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/e use of speech as a biomedical signal for diagnosing COVID-19 is investigated using statistical analysis of speech spectral
features and classification algorithms based on machine learning. It is established that spectral features of speech, obtained by
computing the short-time Fourier Transform (STFT), get altered in a statistical sense as a result of physiological changes. /ese
spectral features are then used as input features to machine learning-based classification algorithms to classify them as coming
from a COVID-19 positive individual or not. Speech samples from healthy as well as “asymptomatic” COVID-19 positive
individuals have been used in this study. It is shown that the RMS error of statistical distribution fitting is higher in the case of
speech samples of COVID-19 positive speech samples as compared to the speech samples of healthy individuals. Five state-of-the-
art machine learning classification algorithms have also been analyzed, and the performance evaluation metrics of these al-
gorithms are also presented. /e tuning of machine learning model parameters is done so as to minimize the misclassification of
COVID-19 positive individuals as being COVID-19 negative since the cost associated with this misclassification is higher than the
opposite misclassification. /e best performance in terms of the “recall” metric is observed for the Decision Forest algorithm
which gives a recall value of 0.7892.

1. Introduction

/e most basic functions of the human body are usually
monitored by measuring the vital signs—temperature, heart
(pulse) rate, respiratory (breathing rate), and blood pressure
[1]. /ese are usually measured using medical devices, but
nowadays, easy to use and low-cost devices and smart
gadgets are available which allow measuring temperature,
pulse rate, and blood pressure at home, even by nonmedical
professionals. Various types of sensors, present in such
devices, sense some signal generated by the human body,
process the signal, and provide a reading of the vital sign in a
simple and easy to interpret format. It is therefore necessary

to connect the devices/sensors at appropriate points on the
human body to obtain the desired measurements. /e
placement of such sensors on the body is invasive and in-
trusive and causes inconvenience to the patient/individual.
/is is particularly true when monitoring professional
athletes and sports persons while they are performing in-
tense exercise/training. Moreover, it does not allow mea-
surement of body parameters without attaching the device/
its sensors (probes) to the body or from a remote location;
i.e., the patient has to be at the same location as the medical
device. /is article investigates the use of speech as a bio-
medical signal to detect COVID-19 based on a statistical
analysis of speech and binary classification using machine
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learning. Speech characteristics of an individual get altered
as a result of physiological and emotional changes [2–6].
Other factors that can cause physiological changes in the
body are changes in health conditions, aging, stress, pol-
lution exposure, and physical activity. /ere is significant
evidence from the literature that clearly establishes a cor-
relation between the characteristics of human speech and the
physiological parameters of the speaker. A correlation be-
tween heart-related parameters such as heart rate, electro-
cardiogram (ECG) features, and the influence of heart
function on speech characteristics has been shown in [7–13].
In [14], the variation of speech characteristics due to physical
activity is demonstrated, and the effect of physical activity
and fitness level on heart rate is shown in [15]. Physiological
changes due to physical activity also depend on the regu-
larity, duration, and intensity of the activity performed [16].
A correlation between speech and blood pressure is estab-
lished in [17], and a method to detect emotions from speech
is described in [15]. It is also established in the literature that
tiredness can also affect an individual’s speech and can cause
speech to become slurred (dysarthria) [18]. Noncontact
methods to measure physiological parameters based on
image and video processing have also been investigated and
reported in the literature [19,20]. Noncontact methods based
on speech, images, and video can facilitate remote moni-
toring, telemedicine, and smart healthcare which are ex-
pected to play a major role in future healthcare
infrastructures.

/e COVID-19 pandemic era has necessitated and
triggered an enormous amount of research into such
noncontact-based diagnostic methods to detect COVID-19
using machine learning and deep learning [21–30]. A review
of COVID-19 diagnostic methods along with prevention
tools and policy decisions for COVID-19 management is
provided in [31]. Artificial intelligence-based COVID-19
diagnosis tools are not without pitfalls. A critique of AI-
based tools being given emergency authorization by regu-
latory bodies indicates that many such tools have been
developed using small or low-quality datasets [32], con-
cluding that AI could be useful in dealing with the COVID-
19 pandemic but requires more detailed investigation and
validation. Several research studies based on artificial in-
telligence are ongoing not only to detect COVID-19 but also
to predict and understand the effects of the pandemic and be
prepared for eventualities. A method to detect COVID-19
using machine learning on symptoms is proposed in [33].
COVID-19 detection based on the application of AI on
X-ray and computerized tomography (CT) images is re-
ported in [34–41]. In [42–44], detection of COVID-19 by
applying machine learning to routine blood examination
data has also been reported. AI-based systems to predict the
deterioration of COVID-19 patients toward severe disease
have been presented in [45–47], and prediction of mortality
risk among COVID-19 infected individuals using AI is also
available in the literature [48–50]. /e COVID-19 pandemic
has indeed necessitated and highlighted the need for in-
terdisciplinary and transdisciplinary approaches to diag-
nose, treat, and manage not just COVID-19 patients but also
to address medical problems in general [51]. /e challenges

involved in the use of AI for COVID-19 are elaborated in
[52]. Several research groups [53–56] are actively investi-
gating the use of speech sounds, cough sounds, and
breathing/respiratory sounds to detect COVID-19 by ana-
lyzing these sounds using artificial intelligence algorithms.

2. Materials and Methods

2.1. Data Used in+is Study. Speech recordings used in this
study comprise two categories—speech from healthy indi-
viduals with no known preexisting medical conditions at
resting heart rate and speech from asymptomatic COVID-19
positive individuals. Heart rate and blood oxygen saturation
level (SpO2) are measured simultaneously at the time of
recording the speech using an off-the-shelf pulse oximeter. It
should be noted that the pulse rate measured by the pulse
oximeter is exactly equal to the heart rate [57]. /e total
number of speech recordings of healthy individuals at
resting heart rate is 84. All the healthy volunteers are in the
age group of 25–45 years. Speech samples along with heart
rate and SpO2 measurements were also obtained from 22
individuals who had tested COVID-19 positive following
contact tracing, but with no conspicuous symptoms. /e
youngest in this category is 32 years and the oldest is 57
years. It should be noted that obtaining speech data of
COVID-19 patients was challenging and hence the relatively
small set of samples.

Speech recording was made using a Logitech headphone
equipped with a noise cancellation microphone. While the
samples of all the healthy individuals were recorded using the
same microphone in the same environment, the speech
samples of COVID-19 individuals were recorded with different
microphones of the same make and model (Logitech H540)
and under different ambient conditions for each. Hence, any
variations in speech characteristics arising due to the difference
in recording device and ambiance are not taken into consid-
eration. It is reasonable to ignore these variations since the
recordings weremade in quiet rooms usingmicrophones of the
same make and model and therefore have the same technical
specifications. Of course, the acoustic effects of the room and
background noise, albeit small, are not taken into consideration
as it was not possible to bring the COVID-19 patients to the
laboratory settings where the recording of healthy individuals
was made. Each individual was asked to read the sentence “A
quick brown fox jumped over the lazy dogs” which was
recorded by turning the microphone “ON”: for 5 seconds. /e
recording was made in stereo format at a sampling rate of
16000 samples per second (sps) which is the standard sampling
rate for wideband representation of speech [58]. /e recording
is quantized using 216 quantization levels resulting in an audio
bit rate of 256 kbps and stored on a computer in uncompressed
.WAV format. Heart rate and SpO2 level are also concurrently
measured at the time of speech recording using a pulse oxi-
meter. /e attributes of the data are highlighted in Table 1.

2.2. Preprocessing of Speech Data. Unwanted components
such as DC bias, which usually gets introduced by PC audio
cards [59] and silence intervals due to pauses made by the
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speaker, are removed by preprocessing each of the speech
recordings. DC bias is removed using a 1st-order infinite
impulse response (IIR) filter, whereas silence intervals are
removed by applying a voice activity detection (VAD)
mechanism which extracts speech frames containing voice
activity. VAD also mitigates noise effects by applying a
posteriori signal to noise ratio (SNR) weighting to emphasize
reliable segments of voice activity even at low SNR. DC bias
removal and VAD are applied as per the implementation
provided in [60]. A block diagram of preprocessing steps is
shown in Figure 1.

/e features of speech that have been used in this study are
the short-term Fourier Transform (STFT) coefficients. Features
are defined as characteristics of a signal that enables some
algorithm to detect an inherent pattern associated with the
signal [61]. /e premise of detecting COVID-19 from speech
features stems from the fact that speech is produced by moving
air from the lungs through the vocal cavity. Since there is an
interaction between the lungs and heart for the oxygenation of
the blood, cardiovascular responses are influenced by activities
such as reading and speaking [62]. It is shown in [63] that
breathing pattern is affected by the process of speech pro-
duction. Changes in breathing patterns, in turn, have an effect
on the heart rate, and this effect is termed respiratory sinus
arrhythmia (RSA) [64]. Several techniques for feature extrac-
tion have been proposed in the literature for various appli-
cations but predominantly for speaker/speech recognition and
speech enhancement. Linear prediction coefficients (LPC),
linear prediction cepstral coefficients (LPCC), perceptual linear
prediction (PLP), Mel frequency cepstral coefficients (MFCC),
Mel frequency discrete wavelet coefficients (MFDWC), feature
extraction using principal component analysis (PCA), and
wavelets based features are some of the common features that
have been reported in the literature [65–70]. STFT represents
the time-varying spectral properties of a signal, and for this
study, STFTcoefficients with a high spectral resolution are used
in order to capture subtle differences between closely spaced
frequency components./e high spectral resolution is achieved
by computing the STFT of long segments of speech, i.e.,
segment length greater than 500ms. /e high spectral reso-
lution is achieved at the expense of temporal resolution. Since a
correlation between physiological parameters and spectral
features of speech is evident from existing literature, STFT
coefficients with high spectral resolution have been used in this
study. /e STFT coefficients are used as input features to
machine learning algorithms to classify the speech signal as that
of COVID-19 positive or not.

2.3. Statistical Modeling of Speech Features. /e most
common symptoms of COVID-19 are fever, tiredness, and
dry cough, and these may not be conspicuous until about 14

days after getting infected with an average of 5-6 days for the
symptoms to become conspicuous. In this article, it is shown
using statistical modeling of speech features that it is possible
to detect COVID-19 from an individual’s speech much
before the symptoms become conspicuous so that the person
can be quarantined, tested, and provided with medical
support at an early stage. At their onset, while symptoms
may not be conspicuous to the affected individual or to
observers, physiological changes occur in the individual that
cause variations in speech characteristics which can be
analyzed by artificial intelligence (AI) algorithms. Signal
processing and AI can be applied to speech to detect
physiological changes which have a direct or indirect rela-
tion to one or more of the COVID-19 symptoms. /e ex-
istence of a correlation between speech characteristics and
physiological, psychological, and emotional conditions is
well established in the literature. It is therefore possible to
detect COVID-19 infection from speech samples of indi-
viduals and this possibility is investigated in this article. /e
relationship between the most common symptoms of
COVID-19 and affected physiological parameters is illus-
trated in Figure 2.

A statistical analysis of speech spectral features is per-
formed by applying maximum likelihood estimation (MLE)
to obtain the best statistical distribution along with the
distribution parameters that best characterize speech STFT
coefficients, statistically. It has been shown in [58] that for
speech samples at resting heart rate, STFTcoefficients having
high spectral resolution are accurately modeled by a Lap-
lacian distribution (LD) with the estimated LD parameters
exhibiting small RMS error. /e Laplacian distribution is
defined as

p(x) �
1
2b

exp
− |x − μ|

b
􏼠 􏼡 (1)

parameter and b> 0 is the scale parameter. /e procedure to
estimate μ and b, the RMS error associated with the esti-
mation of b, and its lower bound defined as the Cramer-Rao
bound (CRB) are provided in [58].

2.4. Binary Classification of Speech Samples Using Machine
Learning. From the statistical analysis of speech STFT co-
efficients at the high spectral resolution, it is evident that the
RMS error of fitted LD increases as a result of COVID-19
infection. Based on this finding, binary classification of
speech signals as COVID-19 positive or COVID-19 negative
is investigated by using STFTcoefficients as input features to
machine learning algorithms. In order to train and develop
the AI models, speech samples of healthy as well as COVID-
19 positive individuals are used. /e trained AI model can

Table 1: Attributes of data used in this study.

Age group
(years)

No. of
recordings

Sampling rate
(sps)

Quantization depth
(bits)

Audio bit rate
(kbps)

Audio
format

Other parameters
measured

Healthy 25–45 84 16000 16 256 .wav Heart rate, SpO2COVID+ 32–57 22
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then be incorporated into a mobile “app” for early detection
of COVID-19, once the desired level of accuracy is achieved
and regulatory approvals are obtained. If speech can be used
to detect COVID-19, the functionality of the “smartphone”
which already has wide proliferation and ubiquitous pres-
ence can be extended to alleviate the challenges posed by the
pandemic. /e results reported in the literature [71–78] are
quite promising, providing exciting and interesting answers,
giving confidence that research on this topic can lead to the
development of mobile applications which can be used not
only to detect COVID-19 from human sounds but also for
other medical diagnostic/monitoring purposes. COVID-19
diagnosis using only cough recordings is presented in [71].
However, it uses biomarker information such as muscular
degradation, vocal cords, sentiment, and lungs/respiratory
tract function along with the cough recordings for diagnosis.
/e relation between COVID-19 symptoms and respiratory
system function is highlighted in [72] along with a survey of
AI-based COVID-19 diagnoses using human audio signals.
Cough and respiratory sounds are used to classify COVID-
19 and non-COVID-19 individuals in [73]. Furthermore, it
is shown that cough from COVID-19 can be distinguished
from healthy individuals’ cough as well as cough of asth-
matic patients. A project in progress [74] investigates the
detection of COVID-19 from human audio sounds using AI.
A news feature article in Nature [75] highlights research
interest and progress among academic as well as commercial
organizations to use the human voice for various diagnostic
purposes including COVID-19. AI4COVID-19 is an app
that runs an AI algorithm in the cloud to detect COVID-19

from cough sounds and reports promising results, en-
couraging further collection of labeled cough sounds [76].
An overview of the possibilities, challenges, and use cases of
computer audition is presented in [77], which clearly
highlights the potential of using sound analysis using AI for
COVID-19 diagnosis. A support vector machine (SVM)
based method to detect COVID-19 from speech signals is
presented in [78] which combines voice signals and
symptoms reported by the patient. In contrast to the re-
search available in the literature, this article uses only speech
signals without any side information such as symptoms or
other biomarker information.

/e STFT coefficients are labeled as coming from the
speech of COVID-19 negative, i.e., healthy (Class 0) and
COVID-19 positive (Class 1) individuals. Microsoft Azure
Machine Learning Studio (MAMLS) cloud platform is used
in this study to perform binary classification, and the per-
formance of classification is analyzed and compared for five
state-of-the-art classification algorithms available in
MAMLS. Machine learning techniques produce a model for
the data by learning the statistical relationship between input
data (e.g., STFT coefficients extracted from speech signals)
and output data (e.g., class label). /e hyperparameters of
the produced model are tuned optimally to minimize the
classification error in an independent test dataset, resulting
in a generalized model that can perform well on the test data
set as well. /e tuning is performed manually by adjusting
the model hyperparameters until the highest value for the
“recall” metric is achieved. Good performance on only the
training dataset would result in an overfitting solution. A

DC
blocking

filter
VAD

SNR
weighting
function

STFTRecorded
speech

Speech
features

Figure 1: Speech preprocessing.
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Figure 2: Biological parameters correlated to speech and COVID-19 symptoms.
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brief description of the five algorithms used for binary
classification is provided here for completeness. /e block
diagram of the methodology used in the work is shown in
Figure 3. An overview of the used ML algorithms follows.

Boosted Decision Tree (BDT) is an ensemble learning
technique, wherein the succeeding tree corrects the errors of
the previous tree to minimize classification error. /e
complete ensemble of trees is used for correctly predicting
the binary class to which the input data belongs [79]. An-
other classification algorithm based on ensemble learning is
the Decision Forest (DF) algorithm, wherein the most
popular class is selected depending on the vote from each of
the generated trees [80]. Neural Networks (NNs) are a
network of interconnected layers of processing units called
neurons. A typical NN consists of neurons aggregated into
three layers. /e first layer is formed by the input feature set
which is linked to the output layer via an interconnection of
several hidden layers in the middle. Each neuron processes
its input variables and its output is passed to the neuron in
the subsequent layer [81]. Logistic Regression (LoR) is a
statistical technique for analyzing data when a dichotomous
outcome is determined by one or more independent vari-
ables [82]. Support Vector Machines (SVMs) are based on
the principle of recognizing patterns in a multidimensional
hyperplane to estimate the maximum margin between
samples of binary classes using a multidimensional input
feature space [83].

/ese algorithms have relatively fast training and good
performance and are robust to overfitting and have therefore
been chosen in this study. /e performance of classification
models based on each of these algorithms is evaluated using
the evaluation metrics listed in Table 2. /ese evaluation
metrics are standard in machine learning literature [84].

/e input features used for binary classification are the
STFT coefficients of speech from each of the 84 healthy
individuals and the 22 COVID-19 positive individuals. Each
individual’s speech sample comprises 8 segments and STFT
coefficients obtained from each speech segment are used as
input features for binary classification. As mentioned in
Section 4, STFT coefficients are complex numbers; hence,
each speech segment comprises “real” and “imaginary” parts
of STFTcoefficients./e number of frequency points used in
the computation of STFT coefficients is 8192, which is ob-
tained as the next power of 2 greater than the segment
length. /us, for each individual speech sample, a matrix of
8192 rows× 8 columns is generated. /e real and imaginary
parts of the complex STFT coefficients are separated
resulting in two separate matrices having dimensions of 8192
rows× 8 columns each. Class label is assigned to each row of
these matrices as “Class 0” for healthy individuals’ speech
samples and “Class 1” for COVID-19 positive individuals.
/us, there are 8192× 84� 688,128 rows of STFTcoefficients
(real part) labeled as Class 0 and 8192× 22�180,224 rows of
STFT coefficients (real part) labeled as Class 1. Corre-
spondingly, an equal number of rows are available under
each class label containing the “imaginary part” of STFT
coefficients.

Each row of the real/imaginary part of the STFT coef-
ficients matrix corresponds to a frequency point in the STFT

computation, and each column represents a segment of
speech. /e rows are treated as examples and columns as
features since each column of the STFTmatrix represents the
time-localized spectral features of the speech signals. Every
real and imaginary part “x” of STFT coefficients is nor-
malized to lie in the interval [0,1] using a MinMax nor-
malizer as follows:

Normalized value �
x − min(x)

[max(x) − min(x)]
. (2)

Since the statistical distribution for both the real and
imaginary parts of speech STFT coefficients is Laplacian,
these are treated together without distinction in the context
of this work. /us, the entire dataset comprises 1,736,704
labeled rows, half of which comprise the real part of STFT
coefficients and the other half comprise the imaginary part of
STFT coefficients, which is saved in .csv format. For binary
classification using machine learning, only the rows corre-
sponding to the real part of STFT coefficients are utilized to
reduce the time taken for training and cross-validation. /e
data is split in an 80 : 20 ratio; i.e., 80% of the rows are used
for training and the remaining 20% are used for testing.
Since the dataset used in this study is highly imbal-
anced—Class 0 constitutes nearly 80% of the dataset and
Class 1 constitutes a little over 20% of the dataset—data
splitting is performed with “stratification.” Stratification
ensures that each subset of split data has the same class
distribution as the entire dataset. /e ratio of healthy:
COVID-19 + samples in terms of speech recordings is 84 :
22� 3.8181 :1. In terms of the STFT coefficients also, this
ratio remains the same. Since only the real part of STFT
coefficients has been used for binary classification, the ratio
healthy: COVID-19 + samples in terms of STFT coefficients
is 688128:180224� 3.8181 :1. Since stratification has been
used, both training and testing data contain STFT coeffi-
cients of “healthy” and “COVID+” individuals in the same
proportion as 84 : 22� 3.8181 :1. Furthermore, the train-test
split with stratification at the STFT level ensures permu-
tation of the labeled STFT coefficients across all “individ-
uals”—Class 0 as well as Class 1. Even though the number of
speech samples used in this study is small, the number of
frequency points (rows) of STFT is large due to the high
spectral resolution adopted. /e performance evaluation
metrics are computed following a 10-fold cross-validation
process. Furthermore, as in the data splitting process,
stratification is used in the cross-validation process as well to
ensure that the class distribution of the training data set is
maintained in each fold of cross-validation.

3. Results

3.1. Classification of COVID-19 Samples Based on Statistical
Distribution Fitting. LD fitting based on MLE is applied to
all the speech samples used in this study—healthy indi-
viduals without COVID-19 as well as COVID-19 positive
individuals. A comparison of statistical properties of
speech STFT coefficients of the two categories of speech
samples is performed. /e statistical distribution of
speech STFT coefficients of healthy individuals, i.e., not
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infected by COVID-19, is shown in Figure 4 and that of a
COVID-19 positive individual is shown in Figure 5.

It is found from Figure 4 that spectral features of the
speech of healthy individuals are accurately modeled by LD,
with small RMS error as has been established in the literature
[58]. In the case of speech samples of COVID-19 positive
individuals without any conspicuous symptoms, while the
statistical distribution of the STFT coefficients is still closely
modeled by LD, the RMS error of the fitted distribution has a
nearly 10-fold increase as compared to non-COVID-19
individuals. /is increase in the RMS error of the fitted
distribution indicates a variation of speech characteristics as
a result of COVID-19 infection. /e PDFs are obtained by
plotting the envelope of histograms of STFTcoefficients. /e
“estimated” PDF represents the fitted distribution based on
estimated Laplacian distribution parameters “µ” and “b” and
the “actual” PDF is the actual distribution of the STFT
coefficients./e Laplacian distribution is therefore a suitable
distribution for speech STFT coefficients as the RMS error
between the actual and fitted distributions is small.

3.2. Performance Evaluation of Binary Classification. /e
model hyperparameters for each algorithm are tuned and
optimized to achieve the best performance in binary clas-
sification in terms of the “Recall” metric. /e performance
evaluation metrics for the five binary classification algo-
rithms used in this study, along with their optimal pa-
rameterization, are listed in Table 3./e best performance in
terms of precision, recall, accuracy, and F1 score is achieved
for the DF algorithm. For the classification application

considered in this work, classifying speech spectral features
as COVID-19 positive or not, the cost associated with
misclassification is very high for “false negative” as com-
pared to “false positive.”

Since “recall” provides a measure of correctly pre-
dicted positives against the total number of positive

Data collection

Feature
extraction

(STFT)

Experimental
set-up

Recorded speech

Labeling
COVID –ve

or 
COVID +ve

Alongwith

Classification
output

ML Model

Cross
validation data

Machine
Learning

Compare

Labelled
value

Model
tuning

Figure 3: Block diagram of the methodology used.

Table 2: Evaluation metrics for binary classification.

Evaluation metric Definition Notations
Binary classification

Precision (PRE) PRE� tp/tp + fp tp–Total no. of true positive samples
Recall (REC) REC� tp/tp + fn tn–Total no. of true negative samples
Accuracy (ACC) ACC� tp + tn/tp + tn + fp + fn fp–Total no. of false positive samples
F1-score F1 � 2∗PRE ∗REC/PRE + REC fn – Total no. of false negative samples
Area under RoC curve (AUC) AUC � 􏽒

1
0 RoC RoC - receiver operating characteristic curve

-200 -150 -100 -50 0 50 100 150
STFT coefficients (x)

0.3

0.25

0.2

0.15

0.1

0.05

0

p 
(x

)

LD fit for speech STFT coefficients of healthy
individual (without COVID-19)

estimated
actual

Laplace PDF with ML: 1/2b ∙ e
μ = -0.00247985 b = 2.55479
CRB (b) = 0.000797
RMS err = 0.00366

-|x-μ|/b

Figure 4: Statistical properties of speech STFT coefficients of a
healthy person (without COVID-19).
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examples, it is important for our classification problem to
have a high value for this metric. /is will minimize
misclassifying a COVID-19 positive example as not being
COVID-19 positive. While other evaluation metrics have
also been determined, “recall” is the more important
metric in the context of this work. In Table 3, the values
within brackets are the standard deviations of the metrics.
Small values for standard deviation indicate that the
models are verified with an unbiased dataset which has
been achieved by using stratification in the train-test split
as well as in cross-validation.

4. Discussion

4.1. Statistical Distribution of COVID-19 Positive and
COVID-19 Negative Speech Samples. /e average RMS
error for the fitted LD averaged over all the speech samples
belonging to each of the two categories is shown in Table 4.
/is increase in RMS error of the fitted LD in COVID-19
positive samples is attributed to the physiological changes
associated with COVID-19 infection which affect the
characteristics of speech.

Since the symptoms are not conspicuous among the
samples used in this study, the distribution of STFT coef-
ficients of speech is still Laplacian, albeit with a higher RMS
error. STFT coefficients being complex numbers, the above
findings are valid for both the “real” as well as “imaginary”
parts of STFTcoefficients and the same has also been shown
in [58]. It remains to be seen if the distribution deviates
significantly from being Laplacian or even ceases to be
Laplacian when the symptoms become more pronounced
and conspicuous./e increase in RMS error indicates such a
trend. It should be noted that the data used in this study is
unbalanced—the dataset from COVID-19 positive indi-
viduals is smaller than that of healthy individuals./e results
discussed in this section clearly indicate that the statistical
properties of speech spectral features are altered as a result of

COVID-19 infection. However, as it was not possible to
obtain samples of COVID-19 positive individuals whose
symptoms are more pronounced and conspicuous, this shall
be a subject of future investigation, once such samples are
obtained. Due to the prevailing COVID-19 restrictions,
access to such individuals has not been possible.

4.2. COVID-19 Detection on Test Data Using the Binary
Classification Models. Finally, the optimally parameterized
classification algorithms discussed in Section 2.4 have been
tested on the test dataset. As discussed in Section 3.2, the
algorithms have been parameterized to optimize the “recall”
performance metric. /e classification results of 20 samples
(rows) from the test data are shown in Table 5 which
contains the “actual” and “predicted” classes for the 20 test
samples by each of the five classification algorithms. It can be
observed from Table 5 that the misclassification of COVID-
19 positive as “not positive”, i.e., class 1 beingmisclassified as
Class 0, is the lowest for the DF algorithm. /e misclassified
values are highlighted in bold and underlined.

For future investigation, concurrently at the time of
recording speech samples of individuals, biomedical pa-
rameters such as heart rate (pulse oximeter), oxygen satu-
ration (pulse oximeter), blood pressure (digital BP monitor),
and temperature (infrared thermometer) have also been
measured. /ese shall be used for future research to develop
machine learning-based regression algorithms to predict
these biomedical parameters from speech signals. /e var-
iations of these parameters among COVID-19 negative and
COVID-19 positive individuals shall be analyzed to improve
the accuracy of detecting COVID-19 from speech samples.
/e devices used to measure the biomedical parameters are
shown in Figure 6. /e e-health sensor platform shown in
Figure 6 facilitates direct recording of the biomedical pa-
rameter to a PC, thus avoiding the manual entry of data.

A limitation of the work presented in this article is that it
cannot distinguish between similar symptoms which may
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Figure 5: Statistical properties of speech STFT coefficients of an infected person (with COVID-19).
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Table 3: Performance metrics for binary classification algorithms.

Classification algorithms Optimal
Parameterization

Performance metrics
Mean value (standard deviation)

ACC PRE REC F1 score AUC

BDT
No. of Leaves: 16
Learning rate: 0.05
No. of trees: 100

0.724 (0.048) 0.714 (0.037) 0.7037 (0.063) 0.7088 (0.052) 0.717 (0.053)

DF
Random split Count: 128
Maximum Depth: 32

No. of decision trees: 16
0.7317 (0.021) 0.7421 (0.017) 0.7892 (0.081) 0.7649 (0.025) 0.755 (0.017)

NN Learning rate: 0.001
No. of hidden Nodes: 314 0.711 (0.031) 0.7271 (0.043) 0.7188 (0.018) 0.7229 (0.029) 0.7616 (0.095)

LoR
Optimization Tolerance: 1e-06
L1 regularization weight: 1
Memory size for L-BFGS: 18

0.6741 (0.019) 0.6805 (0.024) 0.6161 (0.027) 0.6467 (0.019) 0.6874 (0.065)

SVM Lambda – 0.001 0.694 (0.017) 0.673 (0.074) 0.6027 (0.019) 0.6359 (0.011) 0.6619 (0.037)

Table 4: Average RMS error of the fitted LD distributions.

Category Average RMS error of fitted LD
Without COVID-19 0.00354
With COVID-19 0.01271

Table 5: Test evaluation for binary classification

Test sample Actual class
Predicted class

BDT DF NN LoR SVM
1 0 0 1 0 0 1
2 1 1 1 0 1 1
3 1 1 1 1 0 0
4 0 1 0 1 1 1
5 1 1 1 0 1 1
6 0 0 0 0 0 0
7 1 0 0 1 1 1
8 1 1 1 1 0 0
9 1 0 0 0 1 1
10 0 1 0 0 1 1
11 1 0 1 1 1 1
12 0 0 1 1 0 0
13 0 1 0 1 1 0
14 1 1 1 1 0 1
15 0 0 0 0 0 1
16 0 1 1 0 0 1
17 1 1 1 0 0 0
18 1 0 1 1 1 1
19 0 0 0 1 0 1
20 1 1 1 1 0 1
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appear due to multiple different causes such as influenza or
myocarditis. It requires further research involving speech
data from patients with various illnesses that have symptoms
similar to COVID-19. /is shall be a subject of future work.

5. Conclusions

/is article investigates the statistical properties of speech
spectral features for samples taken from healthy as well as
asymptomatic COVID-19 positive individuals. While the
statistical distribution for both is Laplacian, the RMS error of
the fitted Laplace distribution is higher in the case of
asymptomatic COVID-19 positive speech samples. /is
indicates that spectral properties of speech get altered as a
result of physiological changes caused due to COVID-19
infection. It is therefore deduced that there is an associated
entropy in speech which can be used to detect COVID-19.
STFTcoefficients of speech are then used as input features of
machine learning-based classification algorithms and the
classification performance of five state-of-the-art classifi-
cation algorithms has been evaluated. All the five classifi-
cation algorithms exhibit a moderate level of performance
having their evaluation metrics values around 70% of their

maximum values. /e best performance is observed for the
DF algorithm which has the highest value for the “recall”
metric with a value of 0.7892. “Recall” is the metric used
while training the model hyperparameters as a higher recall
value means minimizing misclassification of the “false
negative” category. /e cost of misclassifying a COVID-19
positive sample as a COVID-19 negative is high and hence
the choice of recall as the evaluation metric is to be maxi-
mized while tuning the model parameters. It is also noted
from Table 5 that the misclassification of Class 1 (COVID-19
positive) as Class 0 (COVID-19 negative) is least for the DF
algorithm when tested on previously unseen test data. /e
results obtained are promising and provide evidence that
COVID-19 infection can be detected from speech signals of
individuals.

Speech can be used as a biomedical signal to diagnose
various physical and emotional disorders. It can be used to
monitor the performance/health conditions of individuals
while performing physical activity. /e focus of this work,
however, is to detect COVID-19 infection by analyzing a
person’s speech signal. /is is possible because speech
characteristics of individuals get altered by these conditions
as depicted in Figure 7.

PC

Headphones with
microphone

Infrared thermometer Digital BP monitor Pulse Oxymeter

E-Health sensor platform

Figure 6: Devices used for measuring biomedical parameters along with speech for future analysis.

Physical activity

Emotional state Speech characteristics

Biomedical entropy–biomedical information inherent
in speech signals

Physiological state

Figure 7: Possible applications of the proposed research.
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/e results presented are concurring with similar ap-
proaches available in published literature. For example,
100% sensitivity is reported in [71] for asymptomatic cases,
but it uses additional biomarker information along with
cough sounds. A maximum “recall” value of 0.72 is reported
in [73,78] while, in [76], the highest accuracy of 92.85% is
reported for binary classification using deep transfer
learning.

/e results presented in this work can be improved by
using a larger dataset comprising different classes of human
vocal sounds which should also include samples of indi-
viduals of different languages, dialects, and other health
conditions. It was intended to collect large datasets by en-
couraging community participation but that could not be
achieved due to regulatory procedures and limitations of
funding. Hence, the results presented in this work are based
on a small dataset but the findings are encouraging. Future
work shall consider using the magnitude of STFTcoefficients
rather than just the real/imaginary part and also consider the
use of other types of audio signal features such as MFCC as
input features for ML-based classification. /e detection of
COVID-19 using speech can facilitate real-time, remote
monitoring of infected yet asymptomatic individuals. /is
will allow early detection of COVID-19 symptoms and help
manage the ongoing COVID-19 situation better. It should
be noted that the fundamental idea presented in this article is
not limited to detecting COVID-19 symptoms only but has
broader applications in medical diagnosis and patient
monitoring/care. AI can detect changes in human vocal
sounds not discernible to the human ear. Smartphone apps
that use AI algorithms to analyze human vocal sounds for
diagnosis, screening, and monitoring can be extremely
useful and are expected to play a vital role in future
healthcare technologies.
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