteen human cancer cell lines

covering seven types of cancer. For the majority of cell lines, this

represents the first comprehensive genome-wide map of enhancer

transcription. We conducted an in-depth analysis of the data,

derived thousands of putative enhancer–promoter (E–P) pairs, and

extracted general features of enhancers and transcription landscapes

in cancer cells. Finally, we provide a comprehensive catalog of tran-

scribed candidate enhancers with cancer-associated somatic muta-

tions and putative enhancer–promoter pairs involving cancer-

associated genes. Overall our results serve as a resource to study

enhancer activity and gene regulation, and to select candidate

enhancers for functional studies.

Results

Mapping transcription in human cancer cells

We applied transient transcriptome sequencing (TT-seq (Schwalb

et al, 2016)) to map transcription in fourteen human cancer cell

lines representing seven different cancer types: brain (M059J, U-118

MG), breast (BT-20, MDA-MB-231), colorectal (GP5d, HCT 116,

LoVo), kidney (769-P, 786-O), prostate (DU 145, PC-3), and uterine

cancer (SK-UT-1) as well as leukemia (Jurkat (Michel et al, 2017),

K562 (Schwalb et al, 2016)). TT-seq samples comprising newly

synthesized RNA and total RNA, i.e., RNA-seq, were collected as

independent biological duplicates, and newly synthesized RNA

labeling and isolation was carried out as described (Schwalb et al,

2016) with minor modifications (Fig 1A; see Materials and Methods

for details). TT-seq libraries were sequenced to a depth of

~ 150 million uniquely mapped read pairs (110–232 million per

sample). The obtained data sets were highly reproducible (Spear-

man’s rho > 0.98; Appendix Fig S1A).

To identify genomic intervals of uninterrupted transcription (tran-

scription units, TUs) in our data sets, we used the hidden Markov

model-based genome segmentation algorithm GenoSTAN (Zacher

et al, 2017) (Materials and Methods). TUs overlapping annotated

protein-coding genes were defined as mRNAs. All other TUs were

considered non-coding (nc) RNAs and were further classified accord-

ing to their genomic location relative to protein-coding genes into

four categories: upstream antisense RNA (uaRNA), convergent RNA

(conRNA), antisense RNA (asRNA), and intergenic RNA (Fig 1B,

Materials and Methods). On average, GenoSTAN identified ~ 44,000

TUs per cell line (ranging from 26,729 to 64,843), where of ~ 11,000

were classified as mRNAs (Fig EV1A), and the remaining TUs as

ncRNAs (uaRNA, conRNA, asRNA, and intergenic RNA).

Enhancer transcription at thousands of genomic sites

To identify ncRNAs originating from enhancer regions, we first

restricted the set of ncRNAs to those originating outside of promoter

regions (TSS � 1 kb, i.e., asRNAs and intergenic RNAs). We then

made use of a large set of putative enhancer regions (Zacher et al,
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Figure 1. TT-seq analysis and transcript annotation in human cancer cells.

A Experimental design. TT-seq data of fourteen human cell lines representing seven different cancer types: brain (M059J, U-118 MG), breast (BT-20, MDA-MB-231),
colorectal (GP5d, HCT 116, LoVo), kidney (769-P, 786-O), prostate (DU 145, PC-3), and uterine cancer (SK-UT-1) as well as leukemia (Jurkat (Michel et al, 2017), K562
(Schwalb et al, 2016). For TT-seq, newly synthesized RNA is metabolically labeled with 4-thiouridine (4sU) for five minutes and labeled RNA is isolated, and processed
as described (Schwalb et al, 2016) with minor modifications ((Gressel et al, 2019a) Materials and Methods). Libraries of total fragmented RNA (RNA-seq) and labeled
RNA are sequenced.

B Definition of transcript classes and putative enhancer RNA (eRNA) annotation. Top: non-coding RNAs are classified into four categories: upstream antisense RNA
(uaRNA), convergent RNA (conRNA), antisense RNA (asRNA), and intergenic RNA. asRNAs and bidirectional intergenic RNAs originating from GenoSTAN enhancer state
regions (Zacher et al, 2017) are classified as putative eRNAs (green). Bottom: exemplary UCSC genome browser view of TT-seq coverage in HCT 116 colorectal cancer
cells and transcript annotation at the KLF6 locus (hg38; chr10:3,758,830–3,815,253 (Kent et al, 2002)). Due to the high expression of KLF6, the TT-seq coverage is cut at
200 to allow for better visualization of the surrounding eRNA signal. H3K4me1 ChIP-seq, H3K27ac ChIP-seq, and DNase I-seq signal from ENCODE (Dunham et al,
2012).

C Definition of putative enhancer regions. For non-overlapping (left) and overlapping (middle) bidirectional intergenic RNAs, the region between the TSSs of each pair is
extended by 500 bp in both directions, and defined as putative intergenic enhancer region. For asRNAs (right), the region covering 750 bp upstream of the TSS to 500
bp downstream is defined as putative intragenic enhancer region.

D Number of putative enhancer regions per cell line. Bar depicts the mean. Diamonds represent individual numbers in each cell line and are color-coded according to
cancer type (as in (A)).

E Heatmaps of DNase I signal (Dunham et al, 2012) for enhancer regions (rows). For intergenic enhancers (left), the signal is aligned at the upstream (relative
to + strand) enhancer edge, shown from 4 kbp upstream to 5 kbp downstream, and ordered by increasing length of enhancer regions. For intragenic enhancers
(right), the signal was aligned at the upstream and downstream enhancer edges and shown within � 4 kbp. Exemplary data from LoVo colorectal cancer cells.

F Heatmaps as in (E) showing composite ChIP-seq peak coverage from 326 TFs (Yan et al, 2013).
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2017) that were predicted from patterns of five histone modifi-

cations (H3K4me1, H3K4me3, H3K36me3, H3K27me3, and

H3K9me3) in 127 cell types and tissues (Dunham et al, 2012;

Kundaje et al, 2015). asRNAs and intergenic RNAs originating from

this set of putative enhancer regions were classified as putative

eRNAs (Fig 1B, Materials and Methods). Moreover, we restricted

the set of intergenic eRNAs to only those originating from regions

with TT-seq detected transcription on both strands (i.e., bidirec-

tional intergenic RNAs). This annotation strategy led to the identifi-

cation of on average ~ 9,000 (4,357–14,695) putative eRNAs per cell

line (Fig EV1A).

Compared to the set of ncRNAs not overlapping enhancer state

regions, our putative eRNAs (hereafter also referred to as “eRNAs”)

clearly showed properties characteristic of actively transcribed

enhancers (Fig EV1B–D, Appendix Fig S1B–E). The region surround-

ing the TSS of eRNAs was enriched for the active enhancer mark

H3K27ac (Fig EV1B) and for transcription factor binding as moni-

tored by ChIP-seq (Fig EV1C). Moreover, eRNAs were characterized

by shorter RNA half-lives (Fig EV1D), which we calculated as

described (Schwalb et al, 2016).

Based on our eRNA annotation, we next defined putative

enhancer regions, which are regions from which eRNA synthesis is

initiated. To define intergenic enhancer regions, we selected the

region between the TSSs of each pair of intergenic bidirectional

eRNAs and extended it by 500 bp in both directions (Fig 1C, Materi-

als and Methods). To define intragenic enhancer regions, we

selected the region covering 750 bp upstream to 500 bp downstream

of the TSS of antisense eRNAs. This annotation strategy led to the

identification of on average ~ 8,000 (3,848–12,337) putative

enhancer regions per cell line (Fig 1D), of which about half were

located within protein-coding genes (Appendix Fig S1B). The result-

ing putative enhancer regions (hereafter also referred to as

“enhancer regions” or “enhancers”) were highly concordant with

DNase I-hypersensitive sites (Fig 1E) and transcription factor bind-

ing regions identified by ChIP-seq (Fig 1F), and overlapped with

enhancer annotations derived from CAGE or ChRO-seq data

(Appendix Fig S1F; (Andersson et al, 2014; Chu et al, 2018)).

As expected, TT-seq was more sensitive in calling transcribed

enhancers than CAGE. These efforts identified thousands of puta-

tive eRNAs and enhancers in fourteen human cancer cell lines

(Table EV1).

Transcription directionality is preserved across cell types

The majority of eukaryotic promoter regions are divergently tran-

scribed with the TSS for the protein-coding gene being accompanied

by an upstream, antisense TSS producing often non-coding,

upstream antisense RNAs (uaRNAs) (Core et al, 2008; Seila et al,

2008; Neil et al, 2009; Almada et al, 2013). Many active enhancers

are also divergently transcribed (de Santa et al, 2010; Kim et al,

2010) producing eRNAs from both strands. Since uaRNAs and

eRNAs are rapidly degraded (Flynn et al, 2011; Lubas et al, 2015;

Schwalb et al, 2016), a measure of RNA synthesis, as provided by

TT-seq, is needed to precisely quantify transcription directionality.

We therefore investigated bidirectional transcription at promoters

and putative enhancers. For promoters, we counted TT-seq reads in

1 kbp regions downstream (sense) and upstream (antisense) of the

protein-coding TSS, and excluded divergent protein-coding gene

pairs. For enhancers, we took all bidirectional intergenic enhancer

regions shorter than 3 kbp and counted TT-seq reads in this region

mapped to the plus and minus strand. Based on this, we defined a

promoter directionality score as the ratio of sense and antisense read

counts, and an enhancer directionality score as the ratio of plus and

minus strand read counts ((Jin et al, 2017), Materials and Methods).

We observed upstream antisense transcription at 68% of active

promoters across all cell lines (64–75% per cell line). At these

promoters, transcription was generally biased toward the coding

direction (median ~ 3.1-fold; Fig 2A), in agreement with previous

studies (Core et al, 2008; Seila et al, 2008; Xu et al, 2009; Ntini et al,

2013; Sigova et al, 2013; Core et al, 2014; Mayer et al, 2015; Jin

et al, 2017). The overall lower TT-seq signals for uaRNAs compared

with mRNAs suggested that the remaining promoters might also be

bidirectional but with upstream antisense transcription not being

detected at our sequencing depth. Indeed, these seemingly unidirec-

tional promoters were on average about 2.5-fold less transcribed

than bidirectional promoters (Fig 2B). To test this further, we asked

if seemingly unidirectional promoters in one cell line were detected

as bidirectional in one of the other cell lines, in which these particu-

lar promoters are more highly transcribed. When considering all cell

lines, 82% of promoters showed upstream antisense transcription in

at least one of the cell lines. The maximum transcription levels of

the remaining 18% seemingly unidirectional promoters were about

4-fold lower than those of bidirectional promoters (Appendix Fig

S2A). Next, we correlated mRNA and uaRNA synthesis within each

cell line and did observe only a weak correlation (r = 0.25;

Appendix Fig S2B) in agreement with others (Churchman & Weiss-

man, 2011) and with the observed substantial variability of direc-

tionality between promoters (Fig 2A). However, when we correlated

uaRNA and mRNA synthesis at bidirectional promoters across cell

lines, we observed positive correlations for the majority of promot-

ers (median r = 0.53, Fig 2C). 63% of promoters had a correlation

coefficient above 0.4, indicating that mRNA and uaRNA synthesis

are largely coregulated.

In contrast to promoters, where uaRNAs generally showed less

TT-seq signal than their corresponding mRNAs, bidirectional enhan-

cers had no directional preference (Fig 2D). Yet, directionality

scores varied strongly and 39% of bidirectional enhancers preferen-

tially transcribed one of the strands (|directionality score| ≥ 3; Fig 2

D). The remaining 61% of enhancers were transcribed more bidirec-

tionally balanced on both strands (|directionality score| < 3; Fig 2

D). When we correlated plus and minus strand transcription at

enhancers across cell lines, we observed strong positive correlations

for the majority of enhancers (median r = 0.59; Fig 2E). 68% of

enhancers had a correlation coefficient above 0.4. This indicates

that enhancer transcription generally maintains its strand preference

between different cell lines.

These observations support divergent transcription initiation as a

general feature of promoters and enhancers (Core et al, 2014;

Andersson et al, 2015; Andersson & Sandelin, 2020) and indicate

that the directionality of divergent transcription at promoters and

enhancers is widely preserved across cell types.

Transcription at functionally verified enhancers

We next asked whether enhancers identified based on their TT-seq-

measured eRNA synthesis correspond to enhancers that were
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previously observed to be functional in target gene activation.

Mansour and colleagues dissected the molecular mechanisms by

which a short 12-bp insertion approximately 8 kbp upstream of the

TAL1 oncogene introduces novel binding sites for the transcription

factor MYB, and establish a new super-enhancer in a subset of acute

lymphoblastic leukemia (ALL) cases (Mansour et al, 2014). In our

data from the same ALL cell line (Jurkat), TAL1 is highly expressed

and the insertion region is flanked by eRNAs, identifying the

enhancer location (Fig 3A). Enhancer transcription at this location

was absent in the chronic myelogenous leukemia cell line K562,

which was consistent with lower transcription of TAL1 compared

with Jurkat cells.

Elevated expression of the oncogenic transcription factor c-

MYC (hereafter referred to as MYC) is a hallmark of cancer

(Gabay et al, 2014) and is largely established by the formation of

numerous tumor-specific enhancers in the gene desert surround-

ing MYC (Ahmadiyeh et al, 2010; Chapuy et al, 2013; Hnisz et al,

2013; Herranz et al, 2014; Fulco et al, 2016; Zhang et al, 2016;

Dave et al, 2017). TT-seq unveiled the extent and specificity of

enhancer transcription across multiple diverse cancer cells, reca-

pitulating the MYC gene’s complex cis-regulatory architecture in

great detail (Fig 3B). For the majority of cell lines, this represents

the first map of enhancer transcription at the MYC locus. Impor-

tantly, enhancer transcription was present in regions enriched in

genetic variants predisposing to cancer (Fig 3B), previously

annotated enhancers based on histone modifications and chro-

matin accessibility (Hnisz et al, 2013; Corces et al, 2018), and

functionally verified enhancers (Fig EV2A, Appendix Fig S3)

(Fulco et al, 2016; Dave et al, 2017).

To further illustrate that TT-seq reliably measures enhancer tran-

scription at functionally verified enhancers, we used CRISPR/Cas9-

mediated deletion of a 520 kbp enhancer region upstream of the

MYC gene to extend published results (Dave et al, 2017). Dave et al

showed that deletion of this enhancer region decreases MYC expres-

sion in multiple mouse tissues and impairs cell proliferation in the

colorectal cancer cell line GP5d. The presence of active enhancers in

this region agrees well with the strong eRNA synthesis we measured

in GP5d cells (Figs 3B and EV2A). In contrast, we observed almost

no eRNA synthesis across this region in the prostate cancer cell line

DU 145 (Figs 3B and EV2A), suggesting little or no enhancer activity

in DU 145 cells. When we carried out CRISPR/Cas9-mediated dele-

tion of this region in DU 145 cells, edited cells were not depleted

from the cell population during co-culture with unedited cells (Fig

EV2B), whereas this was observed in GP5d cells (Dave et al, 2017).

This indicates that the deleted region is not necessary for cell prolif-

eration in DU 145 cells and might not contain an active enhancer

element regulating MYC expression. In summary, our data capture

precise maps of enhancer transcription at well-studied and function-

ally verified enhancers, and thus, TT-seq is a well-suited method to

measure enhancer transcription.

A B C D E

Figure 2. Transcription directionality is preserved across cell types.

A Histogram shows genome-wide distribution of log10-transformed directionality scores at bidirectional promoters. Directionality score for promoters is defined as the
ratio of mRNA and uaRNA reads counted within 1 kbp regions downstream sense and upstream antisense of the protein-coding TSS. Promoters with divergently
transcribed protein-coding gene pairs were excluded (Materials and Methods). The red dashed line marks the median.

B Bidirectional promoters show higher mRNA synthesis. Boxplots showing TT-seq signal for mRNAs from unidirectional (n = 39,376) and bidirectional (n = 83,363)
promoters. Bidirectional and unidirectional promoters were defined for each cell line separately (Materials and Methods) and then plotted together. Box limits are the
first and third quartiles, the band inside the box is the median. The ends of the whiskers extend the box by 1.5 times the interquartile range. Notches represent 95%
confidence intervals for the median values. Outliers not shown. P-value by two-sided Mann–Whitney U-test.

C Boxplot showing pairwise Pearson correlation between uaRNA and mRNA synthesis at bidirectional promoters across cell lines. Only promoters with observed
bidirectional transcription in at least five cell lines and varying transcription across cell lines (coefficient of variation > 50%) were considered (n = 3,468, Materials
and Methods). Median, hinges, whiskers, and notches are shown as in (B).

D Histogram shows genome-wide distribution of log10-transformed directionality scores at bidirectional enhancers. Directionality score for enhancers is defined as the
ratio of reads mapped to the plus and minus strand. Only bidirectional intergenic enhancer regions shorter than 3 kbp were considered (Materials and Methods). In
accordance with Jin et al (2017), enhancer regions were categorized as having a preferred direction (white) if the absolute value of the plus-to-minus strand ratio was
≥ 3 and as bidirectionally balanced (gray) if it was < 3. Note that the distribution would be less balanced if unidirectionally transcribed enhancers were included.

E Boxplot showing pairwise Pearson correlation between plus and minus strand transcription at bidirectional enhancers over cell lines. Only enhancers with observed
bidirectional transcription in at least 5 cell lines and varying transcription over cell lines (coefficient of variation > 50%) were considered (n = 715, Materials and
Methods). Median, hinges, whiskers, and notches are shown as in (B).
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Comparison to high-throughput functional assays

To further evaluate the functionality of TT-seq-defined putative

enhancers, we examined their activities in genome-wide plasmid-

based reporter assays. To this end, we used HCT 116 and K562

STARR-seq data available from the ENCODE portal and investigated

the overlap between TT-seq-defined enhancers and STARR-seq

peaks (Materials and Methods). About 14 and 10% of TT-seq-de-

fined enhancers were active in STARR-seq for HCT 116 and K562,

respectively (Fig EV3A). Next, we compared these results to

STARR-seq overlaps of putative enhancers called by other methods

and sets of randomly sampled genomic regions (Materials and

A

B

Figure 3. Transcription at functionally verified enhancers.

A UCSC genome browser view of normalized TT-seq coverage on the plus and minus strand at the TAL1 locus (hg38; chr1:47,194,268–47,242,880 (Kent et al, 2002)) in
the leukemia cell lines Jurkat and K562. For better visualization, TT-seq coverage is cut at 200 (purple lines). eRNAs are shown between the plus and minus strand.
Red line indicates the short 12-bp insertion in Jurkat cells, introducing novel binding sites for the transcription factor MYB (Mansour et al, 2014).

B UCSC genome browser view of normalized TT-seq coverage on the plus and minus strand at the 2.8 Mbp gene desert surrounding MYC (hg38;
chr8:127,042,406–129,779,109 (Kent et al, 2002)) in fourteen cancer cell lines. eRNAs represent the union from all cell lines. Genome-wide association studies (GWAS)
risk loci contain single nucleotide polymorphisms (SNPs) for prostate cancer (PrCa), acute lymphocytic leukemia (ALL), breast cancer (BrCa), colorectal cancer (CRC),
and glioblastoma (GBM), including SNPs in linkage disequilibrium (r2 ≥ 0.8). TT-seq coverage is displayed between 8 and 250 to allow for better visualization of the
eRNA signal surrounding MYC. Dashed rectangle is shown at full scale on the right. Note: TT-seq reads were mapped against the hg38 reference genome, and we
cannot rule out the existence of genomic rearrangements (e.g., translocations) affecting the shown region in the used cancer cell line clones.
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Methods). The proportions of TT-seq enhancers with STARR-seq

activity were larger than the proportions observed for open chro-

matin (DHS) or H3K4me1-defined enhancers, similar to H3K27ac-

defined enhancers, and more than 6-fold enriched over background

(Fig EV3A). We further show that taking a conservative subset of

putative enhancers by combining DHS, H3K27ac and TT-seq,

increased the STARR-seq overlap to 18 and 14% for HCT 116 and

K562, respectively (Fig EV3A). We hypothesized that some enhan-

cers are not active in STARR-seq as they might be part of cooperat-

ing enhancer clusters and thus might not function when tested

individually. To investigate this, we counted the number of neigh-

boring enhancers within � 12.5 kbp for each putative enhancer and

found that enhancers not active in STARR-seq were significantly

enriched for enhancers with neighboring enhancers located in close

proximity (Fig EV3B).

To extend these results, we asked whether ENCODE-predicted

enhancers with validated functionality in K562 cells, as determined

by CRISPRi screens (Gasperini et al, 2019; Schraivogel et al, 2020),

were enriched for TT-seq-defined enhancers. Indeed, enhancers

tested in either of the two studies were more likely to be functional

if they overlapped a TT-seq-defined enhancer (Fisher’s exact test, P-

values < 0.01). Finally, we took the verified functional enhancer

regions from both studies and calculated the overlap with the K562

STARR-seq peaks. The proportion of CRISPRi-verified functional

enhancers also called active by STARR-seq was 25 and 14% for

Gasperini et al and Schraivogel et al, respectively. Together

these results corroborate the putative enhancers defined by TT-seq

in our study.

eRNA synthesis at super-enhancers and in large
regulatory regions

We next investigated the relationship between our eRNA-defined

enhancers and super-enhancers. Super-enhancers are defined as

large clusters of enhancers that are densely occupied by master tran-

scription factors and the Mediator complex at key cell identity genes

(Parker et al, 2013; Whyte et al, 2013). Using Med1 ChIP-seq data

(Yan et al, 2013), we identified ~ 3,500 typical and 214 super-enhan-

cers in LoVo colorectal cancer cells (Fig 4A, Materials and Meth-

ods). We found that super-enhancers were more highly transcribed

than typical enhancers (Fig 4B), consistent with previous results

(Hnisz et al, 2013; Hirabayashi et al, 2019). Moreover, eRNAs origi-

nating from super-enhancers were significantly longer compared

with other eRNAs (Fig 4C). About 90% of super-enhancers

contained at least one transcribed enhancer region as defined by

TT-seq, with most super-enhancers comprising one to three enhan-

cers, and some super-enhancers covering up to seven enhancers

(Fig 4D).

Conversely, we found large regulatory regions of the order of

several hundreds of kilobase pairs characterized by several super-

enhancers, and densely clustered and strongly transcribed individ-

ual enhancers, e.g., next to PHLDA1 (Fig 4E), MYC (Figs 3B and

EV4A), and KLF5 (Fig EV4B). The 500 kbp region downstream of

PHLDA1 encompassed 41 enhancer regions in HCT 116 colorectal

cancer cells of which 35 overlapped with four super-enhancers

(Jiang et al, 2019). These enhancers produced a combined transcript

length of ~ 400 kb, correlated with PHLDA1 transcription, and are

likely relevant for PHLDA1 gene expression because disruption of

individual enhancers in this region reduces PHLDA1 expression in

HCT 116 cells (Cohen et al, 2017). Each individual enhancer was

bound by combinations of transcription factors and was co-occupied

with the histone acetyltransferase p300 and Pol II (Fig 4E). This

dense clustering of transcription factors supported the classification

of these extensive transcripts as eRNAs originating from clustered

enhancers. Among the transcription factors binding to almost all

individual enhancers were YY1, a largely pro-tumorigenic transcrip-

tion factor in colon cancer (Sarvagalla et al, 2019), SP1, which has a

significant role in colorectal cancer development and progression

(Bajpai & Nagaraju, 2017), and TCF7l2, which plays a key role in

the Wnt signaling pathway and is activated in most colorectal

cancers (Bienz & Clevers, 2000) (Fig 4E).

Cell type specificity of enhancer transcription

To compare the transcriptional landscape at promoters and enhan-

cers across cell lines, we first used hierarchical clustering of TT-seq

signals from mRNAs and eRNAs. This grouped the samples, inde-

pendently of gender, first by replicates and then by tissue/cancer
type, except for breast cancer samples, which were slightly more

distinct from each other (Fig 5A, Appendix Fig S4A). For mRNA

synthesis, we observed a high correlation across cell lines, whereas

eRNA synthesis was less correlated (Fig 5A). Importantly, the vari-

ability of enhancer transcription seemed to follow a controlled tran-

scriptional program, as the biological replicates were highly

correlated (Appendix Fig S4A) and the tissue/cancer type identity of

cell lines was mostly maintained (Fig 5A).

The higher variability of eRNA transcript levels could be due to

enhancers that are active in only a limited number of cell and tissue

types or due to the strongly varying activity of ubiquitously tran-

scribed (i.e., transcribed in all cell lines) enhancers, or both. Using

the binary information of mRNA and eRNA being synthesized

versus not synthesized, we found that 58.5% of mRNAs were ubiq-

uitously synthesized in all cell lines, and only 4.8% were exclu-

sively synthesized in a single cell line (Fig 5B). This was in contrast

to eRNAs of which only 2.1% were ubiquitously synthesized and

more than one third (37.2%) was exclusively synthesized in a single

cell line (Fig 5B).

Although a large fraction of mRNAs was synthesized ubiqui-

tously, their synthesis level across cell lines often varied

(Appendix Fig S4B). Thus, to examine cell type-specific mRNA and

eRNA synthesis in more detail, we calculated a cell type specificity

score for each mRNA and eRNA using an entropy-based metric

(Materials and Methods). This specificity score was defined to range

between 0 and 1, where 0 means unspecific (i.e., uniform synthesis

level across all cell lines) and 1 means specific (i.e., specific synthe-

sis level in one cell line). These entropy-based specificity scores also

showed that eRNAs were synthesized in a more cell type-specific

manner than mRNAs (Fig 5C). Together these results befit the

known cell type-specific activity of enhancers (Voss et al, 1986;

Heinz et al, 2015).

Cell type-specific enhancers are associated with cell type-specific
gene activity

These results beg the question how the specific enhancer transcrip-

tion can coincide with the less specific gene transcription from
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promoters. To investigate this, we paired enhancers to their nearest

active promoter (Fig 6A; “nearest” approach). We then filtered for

enhancers that were exclusively active in a single cell line and deter-

mined the transcription level for each enhancer (Appendix Fig S4C)

and its nearest active promoter (Fig 5D) over all cell lines. Nearest

active promoters showed higher transcription signal in the cell line

in which the enhancer was transcriptionally active as compared to

all other cell lines, indicating that transcriptionally active enhancers

are associated with cell type-specific promoter activity (Fig 5D). Yet,

in only 3.6% of cases was transcription of the nearest active

promoter exclusively observed in the cell line in which the enhancer

was exclusively active, and in more than half of the cases, nearest

promoter transcription was observed in all cell lines (Fig 5E).

Results were overall similar when instead of analyzing nearest

promoters we selected promoters with observed physical proximity

to the exclusively transcribed enhancers (Appendix Fig S4D and E).

To extend these results beyond enhancers that are active in a

single cell line, we correlated the entropy-based cell type specificity

scores of enhancer and promoter transcription. When specificity

scores of enhancers increased, the specificity scores of the nearest

A

E

B C D

Figure 4. eRNA synthesis at super-enhancers and in large regulatory regions.

A Med1-defined enhancers ranked by Med1 ChIP-seq signal (Yan et al, 2013) in LoVo colorectal cancer cells. Super-enhancers (black rectangles) were determined as
enhancer regions lying above the inflection point of the curve (Materials and Methods).

B Increased eRNA synthesis from super-enhancers. Boxplots comparing eRNA synthesis (TT-seq signal) at Med1-defined typical enhancers (n = 2,111) and super-
enhancers (n = 130) in LoVo cells (analysis was restricted to intergenic enhancers; Materials and Methods). Box limits are the first and third quartiles, and the band
inside the box is the median. The ends of the whiskers extend the box by 1.5 times the interquartile range. Notches represent 95% confidence intervals for the
median values. Outliers not shown. P-value by two-sided Mann–Whitney U-test.

C Super-enhancers are associated with the production of long eRNAs. Boxplots showing length of TT-seq-defined eRNAs originating from Med1-defined super-
enhancers (n = 552) or other enhancer regions (n = 6,934). Median, hinges, whiskers, and notches are shown as in (B). P-value by two-sided Mann–Whitney U-test.

D Barplot showing the number of TT-seq enhancer regions per Med1-defined super-enhancer region in LoVo cells. Super-enhancers spanning a protein-coding TSS
(n = 32) are excluded from this comparison as regions TSS � 1 kbp were excluded from TT-seq enhancer calling.

E UCSC genome browser view of normalized TT-seq coverage on the plus and minus strand at the PHLDA1 locus (hg38; chr12:75,612,350–76,042,552 (Kent et al, 2002)) in
the colorectal cancer cell line HCT 116. TT-seq coverage is cut at 250 (purple lines) to allow for better visualization. eRNAs are shown between the plus and minus
strand. Aggregated transcription factor ChIP-seq peak regions (TF ChIP-seq) comprise ChIP-seq binding profiles of 19 TFs in HCT 116 cells from CISTROME (Zheng
et al, 2019). The height of the signal indicates the number of different TFs binding at a particular region. Binding regions for selected TFs (TCF7l2, YY1, SP1) are shown
below together with p300 and RNA polymerase II (Pol II). TT-seq enhancer regions are shown at the bottom together with a H3K27ac-defined super-enhancer
annotation, which was downloaded from SEdb (Jiang et al, 2019). At date of publication, no Med1 ChIP-seq data were available for HCT 116.
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promoters also increased (Fig 5F). Together, these results indicate

that transcribed putative enhancers identified using TT-seq data are

associated with cell type-specific gene activity.

Enhancer–promoter pairing based on transcription correlation

Computationally linking enhancers to their target genes remains

challenging and multiple approaches beyond pairing enhancers to

the nearest active gene exist (Hariprakash & Ferrari, 2019).

Benefiting from our rich data collection across multiple cell lines,

we made use of pairwise correlation between transcriptional activity

at gene promoters and enhancers to define putative enhancer–gene
promoter (E–P) pairs that show highly correlated transcription

across cell lines. We further combined the correlation-based pairing

strategy with two different distance constraints (Fig 6A). In the

“correlated neighboring” (CN) approach, we pair enhancers with

the nearest upstream and downstream neighboring promoters. In

the “correlated window” (CW) approach, we pair enhancers to all

A B

C D E F

Figure 5. Cell type specificity of enhancer transcription.

A Unsupervised clustering of all pairwise Spearman correlations of normalized TT-seq signal for mRNAs (left) and eRNAs (right) for the union of transcripts over all
fourteen cancer cell lines (Materials and Methods). Gray and colored bars on top indicate gender and cancer type, respectively.

B Heatmaps showing mRNAs (left) and eRNAs (right) as being synthesized (red, normalized TT-seq signal FPK ≥ 15) or not (blue, normalized TT-seq signal FPK < 15) for
all fourteen cancer cell lines (columns). Heatmaps show only transcripts (rows) with normalized FPK ≥ 30 in at least one of the cell lines (mRNAs, n = 14,040; eRNAs
n = 48,105). Transcripts are ordered by increasing cell type specificity, as indicated by the gray bars to the right showing the number of cell lines a transcript is
observed in.

C Distribution of entropy-based cell type specificity scores for mRNAs (gray) and eRNAs (green) as in (B). The scores range between 0 and 1, where 0 means unspecific
(i.e., uniform synthesis level across all cell lines) and 1 means specific (i.e., specific synthesis level in one cell line).

D Boxplots showing normalized TT-seq signal for nearest active promoters in the cell line in which enhancers are exclusively transcribed (from left to right: n = 890;
500; 494; 214; 238; 239; 378; 62; 153; 879; 586; 173; 601; 232) compared with the same promoters in all other cell lines in which the respective enhancers are not
transcribed. All pairwise comparisons are significantly different (P-values < 1e-9, two-sided Mann–Whitney U-test). Box limits are the first and third quartiles, and
the band inside the box is the median. The ends of the whiskers extend the box by 1.5 times the interquartile range. Notches represent 95% confidence intervals for
the median values. Outliers not shown.

E Barplot showing percentage of nearest active promoters for which transcription is observed exclusively in the same cell line as the respective exclusively in this cell
line transcribed enhancers (exclusive) or is observed in all fourteen cell lines (ubiquitous). Percentages are expressed as mean over all 14 cell lines � SD.

F Heat scatterplot comparing log2 cell type specificity scores for enhancers (x-axis) and nearest active promoters (y-axis) over all cell lines. Spearman correlation = 0.39.
Dashed green line denotes linear regression line with slope = 0.28.
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transcribed promoters that lie within a � 500 kbp distance. For both

approaches, we only kept E–P pairs if the Pearson correlation coeffi-

cient between synthesis of eRNA and mRNA was > 0.6 (Materials

and Methods).

For the CN approach, we obtained a total of 21,076 putative E–P
pairs (Table EV2). These pairs contained 18,828 transcribed

enhancers and 6,028 promoters, representing 32% and 43% of all

enhancers and active promoters, respectively. Among all E–P pairs,

a promoter paired on average to 2.0 enhancers in a given cell line

(Fig 6B). Notably, a promoter paired on average to 3.5 enhancers

when we considered the union of paired enhancers over all cell

lines, indicating that the enhancers regulating the same promoter

A B C D

E F G H I

Figure 6. Enhancer–promoter pairing based on transcription correlation.

A Schematic diagram describing enhancer–promoter pairing methods. With the “nearest” (N, top), “correlated neighboring” (CN, middle), and “correlated window” (CW,
bottom) approach, enhancers are paired to the nearest transcribed promoter, the neighboring upstream and downstream transcribed promoters, and all transcribed
promoters within � 500 kbp distance, respectively. For CN and CW only pairs with correlated transcription rates over all cell lines (Pearson correlation coefficient
r > 0.6) were analyzed further (Materials and Methods).

B Number of enhancers per promoter, for all promoters that were paired to at least one enhancer with the CN approach. Fractions are shown for enhancers per
promoter per cell line (light gray) and over all cell lines (dark gray).

C As in (B) for pairs obtained with the CW approach.
D Distance distribution between enhancer midpoints and promoter TSSs for E–P pairs obtained with the CN (light gray) and CW (dark gray) approach. The histogram

shows the 500 kbp distance range in 20 kbp bins.
E Left: stacked barplot showing the fraction of enhancers that pair to neighboring transcribed promoters (neighbor, dark gray), to transcribed promoters further away

thereby skipping the transcribed neighboring promoters (skipped, white), or both (light gray) using the CW approach. Right: stacked barplot showing the fraction of
E–P pairs between enhancers and their neighboring transcribed promoters (dark gray) as well as between enhancers and promoters skipping a transcribed
neighboring promoter (white).

F Barplot showing the percentage of E–P pairs supported by promoter capture Hi-C (CHi-C) interactions for different pairing approaches (dark gray). Expected
interactions based on 100 sets of randomly sampled matched E–P pairs (light gray, Materials and Methods). Light gray bars depict the mean, and error bars represent
95% confidence intervals.

G Boxplots showing promoter cell type specificity score for different numbers of paired enhancers using the CN approach (from left to right: n = 124,767; 12,347; 3,754;
1,619; 2,373). Indicated P-value by Kruskal–Wallis test. All pairwise comparisons are significantly different (P-values < 1e-10, two-sided Mann–Whitney U-test).
Specificity scores and number of enhancers were assessed for each cell line (Materials and Methods). Box limits are the first and third quartiles, and the band inside
the box is the median. The ends of the whiskers extend the box by 1.5 times the interquartile. Notches represent 95% confidence intervals for the median values.
Outliers not shown.

H As in (G) showing promoter transcription. Indicated P-value by Kruskal–Wallis test. All pairwise comparisons are significantly different (P-values < 2.2e-16, two-sided
Mann–Whitney U-test).

I Barplots showing the average number of paired enhancers per promoter per cell line (n = 14, mean � SD, CN approach) for promoters paired to at least one
enhancer and being classified as housekeeping genes ((Eisenberg & Levanon, 2013) left), transcription factors ((Abugessaisa et al, 2016) middle), or cancer-associated
genes (Cancer Gene Census (Sondka et al, 2018) right).
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can vary between cell lines (Fig 6B). For the CW approach, a total

of 41,211 putative E–P pairs (Table EV2) contained 25,719 tran-

scribed enhancers (44%) and 9,534 promoters (68%). Here, a

promoter was paired on average to 2.0 and 4.3 enhancers per cell

line and over all cell lines, respectively (Fig 6C). Whereas the CN

approach limits the number of enhancers paired to each promoter to

a maximum of two, the CW approach allows pairing of multiple

promoters within a window of � 500 kbp. Yet, only 12% of enhan-

cers paired to more than two promoters and the paired promoters

were generally the same in different cell lines (Appendix Fig S5A).

Next, we compared E–P distances for both correlation-based

approaches. Median distances were 62 kbp and 122 kbp, with 45%

and 30% of all paired enhancers residing within � 50 kbp from their

paired promoter for the CN and CW approach, respectively (Fig 6D).

Interestingly, the CW approach revealed that 52% of enhancers

paired exclusively to one of their active neighboring promoters and

only 27% of enhancers skipped their two neighboring promoters.

21% of enhancers paired to their neighboring promoters and addi-

tionally to promoters further away (Fig 6E). Considering the total of

40,772 E–P pairs, 51% occurred between enhancers and their neigh-

boring promoters, and in the other 49% of pairs, the neighboring

promoters were skipped (Fig 6E). Notably, the correlation of tran-

scription within E–P pairs decreased with increasing distance

between enhancer and promoter (Appendix Fig S5B), marking close

E–P pairs as more confident.

To further evaluate how the identified E–P pairs agree with phys-

ical proximity as measured by the global chromosome conformation

mapping technique Hi-C, we first used available promoter capture

Hi-C (CHi-C) data for 19,023 promoter fragments measured in LoVo

colorectal cancer cells (Orlando et al, 2018). To assess enrichment

of observed CHi-C interactions, we generated 100 matched sets of

random E–P pairs; i.e., promoters were chosen to match promoter

activity and cell type specificity, and non-coding regions were

chosen to match enhancer width and distance (Materials and Meth-

ods). E–P pairs in LoVo cells were significantly enriched for CHi-C

interactions, and the percentages of pairs with CHi-C support were

23.8% (“nearest”), 34.1% (“correlated neighboring”), and 27%

(“correlated window”) (Fig 6F). Moreover, E–P pairs involving

neighboring promoters were enriched for CHi-C interactions

compared with E–P pairs skipping at least one neighboring TSS

(Fisher’s exact test, odds ratio = 2.0, P-value < 2.2e-16). Next, we

compared our E–P pairing approach with the activity-by-contact

(ABC) model (Fulco et al, 2019), which predicts E–P interactions

based on Hi-C contact frequency between enhancer and promoter,

and DHS and H3K27ac signal as proxy for enhancer activity. We

selected all putative enhancers that were paired to at least one

promoter by both our strategy and the ABC model, and compared

the overlap between the predicted E–P connections in K562

cells. Using this subset of enhancers, we found that the majority

(64%) of the putative E–P pairs reported here were also predicted

by the ABC model.

Finally, we quantified the effect of multiple enhancers per

promoter and observed that both cell type specificity and level of

promoter transcription increased with the number of paired enhan-

cers (Fig 6G and H, Appendix Fig S5C–F). In addition, the number

of enhancers was also related to gene function (Fig 6I). Whereas

housekeeping genes were underrepresented, paired promoters were

enriched for encoding transcription factors and cancer-associated

genes (Fisher’s exact test, odds ratios = 0.4, 1.58, 1.53, respectively,

P-values < 2.2e-16).

Cancer-associated DNA sequence variation in
transcribed enhancers

In total, our 58,457 transcribed putative enhancers collectively span

3.6% of the human genome. To investigate the extent to which these

enhancers overlap with cancer-associated single nucleotide polymor-

phisms (SNPs), we compiled a list of 2,459 distinct SNPs from the

NHGRI-EBI genome-wide association studies (GWAS) catalog (Welter

et al, 2014) that are linked to the seven cancer types we studied (Mate-

rials and Methods). We found that 94% of these cancer-associated

SNPs occur in non-coding regions and that 8.3% of these occur within

transcribed enhancer regions. Thus, 8.3% of cancer-associated non-

coding SNPs occur in 3.6% of the genome. To further confirm this

enrichment, we randomly sampled 1,000 SNP sets from the 1000

Genomes Project (Auton et al, 2015) across the non-coding genome,

matching distance to nearest gene, gene density, SNPs in linkage dise-

quilibrium (LD), and allele frequency using SNPsnap ((Pers et al,

2014) Materials and Methods). Transcribed enhancers had signifi-

cantly more overlaps (168) with GWAS cancer-associated SNPs than

with any of the matched SNP sets (median = 87) (Fig EV5, P-value

< 0.001, simulation). Further, enhancers were more enriched for

cancer-associated SNPs than all other SNP-disease/trait associations

from GWAS (Fisher’s exact test, odds ratio = 1.53, P-value = 1.183e-

7). Finally, we selected only enhancers paired to at least one gene by

any of the three pairing strategies (Fig 6A) and divided them into two

groups depending on if they paired to a cancer gene from the Cancer

Gene Census (Sondka et al, 2018), or not. We found that cancer-asso-

ciated SNPs were enriched in enhancers paired to cancer genes

(Fisher’s exact test, odds ratio = 1.69, P-value = 0.01318). Together,

these results confirm the prevailing occurrence of genetic risk variants

in enhancers (Sur & Taipale, 2016) and strengthen our annotation of

transcribed putative enhancers in cancer cell lines as a valuable

resource for studying somatic mutations in the non-coding genome.

A resource of transcribed enhancers in human cancer cell lines

To aid studies of cancer genomics, we created a comprehensive

catalog of transcribed putative enhancers with cancer-associated

somatic mutations (Table EV3) and putative enhancer–promoter

pairs involving cancer genes from the Cancer Gene Census (Sondka

et al, 2018) (Table EV4). In total, we derived 5,296 E–P pairs includ-

ing 5,154 transcribed putative enhancers and 593 cancer genes,

covering 82% of all Cancer Gene Census genes. In addition, putative

E–P pairs involving cancer-related genes not included in the Cancer

Gene Census can be retrieved from our general E–P list (Table EV2).

One example is the oncogene encoding the bone morphogenetic

protein 4 (BMP4), a member of the transforming growth factor-ß

family that is universally upregulated in human colorectal cancer

cells and tissues (Yokoyama et al, 2017). Based on all three E–P
pairing approaches, BMP4 is potentially regulated by multiple

enhancers located within a ~ 300 kbp region upstream of BMP4 in

LoVo colorectal cancer cells. These enhancers were characterized by

particularly strong eRNA synthesis, ChIP-seq binding peaks of

combinations of transcription factors (Yan et al, 2013), and chro-

matin interactions between the BMP4 promoter and TT-seq
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annotated enhancers, as revealed by promoter CHi-C data (Orlando

et al, 2018) (Fig 7).

The strength and ease of use of the resource presented here is that

(i) it is a simultaneous and quantitative analysis of promoter and

enhancer transcription, (ii) it provides TT-seq signal tracks together

with putative enhancer and eRNA annotations, (iii) it provides puta-

tive enhancer–promoter pairs based on several pairing approaches,

and (iv) by using enhancer transcription it increases the fidelity of

selecting functional enhancers for further analyses. We anticipate

many applications of this resource to further study enhancer activity

and gene regulation. The resource will also help to study how

somatic mutations in enhancers and transcription-related factors

alter enhancer function and specificity to cause a cancer phenotype.

Discussion

A major challenge in understanding the role of enhancers in cancer

is the accurate identification of active enhancer elements and uncov-

ering the genes they regulate. Here, we used TT-seq to measure

eRNA synthesis and derived a refined approach to annotate tran-

scribed putative enhancers. This resulted in a large collection of

in vivo transcribed candidate enhancers in fourteen human cancer

cell lines from seven different types of cancer. The putative enhan-

cers are in accordance with known genomic marks of active enhan-

cers (Figs 1 and EV1, Appendix Fig S1), functionally verified

enhancers (Figs 3, 4E, EV2 and EV3, Appendix Fig S3), cell type-

specific patterns of gene expression (Fig 5, Appendix Fig S4), and

are enriched for genetic variants that predispose to cancer (Figs 3B

and EV5). Our resource of transcribed putative enhancers expands

existing enhancer transcription data to other cancer types and cell

lines, and complements previous mappings of putative enhancers in

cancer cells that used different techniques such as RNA-seq and

CAGE (Chen et al, 2018), ChRO-seq (Chu et al, 2018), ATAC-seq

(Corces et al, 2018), PRO-seq (Danko et al, 2015), GRO-seq (Franco

et al, 2018), NET-CAGE (Hirabayashi et al, 2019), and mapping of

the H3K27ac mark (Hnisz et al, 2013; Cohen et al, 2017).

To further assess the functionality of the putative enhancers

described here, we compared them to available data from two types of

large-scale functional assays: genome-wide plasmid-based reporter

gene assays (STARR-seq (Davis et al, 2018)) and high-throughput

CRISPRi screens (Gasperini et al, 2019; Schraivogel et al, 2020). In

HCT 116 and K562 cells, 14% and 10% of TT-seq-defined enhancer

regions overlapped a region with STARR-seq activity. Overlaps

increased to 18% and 14%, respectively, when we used a more

constrained set of candidate enhancers, which were annotated by

several enhancer marks (DHS, H3K27ac, and TT-seq). Overall, this

represents a good overlap since even for CRISPRi-validated enhancers

in K562 (Gasperini et al, 2019; Schraivogel et al, 2020) less than

one-fourth (162/677) were active in STARR-seq. Many possible

reasons exist for why a CRISPRi-validated enhancer would fail to

show activity in a reporter gene assay, in which enhancers are tested

outside of their endogenous chromatin environment. One could be

that some of the enhancers are part of interacting enhancer clusters

and might show no or low reporter gene activity when tested individu-

ally. In agreement with this, we found that TT-seq-defined putative

enhancers not active in STARR-seq were enriched for enhancers with

neighboring enhancers located in close proximity (Fig EV3B).

Figure 7. Putative enhancers regulating the oncogene BMP4.

UCSC genome browser view of normalized TT-seq coverage on the plus and minus strand at the BMP4 locus (hg38; chr14:53,935,697–54,264,430 (Kent et al, 2002)) in
LoVo colorectal cancer cells. TT-seq coverage is cut at 500 (purple lines) to allow for better visualization. eRNAs and enhancers are shown above and below the minus
strand, respectively. Aggregated transcription factor ChIP-seq peak regions (TF ChIP-seq) include ChIP-seq binding profiles of 326 TFs in LoVo cells (Yan et al, 2013). The
height of the signal indicates the number of different TFs binding at a particular region. Significant promoter capture Hi-C (CHi-C) interactions are shown in purple
(Orlando et al, 2018). See Source Data for Fig 7 for original view of CHi-C interactions from WashU epigenome browser (Li et al, 2019).

Source data are available online for this figure.
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Accurate identification of target genes regulated by enhancers

remains challenging. Several computational approaches have been

proposed (reviewed in (Hariprakash & Ferrari, 2019)), and their

applicability depends on the genomic data sets that are available.

Since there are enhancers known to regulate genes over long

distances, even spanning regions in the Mb range, and/or to skip

over neighboring genes, the target space to look for putative target

promoters of an enhancer becomes very large. Pairing enhancers to

every gene within a certain distance (e.g., here, � 500 kbp) would

result in a high fraction of false-positive predictions (Fulco et al,

2019) and strategies to decrease the number of false-positive E–P
pairs include considering only pairs with observed physical proxim-

ity (Javierre et al, 2016; Fulco et al, 2019) or with correlated activity

(Thurman et al, 2012; Andersson et al, 2014). The fraction of physi-

cally interacting E–P pairs with correlated transcriptional activity

was reported to be about 50% (Fitz et al, 2020). We decided to use

a correlation cutoff for all putative E–P pairs that paired beyond the

nearest active gene (“correlated window” approach), as physical

interaction data were not available for most of the cell lines we

investigated. Moreover, the strength of our approach is that TT-seq

simultaneously quantifies the transcriptional activity of both gene

promoters and enhancers. This allowed us to use correlation of tran-

scriptional activity between enhancers and promoters across all

samples to infer tens of thousands of putatively functional E–P pairs

in an unbiased way (Fig 6). The pairs we derived are depleted for

housekeeping genes and enriched for transcription factors, cancer-

associated genes, and 3D conformational proximity (Fig 6). Finally,

we provide Table EV5, which contains all possible E–P pairs within

� 500 kbp of each putative enhancer together with the observed

distances and correlations of transcriptional activity, providing

flexibility to adjust distance and/or correlation constraints.

Our comprehensive annotation of putative enhancers and E–P
pairs in human cancer cell lines provides a valuable tool for further

studying enhancer function in cancer. Tumor-derived cell lines carry

many of the original oncogenic alterations, and transcriptional pro-

files of these cell lines have been shown to be in good agreement

with those of primary tumors (Greshock et al, 2007; Iorio et al,

2016; Ghandi et al, 2019). However, it is important to consider that

cancer cell line models have major limitations and inevitably entail

genomic differences as pointed out by several studies (Stein et al,

2004; Sandberg & Ernberg, 2005; Ertel et al, 2006; Gillet et al, 2011).

Cell culturing conditions fail to recapitulate the condition of tumor

cell growth in patients, and cell line models cannot accurately model

the complexity of the patient tumor microenvironment, i.e., interac-

tion with stroma and immune cells. Nevertheless, cancer cell lines

are an indispensable tool in cancer research and preclinical studies

of anticancer drugs (Sharma et al, 2010; Goodspeed et al, 2016; Katt

et al, 2016; Mirabelli et al, 2019). Cancer cell lines can be readily

manipulated, allow global and detailed mechanistic studies, and

thereby provide insights into the molecular mechanisms of tumor

growth. Several studies have characterized the genome-wide molec-

ular profiles of cancer cell lines and investigated how well they

model the genomic profiles, molecular subtypes, and heterogeneity

of tumors (Holliday & Speirs, 2011; Barretina et al, 2012; Garnett

et al, 2012; Domcke et al, 2013; Klijn et al, 2015; Ghandi et al,

2019). Together these results allow researchers to select cancer cell

lines that best model the genomic features of a particular type of

tumor. The large-scale whole-genome sequencing projects of cancer

cell lines and cancer patient samples such as the Cancer Cell Line

Encyclopedia (Ghandi et al, 2019) and the Pan-Cancer Analysis of

Whole Genomes (Campbell et al, 2020) have constructed large cata-

logs of somatic mutations in many types of tumors. Integrating such

data and extracting correlations between enhancer activity and

tumor growth will be a valuable task for the future.

Materials and Methods

Cell culture

Human cancer cell lines were obtained from ATCC (Manassas, VA,

USA) and Sigma-Aldrich (St. Louis, MO, USA), cultured in cell

culture media (Gibco/Thermo Fisher Scientific, Waltham, MA, USA)

supplemented with 1% penicillin/streptomycin (Cat No. 11556461;

GE Healthcare, Chicago, IL, USA) and 10% fetal bovine serum (Cat

No. F7524, Lot 035M3394; Sigma-Aldrich) at 37°C in a humidified

5% CO2 incubator, and used for experiments at low passage

numbers (< passage 14). BT-20 (ATCC HTB-19), DU 145 (ATCC

HTB-81), and SK-UT-1 (ATCC HTB114) cells were cultured in MEM

(Gibco, Cat No. 31095029) supplemented with 0.1 mM NEAA

(Gibco, Cat No. 11140035) and 1 mM sodium pyruvate (Gibco, Cat

No. 11360039). 769-P (ATCC CRL-1933) and 786-O (ATCC CRL-

1932) cells were cultured in RPMI-1640 (Gibco, Cat No. A1049101).

MDA-MB-231 (ATCC HTB-26) and LoVo (ATCC CCL-229) cells were

cultured in DMEM-GlutaMAX (Gibco, Cat No. 21885-25). U-118 MG

(ATCC HTB-15) and GP5d (Sigma, ECACC 95090715; RRID:CVCL_

1235) cells were cultured in DMEM (Gibco, Cat No. 41966029).

GP5d cells were cultured in cell culture flasks coated with poly-L-

lysine (Cat No. P4707; Sigma-Aldrich). M059J (ATCC CRL-2366)

cells were cultivated in DMEM/F-12 (Gibco, Cat No. 31330038),

HCT 116 (ATCC CCL-247) cells were cultivated in McCoy’s 5a

Medium Modified (Gibco, Cat No. 26600023), and PC-3 (ATCC CRL-

1435) cells were cultivated in F-12K (ATCC 30-2004). Cells were

authenticated by STR profiling at the manufacturer (ATCC and

ECACC) and verified to be free of mycoplasma contamination using

the MycoAlertTM Mycoplasma Detection Kit (Cat No. LT07-318;

Lonza, Basel, Switzerland). Biological replicates were cultured inde-

pendently.

TT-seq and RNA-seq

TT-seq experiments were performed in biological duplicates, and a

full step-by-step protocol for TT-seq has been deposited in the proto-

cols.io repository (Gressel et al, 2019a). In brief, 48 h before the

experiment cells were seeded in 15-cm dishes to obtain 70% conflu-

ent cells at time of RNA labeling. The required number of cells

depends on cell line-specific parameters (e.g., growth rate, cell size)

and is listed in Appendix Table S1. Cells were labeled with 500 µM
4-thiouridine (4sU; Sigma-Aldrich, St. Louis, MO, USA) for 5 min at

37°C under 5% CO2. Cells were harvested using TRIzol (Life Tech-

nologies/Thermo Fisher Scientific, Waltham, MA, USA). 2.4 ng

RNA spike-ins mix per 106 cells was added to each sample after cell

lysis. Spike-in sequences and production are described in Gressel

et al (2019a). Subsequently, total RNAs were extracted according to

the TRIzol manufacturer’s instructions. Total RNAs were sonicated

to generate fragments of an average size < 15 knt (total fragmented

ª 2021 The Authors Molecular Systems Biology 17: e9873 | 2021 13 of 23

Katja Lidschreiber et al Molecular Systems Biology



RNAs) using 1.5 ml Bioruptor Plus TPX microtubes in a Bioruptor

Plus instrument (Diagenode, Denville, NJ, USA). The quality of

RNAs and the size of fragmented RNAs were analyzed on a Bioana-

lyzer 2100 (Agilent, Santa Clara, CA, USA). 1 μg of total fragmented

RNAs was stored at −80°C for RNA-seq. 4sU-labeled RNAs were

purified from 600 μg of total fragmented RNA. Biotinylation and

purification of 4sU-labeled RNAs were performed as described

(D€olken et al, 2008; Gressel et al, 2019a). Separation of 4sU-labeled

RNAs was carried out with streptavidin beads (Miltenyi Biotec,

Bergisch Gladbach, Germany). Prior to library preparation, total

fragmented RNAs and 4sU-labeled RNAs were treated with DNase

(Qiagen, Hilden, Germany), column purified (miRNeasy Micro Kit,

Qiagen, Hilden, Germany), and quantified using a Qubit Fluorometer

(Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA). The qual-

ity of RNAs was analyzed on a Bioanalyzer 2100 (Agilent, Santa

Clara, CA, USA). Strand-specific libraries of total fragmented RNAs

(RNA-seq) and 4sU-labeled RNAs were prepared with the Ovation

Universal RNA-Seq System (NuGEN/Tecan, M€annedorf, Switzerland)

using random hexamer priming only according to the manufacturer’s

instruction with minor modifications (Gressel et al, 2019a). The size

selected libraries were analyzed on a Bioanalyzer 2100 (Agilent,

Santa Clara, CA, USA) before paired-end sequencing on the Illumina

HiSeq 2500. TT-Seq libraries were sequenced to the depth of ~ 100

million uniquely mapped reads.

CRISPR/Cas9-mediated enhancer deletion in DU 145 cells

CRISPR/Cas9-mediated deletion of the MYC enhancer region on

chromosome 8q24 (GRCh37/hg19, chr8: 128226403-128746490)

and the Immunoglobulin Heavy (IGH) gene locus on chromosome

14q32.33 (GRCh37/hg19, chr14: 106527004-107035452) were carried

out in DU 145 cells. The single guide RNAs (sgRNAs) were designed

(http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-de

sign) to span the entire MYC enhancer region and IGH locus, respec-

tively (Eurofins MWG Operon). sgRNAs were cloned into an sgRNA

Cloning Vector (Addgene Plasmid #41824, RRID:SCR_002037) using

Gibson assembly master mix (NEBuilder HiFi DNA assembly Master

Mix, Cat no. E2621S; NEB, Ipswich, MA, USA). DU 145 (2 × 106)

cells were transfected (using FuGENE HD Transfection Reagent,

Cat.no E2312; Promega, Madison, WI, USA) with 10 µg of eight

pooled equimolar sgRNA constructs together with hCas9 plasmid

(Addgene Plasmid # 41815, RRID:SCR_002037). Post-transfection

half of the cultured cells were collected for PCR genotyping, while

the other half was re-plated for culturing. Cells were collected at

days 2, 4, and subsequently every fourth day till day 32. DNA from

cells was extracted (using DNeasy Blood & Tissue Kit, Cat. no.

69506; Qiagen, Hilden, Germany) and genotyped with 300 ng of

DNA at following conditions—initial denaturation at 95°C for 5 min;

denaturation at 98°C for 15 s, annealing at 60°C for 30 s, extension

at 72°C for 30 s (31 cycles for MYC, 38 cycles for IGH, and 24 cycles

for GAPDH genotyping); and final extension at 72°C, 5 min. Note,

the combination of the four terminal sgRNAs can lead to different

lengths of the MYC enhancer deletion region, which can be

subsequently detected with genotyping primers (725-, 741-, 810-, or

826-bp PCR product). Each experiment was done in triplicate.

Sequences of guide RNAs and primer pairs are given in

Appendix Table S2. sgRNA location at the MYC enhancer locus is

shown in Dave et al (2017).

TT-seq and RNA-seq data preprocessing

Paired-end 50-bp reads were first mapped to a single copy of the

rDNA locus to remove rRNA-related sequences. Reads that did not

map to the rDNA were then aligned to the hg20/hg38 (GRCh38)

genome assembly (Human Genome Reference Consortium) using

STAR 2.6.0c (Dobin et al, 2013) with the following specifications:

outFilterMismatchNoverLmax 0.05, outFilterMultimapScoreRange 0,

and alignIntronMax 500,000. Bam files were filtered with SAMtools

(Li et al, 2009) to remove alignments with MAPQ smaller than

7 (-q 7), and only proper pairs (-f99, -f147, -f83, -f163) were

selected. Fragment counts for different features were calculated

with HTSeq (Anders et al, 2015). Further data processing was

carried out using the R/Bioconductor environment.

Normalization of TT-seq samples

To normalize TT-seq samples for sequencing depth and make them

comparable between cell lines, we used the “median of ratios”

approach described in the DESeq2 R/Bioconductor package (Anders

& Huber, 2010). Briefly, TT-seq fragment counts and coverage

tracks were divided by sample-specific size factors determined by

the median ratio of gene counts relative to the geometric mean per

gene, estimated on GENCODE (v31) gene counts. Hereafter, we refer

to such size factor normalized TT-seq fragment counts and coverage

tracks simply as normalized counts and normalized coverage,

respectively. For within-sample comparison, normalized transcript

counts were further normalized by transcript length to derive

normalized FPK (fragments per kilobase of transcript) values.

TT-seq expression cutoff estimation

To determine a suitable cutoff to distinguish transcribed genomic

regions from background, we plotted the densities of replicate-aver-

aged log2(normalized FPK) values over all GENCODE (v31) anno-

tated genes (type = gene). Distributions were generally bimodal,

and a suitable cutoff was selected in the valley between the two

peaks. Since distributions looked overall similar between samples,

we selected normalized FPK ≥ 20 as expression cutoff for all

samples. Unless stated otherwise, this cutoff was used to distin-

guish between transcribed (active) and untranscribed (inactive)

genomic regions.

Transcription unit annotation and classification from TT-seq data

Transcription unit annotation and classification were done as

described (Michel et al, 2017) with a few modifications. Briefly,

strand-specific coverage was calculated from fragment midpoints in

consecutive 200-bp bins throughout the genome for all TT-seq

samples. Binning reduced the number of uncovered positions within

expressed transcripts and increased the sensitivity for detection of

lowly synthesized transcripts. The GenoSTAN R/Bioconductor pack-
age (Zacher et al, 2017) was used to learn a two-state hidden

Markov model with a PoissonLog-Normal emission distribution in

order to segment the genome into “transcribed” and “untran-

scribed” states, which resulted in 51,198–134,528 TUs per cell line.

TUs that overlapped at least 25% of a protein-coding gene annotated

in RefSeq (Release 109.20190607) or GENCODE (v31) and
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overlapped with an annotated exon of the corresponding gene were

classified as mRNAs. Remaining TUs were annotated as non-coding

(nc)RNAs. In order to overcome low expression or mappability

issues, ncRNAs that were only 200 bp (1 bin) apart were merged.

Subsequently, TU start and end sites were refined to nucleotide

precision by finding borders of abrupt coverage increase or decrease

between two consecutive segments in the two 200-bp bins located

around the initially assigned start and stop sites via fitting a piece-

wise constant curve to the coverage profiles (whole fragments)

for all TT-seq samples using the segmentation method from the

R/Bioconductor package tilingArray (Huber et al, 2006). In order to

filter spurious predictions, TUs were further filtered with a minimal

expression threshold of replicate-averaged normalized FPK ≥ 20 as

described above (requiring at least 15 normalized FPK per repli-

cate). ncRNAs overlapping with GENCODE (v31) annotated small

non-coding RNA classes (snRNA, snoRNA, tRNA) were omitted

from further analysis. The remaining ncRNAs were further classified

according to their genomic location relative to protein-coding

genes into four categories: upstream antisense RNA (uaRNA),

convergent RNA (conRNA), antisense RNA (asRNA), and intergenic

RNA. ncRNAs located on the opposite strand of an mRNA were clas-

sified as asRNA if the TSS was located > 1 kbp downstream of the

sense TSS, as uaRNA if the TSS was located < 1 kbp upstream of

the sense TSS, and as conRNA if the TSS was located < 1 kbp

downstream of the sense TSS. Each of the remaining ncRNAs was

classified as intergenic.

eRNA annotation (see also Fig 1B): Of the ncRNA classes defined

above, we further classified intergenic and asRNAs as eRNAs, if

their TSS � 500 bp overlapped with an enhancer state annotated by

GenoSTAN (Zacher et al, 2017) based on patterns of five histone

modifications (H3K4me1, H3K4me3, H3K36me3, H3K27me3, and

H3K9me3) in any of 127 cell types and tissues covering 111 datasets

of the Roadmap Epigenomics Project (Kundaje et al, 2015) as well

as 16 datasets of the Encyclopedia of DNA Elements (ENCODE)

Project (Dunham et al, 2012). The � 500-bp window was chosen to

be more permissive, due to the limited resolution of ChIP-seq and

since for very lowly expressed transcripts the starts of TT-seq-de-

fined TUs may deviate from the actual TSS. Long antisense eRNAs

that overlapped with the promoter region of the respective protein-

coding gene (TSS � 1 kbp) were annotated to end 1 kbp down-

stream of the protein-coding TSS. Next, we introduced additional fil-

tering criteria, as highly transcribed TUs can give rise to spurious

downstream TUs, which do not represent independent TUs, but

ongoing, gradually decreasing transcription by Pol II downstream of

the main TU. To avoid misclassification of such downstream TUs as

putative eRNAs, we did the following:

First, we restricted our set of intergenic eRNAs to only those orig-

inating from regions with TT-seq detected transcription on both

strands, with an allowed gap of up to 750 bp between divergently

transcribed eRNA pairs. To this end, a non-coding TU had to be

annotated on the opposite strand, but it was not required to lie

above the expression threshold. The permissive 750-bp gap width

cutoff was based on 50-GRO-seq data presented in Duttke et al

(2015) (Fig 1C) where they report the distribution of distances

between divergent TSSs to be ~ 200 bp on average and ~ 700–750-
bp maximal.

Second, we also restricted our set of antisense eRNAs. To this

end, non-coding TUs downstream of mRNA/uaRNA TUs were

sequentially merged with the upstream mRNA/uaRNA if the gap

between TUs was < 5 kbp. Subsequently, non-coding TUs, which

had been classified as antisense eRNAs and were constituents of

such merged regions, were excluded from further analyses, unless

their TT-seq signal (normalized FPK) was at least 2-fold higher

than TT-seq signal over the end (last 1 kbp) of the upstream

mRNA/uaRNA.

Enhancer annotation (see also Fig 1C): Based on the eRNA anno-

tation, we next approximated putative enhancer regions, which are

the regions from which eRNA synthesis is initiated. To define inter-

genic enhancer regions, we selected the region between the TSSs of

each pair of intergenic bidirectional eRNAs and extended it by

500 bp in both directions. To define intragenic enhancer regions, we

selected the region covering 750 bp upstream to 500 bp downstream

of the TSS of antisense eRNAs. Since we allowed a gap of maximum

750 bp between bidirectional intergenic eRNAs, we selected 750 bp

also as putative enhancer region upstream of antisense eRNAs.

Based on this definition, all intragenic enhancer regions were

1,250 bp long whereas the length of intergenic enhancer regions

was dependent on the gap or overlap between bidirectional eRNAs.

Strongly transcribed intergenic enhancer regions gave rise to unin-

terrupted bidirectional TT-seq signal over long genomic stretches,

which could not be resolved at the resolution of individual enhan-

cers, and did therefore result in the definition of some enhancer

regions covering several kbp.

Dealing with annotated lncRNAs: The FANTOM consortium has

shown that the majority of intergenic lncRNAs originate from

enhancer regions (Hon et al, 2017), and thus, we only excluded

eRNAs/enhancers if they overlapped a functional lncRNA originat-

ing from an intergenic promoter DHS (24 lncRNAs, e.g., Malat1;

taken from Supplementary table 5 in Hon et al (2017) selecting

CAT_geneCategory = p_lncRNA_intergenic).

Comparison of TT-seq-defined eRNA/enhancer annotations with
other genomic enhancer marks

To compare TT-seq-defined eRNA/enhancer annotations with other

genomic enhancer marks, we made use of published data for K562,

HCT 116, and LoVo cell lines (Figs 1 and EV1, Appendix Fig S1B–E).

K562
To obtain read coverage, DNase I(DHS)-seq and all ChIP-seq data

were taken from ENCODE via GEO (DHS = GSM736629,

GSM736566 (Thurman et al, 2012); H3K4me1 = GSM733692;

H3K27ac = GSM733656 (Dunham et al, 2012)), and PRO-seq/GRO-

cap data were taken from Core et al (2014) via GEO (PRO-seq =
GSM1480237; GRO-cap = GSM1480321). bigWig files were down-

loaded and lifted from hg19 to hg38 human genome build. In case of

DHS, there was one bigWig file per biological replicate and we

summed the signal over both replicates. In case of GRO-cap, we

downloaded raw sequence reads, mapped them against the

hg38 genome assembly using Bowtie (version 2.3.4.1) (Langmead

et al, 2009), and considered only the first base for calculating

the coverage.

HCT 116
We downloaded hg38 bigWig files from the ENCODE portal

(H3K4me1 = ENCFF774BWO; H3K27ac = ENCFF984WLE; DHS =
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ENCFF169PCK (Zhang et al, 2020)) to show as signal tracks in

UCSC genome browser (Fig 1B, Appendix Fig S1B).

LoVo
To obtain read coverage, DNase I(DHS)-seq and H3K27ac ChIP-

seq data were downloaded from GEO (DHS = GSM2400377,

GSM2400378 (Dunham et al, 2012); H3K27ac = GSM3592807,

(Hung et al, 2019)). Reads were aligned to the hg38 genome

assembly using Bowtie (version 2.3.4.1) (Langmead et al,

2009). Coverage per bp was calculated for single-end ChIP-seq

data after extending reads by 200 bp and for paired-end data

using physical coverage, that is, counting both sequenced bases

covered by reads and unsequenced bases spanned between

proper mate-pair reads. In case of DHS, coverages for both

replicates were summed. H3K27ac signal surrounding the TSS

was calculated as mean log2(read coverage + 1) within � 500

bp (Fig EV1B).

Transcription factor ChIP-seq peak regions were downloaded

from CISTROME (Zheng et al, 2019) on July 16, 2018. For the LoVo

cell line, this comprised peak regions for 326 distinct TFs (all

published in Yan et al (2013)), for which we calculated the genome

wide per bp coverage as the sum of distinct TF peak regions over-

lapping each genomic position (Figs 1F, 7 and EV4). Such TF peak

region coverage was also calculated for HCT 116 cells, containing

data for 19 distinct TFs (Fig 4E). Individual peak regions shown in

Fig 4E are YY1 (CistromeDB 46204), TCF7l2 (CistromeDB: 45714),

SP1 (CistromeDB: 46215), EP300 (CistromeDB: 42907), and POLR2A

(CistromeDB: 4620).

Quantification of eRNA synthesis and enhancer transcription
over all cell lines

To compare eRNA synthesis and enhancer transcription across

cell lines, we first generated merged eRNA and enhancer annota-

tions containing all eRNAs and enhancers annotated in at least

one of the cell lines. This was done using the reduce() function

from the GenomicRanges R/Bioconductor package over concate-

nated eRNA and enhancer annotations from all cell lines. These

merged annotations comprised 63,216 eRNAs and 58,457 enhan-

cers (Table EV6). To quantify eRNA synthesis, we counted TT-

seq fragments over the annotated eRNA transcripts (see above)

and derived normalized FPK values. To quantify enhancer tran-

scription, we counted TT-seq fragments over the annotated

enhancer regions (see above), considering only counts on the

antisense strand, in case of enhancers defined by antisense

(i.e., intragenic) eRNAs, and summing the counts over both

strands in case of enhancers defined by bidirectional intergenic

eRNAs. To derive normalized FPK values, TT-seq fragment

counts were further normalized by enhancer length in case of

intergenic enhancers and by enhancer length −750 bp in case of

intragenic enhancers.

Quantification of mRNA synthesis over all cell lines

To compare mRNA synthesis across cell lines, we calculated

normalized FPK values for all RefSeq protein-coding genes (NM_,

Release 109.20190607). 14,627 RefSeq protein-coding genes were

transcribed in at least one cell line.

Transcription directionality analysis

To investigate transcription directionality at promoters, we took all

protein-coding genes annotated in RefSeq (NM_, Release

109.20190607) and selected only those for which all cell lines used

the same promoter region and no protein-coding gene was anno-

tated on the antisense strand within � 5 kbp of the sense TSS. In

each cell line, for each of these promoters, we calculated normalized

TT-seq fragment counts in 1 kbp regions downstream (sense, TSS to

TSS + 1,000 bp) and upstream (antisense, TSS – 1,150 bp to TSS –
150 bp) of the protein-coding TSS. Promoters were classified as bidi-

rectional or unidirectional if at least 10 counts were observed on

both strands or the protein-coding strand only, respectively. For all

bidirectional promoters, we defined a transcription directionality

score as the ratio of mRNA and uaRNA counts. To compare protein-

coding gene transcription at unidirectional vs bidirectional promot-

ers, we compared normalized TT-seq fragment counts in 1 kb

regions downstream of the protein-coding TSS. To compare protein-

coding gene transcription at promoters which were unidirectional in

all cell lines vs promoters which were bidirectional in at least one of

the cell lines, we compared the maximum normalized TT-seq frag-

ment counts over all cell lines. To investigate whether directionality

scores were preserved across cell lines, we correlated uaRNA and

mRNA counts at bidirectional promoters over cell lines. Only

promoters with observed bidirectional transcription in at least 5 cell

lines and varying transcription over cell lines (coefficient of varia-

tion > 50%) were considered (n = 3,468), and Pearson correlation

coefficients r were calculated between vectors of TT-seq log2(counts)

representing uaRNA and mRNA synthesis patterns across the

cell lines.

To investigate transcription directionality at enhancers, we took

all bidirectional intergenic enhancer regions shorter than 3 kbp from

the unified enhancer annotation (see above) and calculated normal-

ized TT-seq fragment counts in these regions on the plus and minus

strand (relative to the plus strand of the genomic reference

sequence), only considering cell lines in which the respective

enhancers were annotated. Based on this, we defined a transcription

directionality score as the ratio of plus and minus strand counts. To

investigate whether directionality scores were preserved across cell

lines, we correlated plus and minus strand transcription at bidirec-

tional enhancers over cell lines. Only enhancers with observed

bidirectional transcription in at least 5 cell lines and varying tran-

scription over cell lines (coefficient of variation > 50%) were

considered (n = 715), and Pearson correlation coefficients r were

calculated between vectors of TT-seq log2(counts) representing plus

and minus strand transcription patterns across the cell lines.

Comparison to putative enhancers called by other methods

We downloaded FANTOM5 (CAGE) transcribed enhancers (Ander-

sson et al, 2014) in hg38 (F5.hg38.enhancers.expression.usage.ma-

trix) from http://doi.org/10.5281/zenodo.556775 (Rennie et al,

2018). CAGE enhancer calls were available for four of the cell lines

investigated here: K562, Jurkat (CNhs11250), DU 145 (CNhs11253),

and PC-3 (CNhs11260). K562 CAGE enhancer calls were avail-

able for three biological replicates (CNhs12334, CNhs12335,

CNhs12336), and overlap calculations were done for both the

union and the intersection of enhancer calls from the three
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replicates (Appendix Fig S1F). Jurkat ChRO-seq bigWig files

for two biological replicates were downloaded from GEO

(GSM3309956, GSM3309957, (Chu et al, 2018)), and transcription

initiation regions (TIRs) were called using the dREG gateway

(Wang et al, 2019). Resulting TIRs were lifted from hg19 to hg38

human genome build, and only regions annotated in both

replicates were considered further.

To allow for a better comparison of CAGE and ChRO-seq candi-

date enhancers with TT-seq candidate enhancers, we further filtered

CAGE enhancers and ChRO-seq TIRs using the same strategy as we

used for filtering TT-seq enhancers: We selected only regions with

at least 1 kbp distance from protein-coding TSSs, not overlapping

annotated small non-coding RNA classes (snRNA, snoRNA, tRNA),

not overlapping a functional lncRNA originating from an intergenic

promoter DHS, and overlapping an enhancer state annotated by

GenoSTAN (see TT-seq eRNA/enhancer definition for details).

Comparison to high-throughput functional assays

For HCT 116 and K562 cells, we downloaded STARR-seq peak .bed

files from the ENCODE portal (HCT 116: ENCFF305HQC,

ENCFF594EEA; K562: ENCFF717VJK, ENCFF394DBM (preprint: Lee

et al, 2020)). For each of the two cell lines, we considered only peak

regions called in both of the two biological replicates (HCT 116:

n = 28,771; K562: n = 20,552). To also compare STARR-seq overlap

with candidate enhancers defined by other methods, we took

HCT 116 and K562 DNase I(DHS), H3K4me1, and H3K27ac peak

regions from ENCODE (HCT 116: DHS = GSM736600, GSM736493

(Thurman et al, 2012), H3K4me1 = ENCFF986BGX, H3K27ac =
ENCFF349LKU (Zhang et al, 2020); K562: DHS = GSM736629,

GSM736566 (Thurman et al, 2012), H3K4me1 = GSM733692,

H3K27ac = GSM733656 (Dunham et al, 2012); for ChIP-seq, we

downloaded replicatedPeak regions and for DHS took the intersec-

tion of broadPeak regions from both replicates and filtered them

using the same strategy as we used for filtering TT-seq enhancers

(see Comparison to putative enhancers called by other methods). To

calculate enrichments over expected STARR-seq overlap, we

randomly sampled 20 sets of TT-seq-matched enhancer regions. To

this end, random non-coding regions (same number as observed

TT-seq enhancers) were chosen to have a similar overall distribu-

tion of their widths and distances from nearest gene promoters,

which had a similar overall distribution of transcription levels and

cell type specificity scores. Such null sets were generated separately

for TT-seq-defined enhancers in HCT 116 and K562, and STARR-seq

overlaps determined to obtain empirical null distributions and to

calculate empirical P-values. To investigate whether candidate

enhancers not called active in STARR-seq were enriched for having

annotated neighboring enhancers in close proximity, we counted

the number of neighboring enhancers within � 12.5 kbp for each

candidate enhancer of a conservative (“combined”) set of enhancers

annotated by DHS, H3K27ac and TT-seq. The 12.5 kbp cutoff was

chosen as it is also the distance used for stitching together enhan-

cers before super-enhancer calling (see below) and as we observed

that 85% of Med1 called super-enhancer regions in LoVo (Fig 4A)

have a length shorter than 25 kb.

For K562, we downloaded annotations for CRISPRi tested and

functionally verified enhancers from two studies: In Schraivogel

et al (2020), they targeted 1,786 ENCODE-predicted enhancers, of

which 77 had a significant effect on neighboring gene expression

(hg19 enhancer coordinates were taken from their published tables

S2 and S3). In Gasperini et al (2019), they targeted 5,779 enhancers,

of which 600 had a significant effect on neighboring gene expression

(hg19 enhancer coordinates were taken from their published tables

S2A and B). Annotations were lifted from hg19 to hg38 human

genome build before calculating overlaps with TT-seq or STARR-seq

enhancer regions.

Super-enhancer analysis

To identify super-enhancers (SEs) in LoVo cells, we downloaded

published Med1 ChIP-seq data (Yan et al, 2013), mapped it to the

hg20/hg38 (GRCh38) genome assembly using Bowtie (version

2.3.4.1) (Langmead et al, 2009) and defined SEs as described

(Whyte et al, 2013). For the comparison of transcriptional activity at

typical enhancers (TEs, i.e., Med1 peaks not classified as SE) and

SEs, we obtained FPK values for the respective regions. In case a

Med1 enhancer region was stitched together from individual Med1

peaks separated by less than 12.5 kbp (Whyte et al, 2013), we calcu-

lated FPK values by considering only the constituent peak regions.

For comparison of eRNA lengths, we took all eRNAs annotated in

LoVo and divided them into two groups: those originating from a SE

region (i.e., eRNA TSS overlapping a SE) and those originating

outside of SE regions.

Cell type specificity of mRNA and eRNA synthesis

We defined two types of entropy-based cell type specificity scores.

1 Overall cell type specificity ranks a promoter/enhancer accord-

ing to the degree to which its transcriptional activity differs

from ubiquitous (i.e., transcribed at any level above back-

ground in all cell lines) uniform expression. We calculated

overall cell type specificity as described (Schug et al, 2005;

Andersson et al, 2014; Hirabayashi et al, 2019):

Specificityscore pð Þ¼ 1� H pð Þ
log2ðnÞ

where H is the entropy of a discrete probability distribution:

H pð Þ¼�∑
n

i¼1

pilog pið Þ;pi ¼
xi

∑n
i¼1xi

where xi is the transcriptional activity (normalized FPK) of a

promoter or enhancer in cell line i, and n is the number of

cell lines. The specificity score ranged between 0 and 1,

where 0 means unspecific (i.e., uniform synthesis across cell

lines) and 1 means cell type-specific synthesis.

2 Specificity of a promoter/enhancer’s transcription pattern

with respect to a particular cell line ranks a promoter/en-

hancer according to the similarity its transcription pattern

has toward synthesis in only that particular cell line. This

cell type specificity score was calculated as described (Cabili

et al, 2011) and relies on Jensen–Shannon (JS) divergence,

with a perfect cell type-specific pattern having JS = 1. The

JS divergence of two discrete probability distributions, p1,

p2, is defined to be
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JS p1,p2
� �¼H

p1þp2

2

� �
�H p1ð ÞþHðp2Þ

2
:

Relying on the theorem that the square root of the JS diver-

gence is a metric (Fuglede & Topsoe, 2004), we define the

distance between two across-cell-type transcription

patterns, t1 and t2, and ti ¼ðti1,⋯, tinÞ, as

JSdist t1, t2
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JS t1, t2ð Þ

q
:

The cell line specificity of a promoter/enhancer’s transcrip-

tion pattern, t, across n cell lines with respect to cell line c

can then be defined as

JSsp tjcð Þ¼ 1� JSdist t, t
cð Þ

where tc is a predefined transcription pattern that repre-

sents the extreme case in which a promoter/enhancer is

transcribed only in cell line c.

tc ¼ tc1,⋯, tcn
� �

, such that tci ¼
1 ifi¼ c

0 otherwise

�
.

Finally, the overall specificity score was used for Fig 5C and for

generating matched sets of randomly sampled E–P pairs (Fig 6F).

For all other analyses and figures, the specificity score with respect

to a particular cell line was used.

Enhancer–promoter pairing

To obtain putative E–P pairs, we used pairwise across-cell-type

correlations between enhancer and promoter transcriptional activ-

ity. With the “correlated neighboring” (CN) and “correlated

window” (CW) approach, enhancers were paired to the nearest

upstream and downstream neighboring active promoters, and all

active promoters within � 500 kbp distance, respectively. For E–P
pairing, active promoters were defined by having normalized FPK ≥
30. E–P distances were calculated between enhancer midpoints and

gene TSSs. Only pairs with correlated transcriptional activity

(r > 0.6) were kept. For this, Pearson correlation coefficients r were

calculated between vectors of TT-seq log2(normalized FPK + 1)

values representing transcriptional activity patterns across the 14

cell lines.

As a third approach, we also paired enhancers to their nearest

active gene, “nearest” (N). Only E–P pairs spanning a distance of

less than 500 kbp were considered. This approach was used in addi-

tion to also provide putative E–P pairing information in the absence

of correlated transcriptional activity. Moreover, this approach was

used to show that cell type-specific enhancers are associated with

cell type-specific gene expression (Fig 5D–F), as such analysis

would have been confounded by circular reasoning if correlated E–P
pairs would have been used.

To show that cell type-specific enhancers were associated with

cell type-specific gene activity, we paired enhancers either to their

nearest active promoter (Fig 5D and E) or to interacting active

promoters (Appendix Fig S4D and E). For the latter, we used

promoter capture Hi-C data (LoVo cells, see next paragraph) or Pol

II ChIA-PET data (K562 cells). We combined published K562 Pol II

ChIA-PET interactions from ENCODE (ENCSR000BZY (Krismer

et al, 2020)) and (Li et al, 2012). Respective .bed files were down-

loaded from GEO (GSM970213, GSM832463, GSM832464,

GSM832465) and lifted from hg19 to hg38 human genome build.

Comparison of enhancer–promoter pairs with CHi-C data

Published promoter capture Hi-C data for the LoVo colorectal

cancer cell line (Orlando et al, 2018) were obtained from the

European Genome-phenome Archive and preprocessed as

described in the publication, but using hg20/hg38 (GRCh38) as

reference genome. Interactions with a score ≥ 3.0 (obtained by

CHiCAGO (Cairns et al, 2016)) were considered for further anal-

yses. We defined that an E–P pair was supported by a CHi-C

interaction if we observed a CHi-C interaction for which the bait

fragment overlapped the promoter and the hit fragment over-

lapped the enhancer of a particular E–P pair. Only E–P pairs

with distance greater than 10 kbp were used to investigate

support by CHi-C interactions because shorter range interactions

cannot reliably be identified in the CHi-C data. To calculate

enrichments over expected values of supported interactions, we

randomly sampled 100 sets of matched E–P pairs. To this end,

we first drew promoters (same number as observed E–P pairs)

with a similar overall distribution of transcription levels and cell

type specificity scores and then paired them to random non-

coding regions of the genome with similar overall distribution of

their widths and distances from gene promoters. Such null sets

were generated separately for E–P pairs obtained with each of

the three pairing approaches and CHi-C interaction overlaps

determined to obtain empirical null distributions and to calculate

empirical P-values.

Comparison of enhancer–promoter pairs with pairs predicted by
the activity-by-contact model

Published predictions for E–P interactions in K562 cells Fulco et al,

2019) were downloaded from https://osf.io/uhnb4/. Putative

enhancer annotations from K562.AllPredictions.txt and K562.Posi-

tivePredictions.txt were lifted from hg19 to hg38 genome build and

then overlapped with K562 TT-seq enhancer annotations. 68% of

TT-seq candidate enhancer regions were also tested by the ABC

model. Since one of our pairing approaches pairs enhancers to the

nearest active gene promoter (within 500 kbp), almost all of the

putative enhancers reported in our study pair to at least one

promoter. This resulted in a considerable fraction (59%) of putative

enhancers which were paired in our study but not paired by the

ABC model. Thus, we took only positive E–P pairs reported by the

ABC model and compared them to E–P pairs described in our study

for the same enhancers.

Enrichment analysis of gene classes in E–P pairs

Enrichment analysis was done for putative E–P pairs defined by the

CN pairing approach. The following gene lists were considered for

enrichment analysis: housekeeping genes (n = 3,804 (Eisenberg &

Levanon, 2013)), transcription factors (n = 1,672 (Abugessaisa

et al, 2016)), and cancer-associated genes (n = 723, Cancer Gene

Census_V91 (Sondka et al, 2018)). We used Fisher’s exact test on

2 × 2 contingency tables to compute P-values.
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GWAS SNP enrichment analysis

All SNP-disease/trait associations were taken from the NHGRI-EBI

GWAS Catalog Welter et al, 2014) (http://www.ebi.ac.uk/gwas/)

downloaded on April 18, 2020. SNPs were filtered to retain only

those located in the non-coding genome (i.e., intronic and inter-

genic) (n = 100,108). We further obtained a list of SNPs associated

with cancer (EFO_0000311) by GWAS and from this selected all

traits corresponding to the types of cancer cell lines used in this

studys (Table EV7, n = 2,312, hereafter referred to as cancer-associ-

ated SNPs). For comparison of the overlap of cancer-associated

SNPs and enhancers to the overlap of SNPs from the 1000 Genomes

project (Phase 3v5) and enhancers, we randomly sampled 1,000

matched SNP sets from the EUR population (with the same size as

the original cancer-associated SNP set), using SNPsnap (Pers et al,

2014) with default parameters (except r2 = 0.8). SNPsnap matched

the original SNPs based on MAF, gene density, distance to nearest

genes, and number of sites within LD of 0.8 of the original site.

SNPs were then overlaid with TT-seq-defined enhancer regions, and

the P-value was determined based on the empirical background

distribution.

Data availability

The raw and processed TT-seq data together with the eRNA and

enhancer annotations have been deposited in the Gene Expression

Omnibus (GEO) database under accession code GSE152291 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152291).

Expanded View for this article is available online.
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