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Background: With the development of quantitative electroencephalography (QEEG),

an increasing number of studies have been published on the clinical use of QEEG

in the past two decades, particularly in the diagnosis, treatment, and prognosis of

neuropsychiatric disorders. However, to date, the current status and developing trends

of this research field have not been systematically analyzed from a macroscopic

perspective. The present study aimed to identify the hot spots, knowledge base, and

frontiers of QEEG research in neuropsychiatric disorders from 2000 to 2021 through

bibliometric analysis.

Methods: QEEG-related publications in the neuropsychiatric field from 2000

to 2021 were retrieved from the Web of Science Core Collection (WOSCC).

CiteSpace and VOSviewer software programs, and the online literature analysis

platform (bibliometric.com) were employed to perform bibliographic and

visualized analysis.

Results: A total of 1,904 publications between 2000 and 2021 were retrieved. The

number of QEEG-related publications in neuropsychiatric disorders increased steadily

from 2000 to 2021, and research in psychiatric disorders requires more attention in

comparison to research in neurological disorders. During the last two decades, QEEG

has been mainly applied in neurodegenerative diseases, cerebrovascular diseases,

and mental disorders to reveal the pathological mechanisms, assist clinical diagnosis,

and promote the selection of effective treatments. The recent hot topics focused

on QEEG utilization in neurodegenerative disorders like Alzheimer’s and Parkinson’s

disease, traumatic brain injury and related cerebrovascular diseases, epilepsy and

seizure, attention-deficit hyperactivity disorder, and other mental disorders like major

depressive disorder and schizophrenia. In addition, studies to cross-validate QEEG

biomarkers, develop new biomarkers (e.g., functional connectivity and complexity),

and extract compound biomarkers by machine learning were the emerging trends.
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Conclusion: The present study integrated bibliometric information on the current status,

the knowledge base, and future directions of QEEG studies in neuropsychiatric disorders

from amacroscopic perspective. It may provide valuable insights for researchers focusing

on the utilization of QEEG in this field.

Keywords: bibliometrics, quantitative electroencephalogram, neuropsychiatric disorders, CiteSpace, VOSviewer

INTRODUCTION

Electroencephalography (EEG) is a tool for recording
spontaneous electrical activity generated in the cerebral cortex
using multiple electrodes placed on the scalp (1), providing
real-time assessment of cerebral physiological functions (2).
Since the German psychiatrist Hans Berger first tried to record
human cerebral electrical activity from the scalp in 1928 (3), EEG
technology has continued to develop, which is currently one of
the most influential noninvasive tools available to clinicians for
evaluating a patient’s neurophysiological functions (4).

Quantitative EEG (QEEG) techniques separate complex EEG
signals into components such as amplitude, frequency, and
compress time, permitting the display of several hours of data on
one image (5). QEEG empowers a neurologist or a psychiatrist’s
unprecedented ability to look at summarized EEG information,
which was not previously possible with a visual examination of
EEG traces. More importantly, QEEG can provide an objective,
replicable measure of brain functions that is less dependent on
subjective or behavioral reports that may vary across settings
and informants (6). Therefore, QEEG can be used in more
productive ways than non-QEEG to identify and categorize
neuropsychiatric diseases, as well as to predict the outcome of
therapeutic intervention (7).

To date, several studies have summarized the development
of QEEG methodology (8–10) or systematically reviewed the
research papers on the possible use of QEEG as a biomarker in
adult or child psychiatric disorders (11, 12) and in Alzheimer’s
disease (13). However, to our knowledge, there is no existing
study to analyze the developing status of the QEEG research field
from a macroscopic perspective.

Bibliometrics, an important branch of intelligence science
(14), uses the literature system and bibliometric characteristics
as the research object and conducts quantitative and qualitative
analyses of the literature (15). In recent years, bibliometric
analysis has been applied to visualize the knowledge status,
features, evolution, and emerging trends in various research
fields (16). It can help scholars extract quantitative information
on distribution by country/region, institution, author, journal,
research hot spots, and frontiers in a particular field in a short
time, providing in-depth reviews and insights about the research
field (17). Therefore, the present study used bibliometric tools
to analyze the QEEG studies in neuropsychiatric disorders from
2000 to 2021 to provide a comprehensive overview.

The specific research questions in the present study for
QEEG research in neuropsychiatric disorders were as follows:
1) What are the overall publication trends, the geographic
distributions, the most important journals, and who are the

FIGURE 1 | Flow diagram of the inclusion process.

potential collaborators? 2) What is the knowledge framework in
this field in terms of research hot spots and knowledge base? 3)
What are the future directions of this field?

METHOD AND DATA SOURCE

Data Collection
Data for the present study were retrieved from the Web of
Science Core Collection (WOSCC) database in January 2022.
We used TS = [(quantitative electroencephalography) OR
(QEEG) OR (quantitative EEG)] AND WC = [(neurology) OR
(psychiatry) OR (neuropsychiatry)] as the search terms, where
“TS” represents term subject and “WC” represents “Web of
Science categories.” The time limitation was between 1 January
2000 and 31 December 2021. Only literature published in English
was included, and duplicated articles were deleted. To avoid
bias due to daily database updates, we performed the literature
retrieval fromWOSCC on a single day, that is, 27 January 2022. A
total of 1,904 publications were included and consisted of original
articles and reviews. The search strategy is depicted in Figure 1.

Analysis Tools
All the collected data were converted into TXT format and
exported for further visual analysis by bibliometric software,
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including CiteSpaceV (5.8.R3) and VOSviewer (1.6.16), and the
online literature analysis platform (bibliometric.com). Visualized
information, such as yearly output, subject categories of WOS,
and impact factor (IF), was analyzed based on the function
of literature analysis on WOSCC. The number of countries,
institutions, and international collaborations were analyzed by
bibliometric.com. CiteSpaceV was used to perform collaboration
network analysis (including authors, institutions, journals, co-
cited journals, co-cited authors, and co-cited references) and
related centrality. The specific parameters used in CiteSpaceV
were set as follows. For the selection of time slices, a slice of
1 year was used for determining the connection strength, and
cosine was used for this purpose. For the threshold, we selected
the top 50 nodes in each time slice. Moreover, the pruning used a
pathfinder and merged network. VOSviewer was used to analyze
the keywords. The keyword co-occurrence map in VOSviewer
only includes terms that appear at least 15 times under the binary
count. The purpose of the algorithm is to ensure that the terms
that occur more frequently have larger bubble images and the
terms with high similarity are close to each other with a similar
color. Finally, the keyword overlay map was used based on the
occurrence of keywords to visualize the emerging topics from
2000 to 2021.

RESULTS

Annual Publications
A total of 1904 publications that met the retrieval criteria
were included in further analysis. The total number of annual
publications is shown in Figure 2A, which depicts an increasing
trend from 2000 to 2021. As shown in Figure 2B, the trend of
the annual publications in the neurology field showed steady
growth. However, the yearly output of articles in the psychiatry
area increased relatively slowly, indicating that the application of
QEEG in psychiatric disorders requires more attention.

Analysis of Countries and Institutions
Publications of QEEG research were obtained from 71 countries.
About 89.92% of the publications were from the top 10
countries (Table 1). The trends of annual output from the
top 10 countries are shown in Figure 3A. Most publications
were from the United States (n = 657, 34.5%). The centrality
analysis in CiteSpaceV represented the influence of a node,
and a node was of great significance when the centrality
value is greater than 0.1. Countries with a centrality value
greater than 0.1 were the United States (n = 0.95) and
Germany (n = 0.14), suggesting that publications from
these two countries had a greater influence on QEEG
research. The international cooperation between countries is
shown in Figure 3C. The most frequent collaboration was
observed between the United States and Canada, followed
by Australia.

A total of 2,433 institutions published QEEG-related articles.
The trends of annual output from the top 10 institutions
are shown in Figure 3B. The distribution of institutions is
scattered. Table 1 lists the top 10 productive institutions, and
343 papers have been published by these institutions, accounting

for 18.01% of the total publications. About 60% of the top 10
institutions are from the United States, including the University
of California, Los Angeles, Yale University, Massachusetts
General Hospital, New York University, Harvard University, and
Columbia University.

Analysis of Journals and Co-cited Journals
A total of 245 journals were involved, and the top 10 most active
QEEG-related journals published 47.53% of the total publications
(n = 905; Figure 4A). Among the top 10 journals in QEEG
research, Clinical Neurophysiology (n= 281) was the most active
journal, followed by Clinical EEG and Neuroscience (n = 144)
and Journal of Clinical Neurophysiology (n= 84).

Co-cited journals were journals cited together by researchers,
which usually reflected the foundation of a research field and
were one of the most important indicators in bibliometric
analysis. Half of the top 10 co-cited journals in QEEG research
in neuropsychiatric disorders were published in Q1 according
to JCR. Biological Psychiatry showed the highest impact factor
(IF = 13.382). Clinical Neurophysiology (n = 1,106) ranked first
in co-cited journals, followed by Electroencephalography and
Clinical Neurophysiology (n = 1,004) and Neurology (n = 880),
suggesting these journals were well recognized in QEEG research
in the neuropsychiatric field (Figure 4B).

Analysis of Authors
A total of 8,003 authors contributed to QEEG research in
neuropsychiatric disorders. As presented in Table 2, six authors
published over 25 articles. The most productive authors were
Cook IA and Leuchter AF who published 36 articles in
this field. Their research direction is mainly focused on the
abnormality of QEEG in major depression and its rehabilitation
by pharmacological treatments.

Research Hot Topics Based on Keyword
Analysis
To reveal the hot topics in the research field, we used VOSviewer
to produce a keyword co-occurrence map (see Figure 6). The
keyword co-occurrence map retrieved five major keyword
clusters of QEEG research in neuropsychiatric disorders. As
shown in Figure 5, each keyword cluster is depicted in a
distinct color. That is, the blue cluster represents research
in attention-deficit hyperactivity disorder (ADHD), the yellow
cluster represents research in neurodegenerative disorders, such
as Alzheimer’s disease, the green cluster represents research in
epilepsy, the purple cluster represents research in traumatic
brain injury and related cerebrovascular diseases, and the red
cluster represents research in psychiatric disorders, such as major
depressive disorder and schizophrenia. These five research areas
are currently hot topics in the research field.

Knowledge Base by Cluster Analysis of
Co-cited References
Co-cited references are co-cited articles in the reference lists of
other articles. The co-citation network by CiteSpaceV revealed
1,067 nodes, 3,989 co-citation links, and 22 clusters. These
clusters represented the knowledge base and networks of
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FIGURE 2 | The number of publications from 2000 to 2021. (A) The number of publications in neurology and psychiatry. (B) The total number of publications and the

percentage of total publications.

QEEG studies in neuropsychiatric disorders. Figure 6 shows all
automatically extracted clusters. Each cluster is depicted with
a unique color. The nodes in each cluster represent the co-
cited documents, and the lines between the nodes represent the
co-cited relationship. The labels of the clusters were extracted
from the keywords of the citing publications, based on the
latent semantic indexing (LSI) method. The general information
about the co-citation clusters is summarized inTable 3, including
the number of cited references, the average publication year of
the cited references, and the silhouette value of each cluster.
The silhouette value of a cluster ranges from 0 to 1, and
a larger value indicated greater discrimination from other

clusters (18). In addition, Table 4 presented the research disease
categories and domains retrieved from the co-cited reference
clusters. Supplementary Table S1 summarized highly co-cited
references and the most relevant citing articles in each co-
citation cluster.

Research Emerging Trends Based on
Keyword Analysis
We also used VOSviewer to produce the overlay map to
show the latest emerging topics (Figure 7). In VOSviewer,
we set the threshold of occurrence frequency to 15, and
253 of the total 7,458 keywords met the criteria. Among
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TABLE 1 | Top 10 countries and institutions with the highest number of publications from 2000 to 2021.

Rank Country Number of

Publications

Centrality Institution Number of

publications

Centrality

1 USA 657 0.95 Univ Calif Los

Angeles (USA)

60 0.26

2 Germany 168 0.14 Sapienza

University of Rome

(Italy)

35 0.11

3 Italy 167 0.06 Univ Montreal

(Canada)

34 0.09

4 Netherlands 118 0.02 Yale University

(USA)

33 0.09

5 Canada 115 0.07 Massachusetts

Gen Hospital

(USA)

32 0.06

6 Australia 112 0.01 NYU(USA) 31 0.08

7 UK 107 0.09 University Sydney

(Australia)

31 0.05

8 Switzerland 105 0.03 Harvard University

(USA)

30 0.06

9 China 85 0.02 University Twente(

Netherlands)

30 0.04

10 France 78 0.01 Columbia

University (USA)

27 0.01

FIGURE 3 | The top 10 countries and institutions. (A) The number of publications of the top 10 countries. (B) The cooperative relationship between countries. (C) The

number of publications of the top 10 institutions.

these keywords, “biomarker,” “connectivity,” and “machine
learning” have emerged since 2018 and represented the future
directions in QEEG studies in neuropsychiatric disorders.
These emerging topics are depicted in yellow color in
Figure 7.

DISCUSSION

General Information
The current study applied a visualized bibliometric method
to analyze the research hot spots, the knowledge base, and

Frontiers in Psychiatry | www.frontiersin.org 5 May 2022 | Volume 13 | Article 830819

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yao et al. QEEG Bibliometrics in Neuropsychiatric Disorders

FIGURE 4 | The number of publications of the top 10 journals and co-cited journals. (A) The number of publications of the top 10 journals. (B) The number of

citations of the top 10 co-cited journals.

TABLE 2 | Top 10 productive authors from 2000 to 2021.

Rank Author H-index Country Institution Count Citation count Yearly average

citation count

1 Cook IA 44 USA University of California Los Angeles 36 1,464 67

2 Leuchter AF 43 USA University of California Los Angeles 36 1,461 66

3 van Putten MJAM 16 Netherlands University of Twente 29 1,067 49

4 Cagy M 2 - Universidade Federal do Rio de Janeiro 26 199 9

5 Ribeiro P - - - 26 208 9

6 Babiloni C 10 Italy Sapienza University of Rome 25 905 41

7 Hunter AM 19 Scotland University of Stirling 21 513 23

8 Piedade R 20 Brazil Universidade Federal do Rio de Janeiro 21 183 8

9 Rossini PM 49 Italy IRCCS San Raffaele Roma Rome 20 935 43

10 Del Percio C 41 Italy Sapienza University of Rome 17 507 23

the emerging topics of the publications about QEEG in the
neuropsychiatric research field. A total of 1,904 papers were
collected based on 2000–2021 data from WoSCC. All papers
were published by 2,433 institutions from 71 countries in 245
peer-reviewed journals with 57,237 co-cited references. The
annual publication output and annual citation number revealed
a steady growth in the research field. About 34.5% of the total
publications were from the United States. Close cooperation
between the United States, Canada, and Australia was found,
suggesting their significant contribution to QEEG research in
neuropsychiatric disorders. Among the 10 top institutions, 60%
were from the United States, such as the University of California,
Los Angeles, Yale University, Massachusetts General Hospital,
New York University, Harvard University, and Columbia
University. Among the top 10 authors, Cook IA and Leuchter
AF published more studies and received higher co-citations,
suggesting that their teams could be potential collaborators for
researchers. Additionally, we found journals with high impact
factors in our top 10 co-cited journals, such as Biological
Psychiatry (IF = 13.382), Brain (IF = 13.501), and Annual of
Neurology (IF = 10.422), which could be important sources
of references.

Hot Topics of QEEG Research in the
Neuropsychiatric Disorders
According to the keyword co-occurrence map by VOSviewer,
five clusters were retrieved and represented five major categories
of neuropsychiatric diseases in QEEG research. The blue
cluster represented the psychiatric disorder “ADHD.” ADHD
is characterized by excessive restlessness and an extremely
poor concentration span, resulting in impulsive and disruptive
behavior. Bresnahan and Barry (19) suggested that QEEG might
be used to differentiate ADHD adults from normal adults
and adults who display the symptoms of ADHD without
meeting the diagnostic criteria of ADHD. Elevated resting
theta power and reduced alpha and beta power, together
with elevated theta/alpha and theta/beta ratios, were found to
be most reliably associated with ADHD (20, 21). Recently,
novel measurements have emerged. For example, gamma power
abnormalities might provide an opportunity to investigate the
neurobiological mechanisms that underlie the clinical symptoms
of ADHD (22–24).

The yellow cluster represented the neurodegeneration
disorders, particularly Alzheimer’s disease (AD) and Parkinson’s
disease (PD). Excessive slow wave activity has been shown in
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TABLE 3 | Basic information of the co-cited reference clusters.

ID Cluster name Size Avg (YR) Silhouette

0 Mild cognitive impairment (mci) 108 2005 0.90

1 Attention deficit/hyperactivity disorder 79 2000 0.93

2 Cardiac arrest 78 2012 0.94

3 Theta/beta ratio 78 2011 0.92

4 Machine learning 65 2017 0.94

5 Nonconvulsive status epilepticus 57 2016 0.90

6 Depression 52 2008 0.97

7 Migraine 50 2006 1.00

8 schizophrenia 46 1997 0.93

9 Alzheimers disease 39 2000 0.98

10 Human immunodeficiency virus (hiv) 36 2011 0.98

11 Neurofeedback 34 2008 0.95

12 Cordance 32 1999 0.95

13 Seizure anticipation 32 1998 0.99

14 Biomarker 29 2015 0.99

15 Seizure detection 16 2015 1.00

16 Dysplasia focal cortical 12 1996 1.00

17 Stereo-eeg 11 2014 1.00

20 Methylphenidate 9 2014 0.99

21 Caffeine 8 1996 1.00

24 Obstructive sleep apnea 7 2017 1.00

29 Peri-/intraventricular hemorrhage (pivh) 5 2008 0.99

Size, number of publications in the cluster; Avg (YR), the average publication year of the references in the cluster.

TABLE 4 | Research disease categories and domains retrieved from the co-cited reference clusters.

General disease

category

Disease Pathology Diagnosis Treatment

Cerebrovascular

diseases

Ischemic stroke Cluster 2 cardiac arrest

Cluster 7 migraine

Cluster2 cardiac arrest

Cluster7 migraine

Intracerebral

hemorrhage

Cluster 29

peri-/intraventricular

hemorrhage (pivh)

Neurodegenerative

diseases

Epilepsy Cluster 17 stereo-eeg

Cluster 16 dysplasia focal

cortical

Cluster 13 seizure

anticipation

Cluster 5 nonconvulsive

status epilepticus Cluster 15

seizure detection

Cluster 16 dysplasia focal

cortical

Cluster 15 seizure detection

Alzheimer’s

disease

Cluster 8 schizophrenia

Cluster 10 human

immunodeficiency virus (hiv)

Cluster 0 mild cognitive

impairment (mci) Cluster 9

alzheimer’s disease

Parkinson’s

disease

Cluster 4 machine learning Cluster 4 machine learning

Mental disorders Attention-

deficit/hyperactivity

disorder

Cluster 1 attention

deficit/hyperactivity disorder

Cluster 1 attention

deficit/hyperactivity disorder

Cluster 3theta/beta ratio

Cluster 11 neurofeedback

Cluster 20 methylphenidate

Depression Cluster 6 depression

Cluster 12 cordance

Cluster 14 biomarker

Other Substance abuse Cluster 21 caffeine

Obstructive sleep

apnea

Cluster 24 obstructive sleep

apnea
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FIGURE 5 | The keyword co-occurrence map.

dementia of the Alzheimer’s type that increases with disease
progression (25). Compared to AD, the inter-hemispheric
coherence values for the delta and theta bands in the fronto-
temporo-central regions were higher in dementia with Lewy
bodies (DLB). For patients with AD, the beta band was lower
than DLB in almost all temporo-centro-parieto-occipital regions
(26). Additionally, in patients with PD, abnormalities in QEEG,
such as an increase in posterior theta power, were found with
the occurrence of mild cognitive impairment or dementia (27).
QEEG could also provide reliable biomarkers for objective
monitoring of disease severity and progression in PD, as well
as for promoting early diagnosis of nonmotor symptoms (28).
For example, decreased dominant frequency and increased
theta power, which reflect EEG slowing, were biomarkers of
cognitive deterioration.

The green cluster represented “epilepsy” and “seizure,” which
included the temporal lobe epilepsy, electroconvulsive-induced
epilepsy, and so on. Larsson and colleagues showed that
peak alpha frequency (PAF) variability was compromised in

patients with epilepsy (29). Park et al. suggested that the
automatic quantitative ictal high-gamma oscillation analysis may
be effective in delineating the epileptogenic zone (30). QEEG
background activity may also provide useful information on
seizure duration. A higher theta power ratio in the temporal
region contralateral to the epileptic focus may suggest a longer
epilepsy duration (31).

The purple cluster represented traumatic brain injury (TBI)
and related cerebrovascular diseases, such as stroke and
subarachnoid hemorrhage (SAH). QEEG might predict the
prognosis after TBI. In particular, measures of alpha power
and variability were indicative of relatively better functional
outcomes within the first year after TBI. This was hypothesized
to reflect intact thalamo-cortical loops and thus the potential for
recovery of consciousness even in the apparent absence of current
consciousness (32). QEEG can also be used to identify patients
at risk of cerebral infarction. In patients with SAH, there was a
moderate correlation between transcranial Doppler/color-coded
duplex sonography (TCD/TCCS) frequencies and QEEG alpha
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FIGURE 6 | Cluster analysis of co-cited references.

power reduction, but only QEEG could differentiate patients
with and without cerebral infarction (33). Moreover, worsening
alpha/delta ratio (ADR) on QEEG was a reliable predictor of
delayed cerebral ischemia (DCI) in patients with aneurysmal
SAH. Further studies are still needed to confirm the role of QEEG
in the prediction of DCI (34).

The red cluster consisted of QEEG studies in several common
psychiatric disorders, including major depressive disorder
(MDD), anxiety, and schizophrenia (35, 36). Delta power values
could be potentially used in the differential diagnosis between
schizophrenia and depression. In patients with MDD, delta
power over Fp1, Fp2, F4, and F8 regions was lower in comparison
to schizophrenia patients (37). Impaired development of a
resting-state brain network in adolescents with MDD may
represent an intermediate phenotype that can be assessed with
QEEG. Youth with MDD showed decreased resting connectivity
in the alpha and theta frequency bands, particularly in the frontal
cortex (38). In addition, Moon et. al found increased overall
absolute delta power and relative gamma power as potential
markers that could differentiate post-traumatic stress disorder
(PTSD) from anxiety disorders (39).

Knowledge Base of QEEG Research in the
Neuropsychiatric Field
To better clarify the knowledge base of QEEG research in
the neuropsychiatric field, we analyzed the cited literature and
the citing literature in each co-citation cluster (Figure 6 and
Table 3). A total of 22 clusters were extracted by CiteSpace
through co-cited references analysis. These co-citation reference
clusters could be classified into three disease categories:
neurodegenerative diseases, cerebrovascular diseases, andmental
disorders (Table 4). In these three disease categories, QEEG
has been applied to investigate the pathological mechanisms,
assist clinical diagnosis, and promote the selection of appropriate
treatments. The most relevant co-cited articles and citing articles
are listed in Supplementary Table S1.

In chronic neurodegenerative diseases, the majority of QEEG
research is about Alzheimer’s disease (AD) and Parkinson’s
disease (PD). In AD research, QEEG was mainly used
to explore the pathology and diagnosis of AD. In the
study of pathological mechanisms underlying AD, cluster
8 “schizophrenia” showed that there were similar QEEG
characteristics between AD and schizophrenia (40–42) and
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FIGURE 7 | The overlay map.

that schizophrenia was associated with an elevated risk of
developing AD (43), which suggested that the pathological
mechanisms of these two diseases may be related. The co-cited
references of cluster 10 “human immunodeficiency virus (HIV)”
indicated that cortical source mapping by low-resolution brain
electromagnetic source tomography (LORETA) of resting state
EEG rhythms could characterize neurodegenerative disorders-
induced cognitive impairment, such as Parkinson’s disease
related dementia (PDD) and Alzheimer’s disease (AD) (44,
45), while the citing documents in this cluster showed that
HIV research also applied LORETA in evaluating the cognitive
functions in patients with HIV (46, 47). In the study of
AD diagnosis, cluster 9 “Alzheimer’s disease” indicated that
QEEG can accurately differentiate the stage of AD (48–51).
Cluster 0 “mild cognitive impairment (MCI)” suggested that
QEEG was a valuable tool for the early diagnosis of AD
(52–56). For PD patients (co-cited references of cluster 4
“machine learning” indicated that QEEG could provide reliable
biomarkers for nonmotor symptom severity and progression
(28, 57). Besides, the citing articles in this cluster pointed out
that preoperative QEEG biomarkers could predict cognitive
deterioration of PD after subthalamic deep brain stimulation
with high accuracy by using a machine learning pipeline (58,
59).

In the study of acute neurodegenerative diseases, QEEG
was also an important method to study epilepsy pathology,
epilepsy prediction, epilepsy detection, and epilepsy treatment.

In the research of pathological mechanisms of epilepsy, co-
cited references of cluster 17 “stereo eeg” demonstrated that
QEEG could be used to explore the desynchronization and
synchronous discharge of neurons in different stages of epilepsy
(60, 61). The citing literature of this cluster showed that
quantitative stereo EEG could be used to analyze the inhibitory
and promoting factors of seizures in inter-ictal period (62,
63). Based on the hypersynchronization hypothesis of epileptic
seizures, cluster 13 “seizure anticipation” found that the trend
of abnormal synchronization of neurons can be detected by
QEEG nonlinear analysis to predict epileptic seizures (64–66).
In terms of epilepsy detection, the co-cited literature of cluster
5 “nonconvulsive status epilepticus” showed that the use of
QEEG could accurately diagnose epilepsy (67–69), and the citing
literature of this cluster showed that QEEG could also be used
to monitor nonconvulsive status epilepticus (70). In addition,
cluster 15 “seizure detection” showed that QEEG combined
with quantitative electromyography (EMG) can identify the
characteristics of different epileptic subtypes (71, 72). In terms
of epilepsy treatment, citing articles of cluster 16 “dysplasia focal
cortical” indicated that the QEEG index can provide a reliable
basis for determining epileptic focus before the surgical treatment
of focal epilepsy (73), and the co-cited documents in this cluster
proved that QEEG index could accurately predict the surgical
prognosis of epilepsy (74, 75). Cluster 15 also showed that QEEG
could help to predict and prevent sudden unexpected death in
epilepsy (SUDEP) (76, 77).
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In cerebrovascular diseases, according to the co-cited
literature of cluster 2 “cardiac arrest” (CA) and cluster 7
“migraine,” EEG signals mainly come from the activities of
pyramidal cells in the cerebral cortex, which are vulnerable
to cerebral ischemia (78), so QEEG is suitable for detecting
abnormal neural activities of ischemic stroke (IS) and evaluating
the IS prognosis (79–81). The study of EEG characteristics of
cerebral ischemia is also helpful to investigate other related
diseases. Citing documents of cluster 2 suggested that cardiac
arrest would cause secondary ischemic stroke. Therefore, even if
cardiopulmonary resuscitation is successfully accepted, patients
may have neurological sequelae. QEEG index can reflect
brain activity in real time and assist doctors to judge the
prognosis of patients with CA and take corresponding treatment
in time (82, 83). The citing literature of cluster 7 showed
that because migraine and ischemic stroke have similar EEG
characteristics, it was speculated that the change in cerebral
blood activity may be one of the manifestations of migraine (84,
85). In addition, according to cluster 29 “peri-/intraventricular
hemorrhage (PIVH),” QEEG has also been used in the early
diagnosis of intracerebral hemorrhage in premature infants in
recent years (86–89). In brief, the knowledge base of QEEG in
cerebrovascular diseases is mainly about monitoring and treating
the abnormal brain functions related to cerebrovascular disease
by using QEEG.

In the studies related to mental disorders, attention-deficit
hyperactivity disorder (ADHD) and depression are two major
application fields of QEEG. The cited and citing literature
in cluster 1 “attention-deficit hyperactivity disorder” included
various types of QEEG studies on ADHD, including the use of
QEEG to study the etiology, diagnostic biomarkers, prognostic
biomarkers, and add-on treatment of ADHD (20, 52, 86–93).
First, the literature of cluster 1 indicated that QEEG could verify
different etiological hypotheses of ADHD (90). Second, cluster
1 also denoted that QEEG could accurately judge the abnormal
brain activities associated with ADHD (20, 93), and cluster 3
“theta/beta ratio” indicated that theta/beta ratio might be used
as an index to identify ADHD subtypes (21, 94, 95). Third, the
literature in cluster 20 “methylphenidate” mainly used the QEEG
index to evaluate the efficacy of different drugs in the treatment
of ADHD (96–98). Among them, methylphenidate has been
proven to be a drug that can effectively alleviate the symptoms
of ADHD (97, 98). Finally, it is particularly noteworthy
that ADHD is the major application field of neurofeedback
therapy. Cluster 11 “neurofeedback” showed that many studies
have proved that neurofeedback therapy can effectively treat
ADHD (54, 99–102), particularly when targeted, personalized
neurofeedback treatment was applied (102). Moreover, the co-
cited references of cluster 20 also showed the long-term efficacy of
neurofeedback in the treatment of ADHD (103, 104). Therefore,
the application of QEEG in the field of ADHD has a relatively
good research foundation.

For the knowledge base of QEEG studies in other mental
disorders, most studies on depression focused on evaluating the
efficacy of antidepressants with QEEG indicators. The citing
literature of cluster 6 “depression” (105, 106) and the co-cited
literature in cluster 14 “biomarker” (107, 108) suggested that

there may be methodological differences among studies and
a lack of replications in this research area, so there is still
no widely recognized QEEG index that can accurately predict
the efficacy of antidepressants. Particularly, on the one hand,
the co-cited literature in cluster 12 “cordance” suggested that
cordance, a QEEG index that can comprehensively analyze
relative EEG power and absolute EEG power and highlight the
brain pathological activities (109), has not been able to predict
the efficacy of antidepressants (110–112). On the other hand, the
co-cited literature in cluster 6 (113–115) and the citing literature
from cluster 12 (80, 116) showed that prefrontal theta cordance
has the value of predicting the response of antidepressants, which
indicated that the cordance index still has the potential for
further research. Moreover, citing articles of cluster 14 argued
that researchers can try using machine learning to explore QEEG
biomarkers for evaluating the efficacy of antidepressants (117,
118).

Caffeine withdrawal response and sleep disorder are the
remaining two clusters identified by CiteSpace, suggesting wide
applications of QEEG in the neuropsychiatric field. The literature
in cluster 21 “caffeine” showed that QEEG can be used to
study the neural mechanism underlying the withdrawal response
to drugs, such as caffeine and cocaine (119, 120). Cluster 24
“obstructive sleep apnea (OSA)” suggested that QEEG during
sleep could help to reveal the pathological mechanism of OSA,
while awake QEEG could evaluate the impact of OSA on
cognitive functions (118, 121, 122).

Emerging Trends and Future Direction of
QEEG Research in Neuropsychiatric
Disorders
Overlay visualization presented the time of emergence of the
keywords and reflected the latest and emerging research topics.
From the overlay map shown in Figure 7, we can see that
the recently searched keywords are shown by yellow nodes.
The emerging keywords were “biomarker,” “connectivity,” and
“machine learning.”

As for QEEG biomarker research, recent studies started to
cross-validate the prognostic value of previously suggested EEG
biomarkers in larger independent datasets, since an increasing
number of QEEG biomarkers in neuropsychiatric disorders were
revealed in prior studies. For example, Ip and colleagues showed
that alpha asymmetry seems to be the most promising EEG
biomarker for the prediction of treatment response in women
with MDD in comparison to alpha power, delta and theta activity
at the anterior cingulate cortex (ACC) (123). Moreover, new
QEEG biomarkers have also been investigated. Interictal high-
frequency oscillation and modulation index have been found
to improve the prediction accuracy of post-operative seizure
outcomes (124).

QEEG-based functional connectivity has also been
investigated in recent years as a diagnostic tool to predict the
symptom severity of neuropsychiatric disorders. EEG functional
connectivity has shown promising results as a diagnostic tool
for AD. Similarly, in Down syndrome (DS) with Alzheimer’s
dementia, decreased alpha and increased delta coherence and
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weighted phase lag index were observed when compared to
DS (125). EEG functional connectivity and complexity were
used to predict depression severity among depressive patients.
A significant negative relationship was found between graph
metrics (i.e., degree and clustering coefficient) and depression
severity in the alpha band, while the EEG complexity measures
in alpha and delta bands by the nonlinear analysis were positively
associated with symptom severity (126).

Another breakthrough is QEEG-based machine learning
studies. Throughmachine learning, a compound of automatically
extracted EEG biomarkers differentiated good vs. poor cognitive
function of PD patients with higher accuracy than a single
spectral EEG feature (58). More QEEG biomarkers (e.g.,
coherence, spectral, and event-related potentials) should be
investigated and combined with machine learning or deep
learning methods to predict the occurrence, severity, and
treatment response for neuropsychiatric disorders.

Strengths and Limitations
Our bibliometric study has several strengths. First of all, it is
the first study to use the scientometric method to summarize
the research history and development trends of QEEG studies in
the neuropsychiatric field. It included the most comprehensive
analysis, covering nearly all aspects of previous publications,
and provided valuable information to QEEG researchers and
helped them gain a better insight into the evolving research
foci and trends. However, our study was also subjective to
several limitations. First, the data come merely from WoSCC,
and other databases, such as Embase or PubMed, were not
searched, and hence this study may not completely represent all
QEEG data. But notably, WoSCC is the most frequently used
database for scientometric research. Second, the retrieved articles
were restricted to those published in English, resulting in some
linguistic bias.

CONCLUSION

The present study performed a bibliometric analysis of the overall
scientific output of QEEG research in the neuropsychiatric
field from 2000 to 2021. During the last two decades, QEEG
has been applied to reveal the pathological mechanisms,
assist clinical diagnosis, and promote the selection of effective
treatments for a variety of neuropsychiatric diseases, including
neurodegenerative diseases, cerebrovascular diseases, andmental

diseases. Studies in these disease categories and domains
added to the knowledge base of this research field. The
hot topics of research included five major neuropsychiatric
disorders, including ADHD, neurodegenerative disorders like
Alzheimer’s and Parkinson’s disease, traumatic brain injury and
related cerebrovascular diseases, epilepsy and seizure, and other
psychiatric diseases, such as MDD and schizophrenia. Besides,
future studies should focus on cross-validating promising
QEEG biomarkers, developing new biomarkers (e.g, functional
connectivity and complexity), and extracting biomarkers by
machine learning.
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