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The life cycle of cancer-associated fibroblasts within the
tumour stroma and its importance in disease outcome
Elisa D’Arcangelo1, Nila C. Wu1, Jose L. Cadavid1,2 and Alison P. McGuigan1,2

The tumour microenvironment (TME) determines vital aspects of tumour development, such as tumour growth, metastases and
response to therapy. Cancer-associated fibroblasts (CAFs) are abundant and extremely influential in this process and interact with
cellular and matrix TME constituents such as endothelial and immune cells and collagens, fibronectin and elastin, respectively.
However, CAFs are also the recipients of signals—both chemical and physical—that are generated by the TME, and their phenotype
effectively evolves alongside the tumour mass during tumour progression. Amid a rising clinical interest in CAFs as a crucial force
for disease progression, this review aims to contextualise the CAF phenotype using the chronological framework of the CAF life
cycle within the evolving tumour stroma, ranging from quiescent fibroblasts to highly proliferative and secretory CAFs. The
emergence, properties and clinical implications of CAF activation are discussed, as well as research strategies used to characterise
CAFs and current clinical efforts to alter CAF function as a therapeutic strategy.
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BACKGROUND
Conceptualising cancer as an exclusively tumour cell-centric
disease is no longer an effective approach for identifying novel
therapeutic targets.1 Invasive cancer in particular, has been
described as a ‘derangement in the proper sorting of cell
populations, causing a violation of normal tissue boundaries’,2

and requires a two-way, tumour-permissive relationship between
host stroma and tumour epithelium. The stromal components of a
tumour have thus graduated in our appreciation from bystanders,
to enablers, to indispensable and determinant players with
respect to disease evolution and response to therapy.3 Thanks
mainly to more sophisticated in vivo models and analysis
techniques,4,5 a focused effort is currently underway to consider
the tumour-cell phenotype as an emergent property of both the
tumour microenvironment (TME) and the activity of stromal cell
populations that surround and infiltrate the tumour.
The stromal content of solid tumours can vary significantly,

both in amount and composition; in certain tumour types, such as
pancreatic, stomach, colon and breast cancer, the stroma
contributes 60–90% of the total tumour mass.6–8 Tumour stromal
tissue comprises fibroblasts, endothelial and immune cells, and
extracellular matrix (ECM) components, which all differ markedly
from their quiescent counterparts in homoeostatic tissues.
Fibroblasts are of particular interest owing to their extensive
matrix-synthesising and matrix-remodelling capacities, both of
which are pivotal for establishing an invasion-permissive TME.9 In
fact, levels of fibroblast markers within tumours are known to be
predictive of disease outcome, with the number and properties of
fibroblasts in the tumour stroma influencing overall survival, time
to recurrence and resistance to therapy.10,11 Targeting fibroblast
function for therapeutic benefit is therefore an area of intensive
research.11

The term ‘fibroblast’ describes a heterogeneous group of
spindle-shaped cells of mesenchymal origin with a spectrum of
phenotypes characterised by varying degrees of contractility,
ranging from the resting fibroblast to the activated myofibroblast
observed in wound healing.12 Fibroblasts that have become
activated during wound healing are referred to as ‘myofibroblasts’,
while those activated in the context of tumours are called
carcinoma-associated fibroblasts (CAFs) or peritumour fibro-
blasts.13 Though different in nomenclature, activated fibroblasts
display analogous marker expression and very similar phenotypes,
with the important distinction that in contrast to acute inflamma-
tion, fibroblasts in chronic inflammation and tumour tissue fail to
inactivate.10 A great number of studies have identified the
signalling mechanisms by which CAFs influence tumour cell
properties (we refer the reader to several comprehensive
reviews),11,14 and it has become clear that CAFs play a pivotal
role in the TME. However, our understanding of the diverse
properties of CAFs throughout the different stages of tumour
progression remains incomplete. The function of CAFs has
remained especially elusive in light of their heterogeneity and
different effects on tumour development; while their pro-
tumorigenic role has been well documented across tumour
types,15 CAFs have also been reported to restraining tumour
growth in several studies.16–18

In this review, we describe the dynamics of fibroblast activation
in acute and chronic wounds, focusing on solid cancers. Most
studies investigating the CAF–tumour cell relationship concen-
trate on carcinomas at the invasive stage, but we attempt to look
before and after this stage to provide insights into the wider life
cycle of fibroblasts located in the tumour stroma. Specifically, we
describe the properties of fibroblasts as they progress from their
resting state in tissue homoeostasis to the different magnitudes of
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activation occurring during early, invasive and metastatic tumour
growth. Finally, we consider the clinical relevance of the activated
fibroblast phenotype and opportunities for targeting fibroblast
activation therapeutically.

FIBROBLASTS IN HOMOEOSTASIS
During tissue homoeostasis, epithelial cells are strictly segregated
from fibroblasts in the adjacent connective tissue19 by the
basement membrane (BM), a specialised ECM structure that
presents the biophysical cues necessary for cell attachment,
polarity and cell movement within and across tissue
compartments.20,21 Resting or quiescent fibroblasts are dispersed
as single cells within the stromal tissue compartment and are
found proximal to the BM, where they orient themselves in the
direction of matrix fibres, but have no direct association with the
BM.22 During homoeostasis, quiescent fibroblasts show minimal
metabolic and transcriptional activity but play a pivotal role in
defining the differentiation status of adjacent epithelia via the
secretion of specific signalling factors, including among others
Wnt and bone morphogenic proteins,23,24 and the production and
organisation of matrix proteins, including collagens, fibronectin
and elastin, at a minimal rate, to maintain a compliant, yet tension-
resistant BM.4

Although the structural characteristics of quiescent stroma are
relatively well defined, the molecular characteristics of quiescent
fibroblasts have remained elusive. From a collection of several
markers that are not exclusive nor obligate to fibroblasts across
tissues, fibroblast-specific protein 1 (FSP-1), a cytoplasmic calcium-
binding protein, has been proposed as the most accurate marker
for resting fibroblasts to date (even though FSP-1 is also found on
cancer cells that have undergone EMT,25 as well as being
expressed on macrophages26); other markers include vimentin,
filamin A and Thy-1/CD90.4,27 Consequently, the quiescent
fibroblast is generally considered to be a fibroblast that does
not express the markers observed in activated fibroblasts, as
defined primarily from studies of fibrosis and wound repair. As
such, perhaps the most apt characterisation of a quiescent
fibroblast is that of a mesenchymal cell with the potential to
become activated by growth factors, and drastically increase its
contractility, proliferation and secretory phenotype in response to
an appropriate stimulus.4 Note that the lack of data specific to
resting fibroblasts might be attributable to two factors. First, the
focus is typically placed on their tissue-specific, activated counter-
parts (myofibroblasts or CAFs).4 Second, the inability to establish
fibroblast cultures with a truly ‘resting’ phenotype has hampered
the investigation of these cells in vitro; although fibroblasts can
readily be cultured in vitro,4 they become at least partially
activated owing to the properties of culture plastic, which is
reminiscent of stiffened, fibrotic ECM.28,29

FIBROBLASTS IN NON-HOMOEOSTATIC CONDITIONS
Wound healing
The acute inflammation that occurs during wound healing is a
classic example of the loss of the homoeostatic ‘separation’/
sorting behaviour of epithelial and stromal-cell populations and is
characterised by the appearance of activated fibroblasts (myofi-
broblasts); indeed, much of what we know about fibroblast
activation was first observed in the context of acute inflammation.
During wound healing, the goal of fibroblast activation is to re-
establish the pre-injury tissue architectural and homoeostatic
states,4,12 and accordingly the fibroblast content in wounds
increases via proliferation and recruitment.30 Fibroblasts become
activated (as myofibroblasts) to perform a number of functions.
They regulate the de novo deposition of matrix proteins and
remodelling of the existing matrix via the secretion of matrix-
degrading enzymes (e.g. matrix metalloproteinases) and through

enhanced contractility.31 Their contractile apparatus also enables
them to regulate interstitial fluid pressure.24 Through a plethora of
secreted factors, fibroblasts can also interact with other cell
types,32 in order to re-vascularise the healing tissue, and
furthermore they secrete and absorb metabolites to rebalance
the tissue niche.12 A key functional difference between fibroblasts
and myofibroblasts therefore involves the cell secretome, with
myofibroblasts demonstrating an increased production of pro-
teins, including signalling molecules. Furthermore, on a molecular
basis, while resting fibroblasts are characterised by the absence of
activation markers and markers typical for other cell types,12

myofibroblasts acquire, in addition to FSP-1, and among others,
the expression of α-smooth muscle actin (α-SMA), desmin,
fibroblast activation protein (FAP), discoidin domain-containing
receptor 2 (DDR2), collagens (e.g. collagen 1a1) and fibronectin, as
well as numerous other growth factors and receptors, cytokines
and ECM components,10 many of which are listed in Fig. 1.

Tumours
CAFs in tumours acquire the same features as do myofibroblasts in
inflammation, and no systematic stratification or differences have
been identified between these fibroblast populations. Figure 1
summarises the similarities and differences in functional proper-
ties of fibroblasts as they transition from quiescence to acute
inflammation (myofibroblasts) and chronic inflammation/tumours
(CAFs), and Table 1 describes the common functional assays used
to assess the properties of activated fibroblasts; for a more
exhaustive list of common assays to assess invasion, refer to ref. 33

A crucial difference between chronic wounds/tumours and acute
inflammation however, is the failure to abate the fibrotic response
in the former. Whereas the properties of myofibroblasts lead to
the re-establishment of tissue architecture in acute inflammation,
the acquisition of these same properties over prolonged periods
in chronic wounds/tumours leads to further disorganisation of
tissue architecture and tissue desmoplasia, a term that specifically
denotes an increase in stromal cells and matrix components
within an injured tissue.3

During both inflammation and tumour growth, the number of
activated fibroblasts at the injured tissue site increases via
recruitment of progenitor cells from different sources and
proliferation of these cells, as well as tissue-resident
fibroblasts,34,35 which represent the most immediate pool of cells
to be activated into highly proliferative CAFs and recruited to the
site of tumour growth. It is unclear whether these different CAF
sources give rise to different CAF subpopulations that maintain
distinct properties within the tumour over time.
Tissue desmoplasia is common in cases of chronic inflammation

and tumours, highlighting the parallels between the two states,
and positions the activated fibroblasts as an important mechan-
istic link between cancer and fibrosis.36 Indeed, conditions of
chronic inflammation, such as inflammatory bowel disease,
hepatic fibrosis or prostatitis, can be pre-emptive of tumour
development at these anatomical sites.37 Furthermore, because of
the similarities between chronic wounds and tumours in establish-
ing fibrotic tissue niches, certain signalling pathways have been
identified in both conditions as potential therapeutic targets for
decreasing fibrosis and CAF-driven tumour aggressiveness,
including the platelet-derived growth factor (PDGF) and trans-
forming growth factor-β (TGF-β) pathways.38,39

THE LIFE CYCLE OF CAFS DURING DISEASE PROGRESSION
The above discussion has compared the two best-known states of
fibroblasts—quiescence versus activation in chronic wounds/
tumours. In this section, we focus on the transition that occurs
between these states during tumour growth, which is concurrent
with the breakdown of local tissue structures and tumour cell
invasion. In addition to highlighting the properties of CAFs in
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invasive disease, we emphasise studies that have provided insight
into what precedes and what follows the establishment of a
mature CAF and this timeline is illustrated in Fig. 2.

Fibroblast recruitment during carcinoma in situ
To date, it is unclear whether changes in stromal properties
precede or are a result of the hyperproliferation of transformed
epithelial cells,2,40 and the mechanisms and timing of fibroblast
recruitment and activation at the preinvasive stage are poorly
understood. The local dysregulation of epithelial signalling and
proliferation in an otherwise homoeostatic tissue potentially result
in altered chemical signalling to the surrounding tissue stroma
and mechanical changes to the BM. Other than paracrine
signalling from epithelial cells,41 potential sources of fibroblast-
activating signals include cues from immune cells that are
recruited to the site of epithelial hyperproliferation,42 micro-
RNAs (miRNAs) produced by the growing mass of transformed
epithelial cells43 and mechanical cues arising from a local increase
in tissue tension.44 These activating signals potentially permeate
through the ECM and BM structures of certain porosities (BM pore
diameter ranges from 5 nm to 8 µm21); alternatively, tumour-
derived exosomes carrying, for example, miRNAs or TGF-β family
members, have been implicated in establishing tumour-
promoting signalling in tumour niches and fibroblast
activation.45,46 Immune cells, especially macrophages, B cells and
regulatory T cells, can directly activate fibroblasts, and increased
densities of these cells are found in tumour stroma,47 where they
accumulate in response to the release of inflammatory mediators
by hyperproliferative, transformed epithelial cells.48,49 Fibroblast
activation might also result from an external insult responsible for
initiation of the neoplastic growth itself: one study showed that
dermal fibroblasts could be primed by UV radiation, which
resulted in an epigenetic loss of Notch signalling, increasing their
synthesis of growth factors and capacity to remodel the matrix.50

A few specific cancers, such as breast ductal carcinoma in situ
(DCIS), offer the opportunity to explore fibroblast status prior to
BM breaching. For example, one study examined the gene

expression signatures of stromal cells in DCIS versus invasive
cancer51 and identified a 66-gene signature common to
fibroblasts from invasive breast cancer and a subset (40%) of
DCIS tissues, suggesting that fibroblast activation occurs at the
preinvasive tumour stage. Analogously, a comparison of the
expression of angiogenic genes between the stroma of non-
malignant, preinvasive, invasive and metastatic breast tissues
revealed a clustering of these genes in all but the healthy
tissues.52 Furthermore, a study specifically investigating the
appearance of α-sma+myofibroblasts in normal, benign and
malignant breast tissue observed a shift from the presence of
exclusively CD34+ fibrocytes in normal tissue to the emergence of
α-sma+-reactive myofibroblasts in benign lesions and invasive
tumours concurrent with the loss of the CD34+ cell populations.53

These results further suggest that stromal-cell activation can occur
at the preinvasive stages of the disease, and that the tumour
stroma as a whole is then ‘primed’ for the subsequent stages of
tumour development.

CAF maturation during basement membrane breaching and local
invasion
The transition from in situ to locally invasive disease is a crucial
step for tumour growth and requires breaching of the BM. This
process is carried out actively by the tumour epithelium, immune
cells and CAFs54 and exposes these cell populations to each other,
allowing for direct contact and increased short-range signalling
between them. CAFs are capable of digesting BM components
and might therefore be responsible for mediating significant
breaching of this structure.2 Previous studies, for example, have
revealed the capacity of CAFs to break down BM via matrix-
metalloproteinase (MMP)-mediated digestion to generate ‘tracks’
that were subsequently occupied by invading carcinoma cells.55

Moreover, CAFs that were presented with murine mesentery (a BM
substitute) induced cell permeability in the membrane via an
MMP-independent mechanism; they remodelled the matrix by
applying contractile forces, creating gaps between BM fibres that
allowed cancer cells to pass through.56 Importantly, a caveat of
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Table 1. Functional assays to study fibroblast phenotype.

Assay description Example studies

Transwell invasion assay

The number of cells that invade through a thin layer of ECM and cross a
pore is measured.

CAFs increase the invasiveness of cancer cells by inducing EMT through
secreted TGF-β1.111

Vertical gel invasion assay

The invasiveness of cancer cells seeded on an ECM plug is assessed via
optical or mechanical sectioning of the gel. CAFs can be easily incorporated
into the system.

CAFs are the leading cells in the collective invasion of squamous cell
carcinoma cells.55

Spheroid/organoid gel invasion assay

Multicellular spheroids are embedded into a 3D ECM; cell invasion is
monitored similarly to the vertical gel assay above.

Collective cancer cell invasion is enabled by heterotypic E-cadherin/N-
cadherin adhesions with CAFs.112

Co-culturing pancreatic cancer organoids and pancreatic stellate cells
in a 3D ECM results in two CAF phenotypes (myofibroblastic,
inflammatory).113

Paper-supported culture

Cellulose scaffolds are seeded with cells suspended in ECM, stacked,
cultured to enable invasion and then de-stacked for analysis (e.g. cell counts
in different layers).

CAFs enhance the migration of human lung cancer cells.114

Microfluidic assay

These devices allow for the creation of defined tissue compartments and
molecular gradients. Cell invasion can be monitored in real time.

CAFs induce the progression of mammary carcinoma in situ to an
invasive phenotype.115

Fibrin bead assay

Endothelial cells are cultured on the surface of micro-carrier beads that are
embedded in a fibrin gel. Fibroblasts are usually seeded on top of the gel to
produce the necessary growth factors for vessel sprouting.

Fibroblast-secreted factors are necessary for angiogenesis and lumen
formation.116
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such studies is the use of fully mature CAFs sourced from tumours
that were already invasive and our appreciation of the contribu-
tion of stage-matched CAFs to BM breaching during the transition
to locally invasive tumour growth is limited.
As a consequence of the changes in tissue structure (ECM

composition and organisation), tissue architecture/composition
(intermingling of CAFs with other cellular fractions) and activated
fibroblast secretome during local tissue invasion (see Fig. 1), the
parameters that dictate the gradients of CAF-produced signals are
likely to change to more readily influence other TME cellular
components, leading to an increasingly activated TME. It is useful
at this point to draw a parallel with fibroblast activation during
acute wound healing, a process in which the temporal dynamics
of activation have been well defined, and a two-stage model of
myofibroblast differentiation has been proposed.57 In inflamed
tissue, fibroblasts increase their production of stress fibres
(composed of cytoplasmic actin) and organised fibronectin on
their cell surface, due to the mechanical tension present. These
features promote the transition of a normal fibroblasts to an
intermediate stage known as a protomyofibroblast. This cell type
is characterised by an enhanced contractile capacity compared
with quiescent fibroblasts, and has been observed in 2–4 day-old
wounds within the granulation tissue (the new connective tissue
created to seal the wound).58 Protomyofibroblasts have not yet
incorporated α-SMA into their stress fibre network in order to
generate the potent traction forces on the surrounding matrix that
are characteristic of a mature myofibroblast.31 However, continued
mechanical tension induces the production of specific splice
variants of fibronectin, mainly ED-A and ED-B, which have been
shown to guide transdifferentiation of protomyofibroblasts into
myofibroblasts through poorly understood mechanisms.58 Con-
currently, autocrine or paracrine signalling through the TGF-β
pathway results in the synthesis of α-SMA and collagen type 1,
ultimately giving rise to fully mature myofibroblasts.57

In contrast to the process described above, the temporal
dynamics of fibroblast activation during tumour progression

have yet to be firmly pinpointed. However, it is reasonable to
surmise that a fibroblast entity equivalent to the protomyofibro-
blasts found in acute wounds might exist, which can be thought
of as an intermediately activated fibroblast with lower contrac-
tility that arises at some point during the early stages of
tumorigenesis. The further activation of such intermediates could
then be achieved by the several CAF-mediated signalling
pathways known to perpetuate further CAF activation.10 For
example, the production of TGF-β and stromal-cell-derived
factor-1 (SDF-1, also known as CXC motif chemokine 12
[CXCL12]), by CAFs results in further fibroblast activation.59

Similarly, CAF-mediated expression of leukaemia inhibitory factor
(LIF) is responsible for initiating, within CAFs themselves, the
constitutive activation of Janus kinase 1 (JAK1)/signal transducer
and activator of transcription 3 (STAT3) signalling via p300-
mediated histone acetylation, resulting in enhanced CAF
contractility and consequent ECM remodelling. These properties
lead to further CAF activation, consequent tumour-cell invasion
and further breakdown of tissue architecture.60,61

As exemplified above, epigenetic regulation is considered, for a
number of reasons, to be a major contributor to CAF activation
within the TME.62 First, fibroblast transition from the quiescent to
the activated state is not based on the acquisition of genetic errors
(CAFs are mostly considered genetically stable, although debate
on this topic continues35,63). Second, the epigenetic status is
heritable and microenvironmentally induced, and is therefore
likely to fit the dynamics of fibroblast activation.64 For example,
TGF-β and other growth factor signals result in global changes in
the methylation status of fibroblast genes.62,65 In lung cancer
stroma, SMAD3 was one of the genes found to be silenced by
hypermethylation, which elicited a hyper-responsiveness of CAFs
to TGF-β signalling, leading to an increased expression of wound-
response genes such as COL1A1, thereby linking TME methylation
to increased ECM deposition by CAFs.66

During local invasion, the physical interaction and bidirectional
movement between epithelial and stromal tissue components

Table 1 continued

Assay description Example studies

Gel contraction assay

An ECM plug is seeded with fibroblasts and is allowed to contract over time.
Cell contractility correlates with the change in size of the gel.

Activation of YAP in CAFs is required to promote matrix stiffening.117

PDMS wrinkle assay

Adherent cells are cultured on thin sheets of cross-linked PDMS. Contractile
cells exert traction forces that result in visible substrate wrinkling,
depending on the stiffness of the PDMS.

Increased α-SMA expression is sufficient to enhance fibroblast
contractile activity.118

Summary of the most common functional assays to study fibroblast phenotypes and their effect on cancer cells. Of note, much attention in the literature has
been given to the pro-invasive role of CAFs on cancer cells, so here we only present the most common invasion assays (for a more exhaustive list refer to
ref. 33)
α-SMA α-smooth muscle actin, CAFs cancer-associated fibroblasts, ECM extracellular matrix, EMT epithelial–mesenchymal transition, PDMS polydimethylsiloxane,
TGF-β transforming growth factor-β, YAP Yes-associated protein
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that follows BM breakdown creates a ‘zone of mixing’, from which
metastatic cells eventually emerge.2 These mixing zones attract a
continuous supply of fibroblast progenitors from different cell
pools (see above), which differentiate/become activated, prolifer-
ate and infiltrate the tumour mass.10,67 Such interface zones of
tumour cells and tumour stromal-cell populations are arguably
sites in which intense TME remodelling occurs, and which are
characterised by unique functionalities and marker expression,
including markers of invasion or EMT in epithelial cells.68,69

Utilising a clonal tracing strategy, a recent study found that
tumour cells with cancer stem cell properties were located along
the tumour margin and regulated by CAF-secreted osteopontin.70

With respect to CAFs, a study investigating the differences
between fibroblasts at increasing distances from the surgical
tumour margin identified increased pro-proliferative and EMT-
inducing capacities between all CAFs compared with fibroblasts
taken at least 10 mm from the tumour margin.71 More importantly,
however, CAFs sourced from the interface zone were more potent
inducers of tumour progression than CAFs present within the
tumour core, as assessed in vitro, indicating that interface CAFs
possessed a pronounced tumour modulatory capacity.71

Mature CAFs during local and metastatic spread
The complete CAF response to the presence of tumour epithelia
and remodelled matrix takes place in tumour–stroma mixing
zones. The local tissue architecture becomes highly distorted by
CAF infiltration, with aberrant de novo fibrinogenesis and matrix
cross-linking (via CAF-secreted lysyl oxidase).72,73 The consequent
rise in tissue tension continues to catalyse the activation of CAFs,
which enter the feed-forward loop of contractility, ECM stiffening
and TGF-β production.31 Analyses of CAFs present in invasive

carcinomas have revealed the presence of diverse activation
markers and associated functions, which might reflect differences
in CAFs across tissues, differences in the proportions and origins of
CAF progenitor cells recruited, and a possible spectrum of CAF
‘maturity’ within the TME.74

A number of classifications of CAFs have been recently
proposed. At a minimum, and based on the most polarising
effects of the CAF phenotype, a stratification between tumour-
promoting and tumour-restraining CAFs has been identified.18,75

The tumour-promoting activities classically identified in CAFs
across tumour tissues include promoting tumour cell survival,
growth and stemness, as well as metastatic capacity.10 Further-
more, CAFs have been implicated in affecting chemoresistance
via specific CAF paracrine signalling (e.g. interleukin [IL]-6 76 or
plasminogen activator inhibitor [PAI-1] 77), as well as CAF-
mediated drug scavenging and the establishment of a biophysical
ECM barrier (the latter two were more commonly identified in
highly desmoplastic solid tumours such as PDAC). These CAF
activities hamper drug delivery and reduce drug efficacy.78,79 CAFs
with tumour-restraining activity, on the contrary, have been
named the ‘F1’ subtype, and a landmark study has shown their
tumour-restraining qualities in the pancreatic tumours in a
transgenic mouse model, where depletion of α-SMA+ CAFs
resulted in tumours with enhanced aggressiveness via an
upregulation of CD4+ regulatory T cells.16 Meflin, a marker of
perivascular mesenchymal stromal cells, was recently proposed as
a marker of tumour-restraining CAFs in pancreatic cancer.18 By
contrast, the ‘F2’ CAF phenotype denotes pro-tumorigenic
fibroblasts, which have been the focus of most studies and
described above.75 It remains unclear whether a choice exists in
different organs between an F1 and F2 fate, or how the F1
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CAF biology with potential implications for therapeutic interventions. The black arrow in the ‘metastatic spread’ panel indicates metastatic
spread of tumour cells.
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phenotype persists in certain cases, and whether a switch from an
F2 phenotype to an F1 phenotype is possible. Further stratification
between CAF subtypes has been provided, again in pancreatic
cancer, by Tuveson et al., who revealed the presence of CAF
populations termed ‘iCAFs’, ‘myCAFs’ and antigen-presenting
CAFs, which have distinct roles in direct interactions with tumour
cells, paracrine signalling and modulation of the immune niche,
respectively.80,81 Other studies have further assessed CAF hetero-
geneity at the single-cell level.82,83 Based on the expression
patterns of specific sets of genes in breast cancer, distinct but
overlapping clusters of ‘protomyofibroblasts’, ‘ECM-regulating
myofibroblasts’ and ‘secretory myofibroblasts’ were identified
and a fibroblast differentiation model could be constructed, which
suggested a hierarchical organisation of fibroblast populations.82

RNA-Seq revealed further CAF heterogeneity with CAF subgroups
expressing independent prognostic biomarkers and arising
through EMT from distinct cellular sources, including tumour
cells, resident fibroblasts and perivascular cells.83 Overall, this
heterogeneous impact of CAFs on tumour progression might
depend on the properties of the tumour cells themselves, or be
reflective of tumour stage.35

Fibroblast senescence
Another stage in the life cycle of CAFs that has been identified is
senescence—that is, the decline of the proliferative and differ-
entiation capacity of CAFs and CAF progenitors, with a concurrent
increase in secretory capacity.84,85 In terms of the positioning of
senescence along the CAF life cycle timeline, no information is
available; however, in vitro, senescent CAFs are encountered after
several culture passages—particularly rapidly when the cells were
obtained from older tissues.4 Senescence is a process associated
with cellular ageing that results from telomere dysfunction and
senescence stimuli, such as the accumulation of reactive oxygen
species and DNA damage,86 eventually leading to growth arrest in
G1, an enlarged morphology in vitro, non-responsiveness to
mitogens and resistance to apoptosis. Importantly, apoptosis and
senescence are viewed as alternative cell fates, and the balance
between them appears to be cell specific.87 In CAFs, senescence
has a reported dual effect: it arrests the proliferation of CAFs in the
TME, which could therefore prove beneficial; however, senescent
CAFs secrete inflammatory mediators and growth factors, such as
IL-888 and MMP-2,89 which have pro-tumorigenic effects.90 SDF-1/
CXCL12, a chemokine present in the secretome of senescent CAFs,
was found to mediate tumour cell survival and proliferation both
directly and through the recruitment of other TME components.91

Because senescent fibroblasts accumulate in ageing tissues, it
stands to reason that they could be responsible for conditioning
stromal tissue over time, transforming it into a premetastatic
niche.86 However, the question of whether senescence is the
obligate fate of a CAF in desmoplasia remains open. Notably,
senescence was observed in fibroblasts cultured in the presence
of doxorubicin and paclitaxel, and therapy-induced senescence is
a well-known phenomenon,90 which highlights an important
issue: although it is desirable to therapeutically induce senescence
in cancer cells, the senescence of stromal-cell components might
induce further inflammation, and ultimately, tumour relapse.90

CAF inactivation and depletion through apoptosis
During wound resolution, the reconstituted ECM eventually takes
over the mechanical load of the healing tissue, allowing a large
portion of the now stress-released myofibroblast population to
undergo apoptosis or inactivation.92 Spontaneous myofibroblast
inactivation was specifically described in a model of regressing
liver fibrosis, which demonstrated that half of the myofibroblast
population is inactivated while the remainder undergoes apopto-
sis.93 However, very little is known about the role of inactivation or
apoptosis in regulating CAF abundance and function within the
TME. CAF loss of function, or at least partial inactivation, has been

observed in hypoxic tumours, in which CAFs lose their capacity for
contraction and matrix deposition owing to the inhibition of
propyl hydroxylase domain protein 2 (PHD2) and stabilisation of
hypoxia-inducible factor (HIF)-1α,94 which leads to a reduced
metastatic potential. The apoptotic sensitivity of CAFs in vivo has
also been described and found to be analogous to myofibroblast
apoptosis in wound resolution or activation-induced T-cell death,
although the underlying basis and timing of the process is
unclear.95 It remains to be investigated under which circum-
stances apoptotic sensitivity, rather than senescence, is engaged,
and questions surrounding CAF apoptosis, its role in regulating
CAF abundance in the TME and its implications in tumour
progression are yet to be answered. The addition of all-trans
retinoic acid (ATRA)96 or the vitamin D analogue calcipotriol97 has
been shown to inactivate CAFs in genetically engineered mouse
models of pancreatic cancer. Beyond these studies however, CAF
inactivation and significant levels of apoptosis are not reported in
tumours in vivo, most likely as a result of the perpetual activating
signals delivered to CAFs by the TME and its dysfunctional
matrix,92 and possibly also due the induction of a senescent CAF
phenotype after a certain, unknown, point in the CAF life cycle.
These observations raise the question of whether treatments that
aim to achieve CAF inactivation will succeed while the TME
‘wound’ persists.

TARGETING ACTIVATED CAFS AS A THERAPEUTIC STRATEGY
While therapies targeting cancer cells directly encounter issues
with drug resistance, due to the cells’ genetic instability, the
concept of targeting CAFs therapeutically has received growing
attention, since CAFs are characterised by relative genetic
stability.35,98,99 In this section, we summarise the attempts made
at targeting or modulating the activated CAF phenotype within
the context of the CAF life cycle. Included are compounds in
preclinical and clinical stages, which can be roughly categorised,
based on the point of activity within the life cycle that they
target, as ‘blocking CAF activation’, ‘blocking the CAF hyperpro-
liferative phenotype’, ‘blocking mature CAF function’, ‘inactivat-
ing the CAF phenotype’, and ‘directly depleting the CAF
population’. Compounds that target CAF-mediated chemoresis-
tance are classified under sections relevant to the mature CAF life
cycle and its function. Of note, all five methods ultimately result
in a reduced number of CAFs with pro-tumorigenic activity
within the TME.
Blocking initial and further CAF activation has been attempted

by intercepting signalling pathways between CAFs and/or
between cancer cells and CAFs,100,101 such as the Rho/Rho kinase
(ROCK) pathway and STAT3-mediated activation of insulin-like
growth factor type 1 receptor (IGF-1R). As the hyperproliferative
phenotype is also observed in fibrosis, anti-fibrotic treatments,
such as pirfenidone and tranilast, which target CAF hyperprolifera-
tion in maturing and mature CAF populations, have actively made
their way towards applications in anticancer therapies.102–104

Blocking mature CAF function is currently the focus of a large
research area for anti-cancer, CAF-centric therapies that target the
cells’ secretome and inhibit growth factor signalling, such as IL-6
and PDGFR signalling.105,106 Inactivation of the CAF phenotype
attempts to transdifferentiate CAFs towards fates reminiscent of
their quiescent counterparts, by leveraging mechanisms involved
in apoptosis and/or inactivation, which have been observed to
spontaneously occur in fibrotic models, as well as in acute wound
healing, and include, for example, calcipotriol (a vitamin D
receptor ligand) and minnelide (which de-regulates the TGF-β
pathway).97,107 Finally, directly depleting the intratumoural CAF
population has been accomplished by targeting cell surface
markers, such as FAP108 and by inducing cell death through
inhibition of the Bcl-2 pathway.95 Selected drugs and compounds
within each category are summarised in Table 2. It should be
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noted that many of these therapies are currently administered in
combination with standard-of-care chemotherapeutic treatments
in an attempt to enhance their effectiveness and/or to reduce
CAF-mediated chemoresistance.103,109 However, besides com-
pounds in preclinical and clinical stages, there is currently no
specific CAF-based adjuvant therapy on the market, which is
undoubtedly a result of the inability to specifically target CAFs,
due to a lack of CAF-exclusive surface markers and the functional
heterogeneity within the CAF population.11

OUTLOOK
The growth and phenotypic changes that occur in tumour cells
during disease progression are concurrent with, and enabled by, a
co-evolving tumour stroma. In this review, we have outlined the

properties of fibroblasts at different stages in their life cycle within
this stroma, from fibroblast quiescence in homoeostasis to CAF
senescence, and highlighted the parallels between activated
states in acute injury and in chronic wounds/tumours. Based on
this life cycle, we have also highlighted the therapeutic
opportunities available to leverage CAF inactivation to achieve
CAF depletion from tumours. Similar to the situation in chronically
fibrotic tissue, in which a critical mass of myofibroblasts is
responsible for extreme levels of matrix deposition (which
ultimately leads to the loss of organ function), understanding
how to interfere with the recruitment and proliferative mechan-
isms that lead to increased fibroblast densities in the TME has the
potential to be hugely beneficial, as proliferation of CAFs leads to
an exponential amplification of the amount of pro-tumorigenic
interactions present within the TME.

Table 2. Clinical strategies to modulate CAF activation in the TME for anticancer therapeutic intervention.

Drug/compound Cancer type Mechanism Clinical stage Reference(s)

Blocking CAF activation Relevant life cycle stages: CAF priming, CAF maturation and mature CAF

Y-27632, Fasudil (HA-
1077)

PDAC Inhibits Rho/ROCK pathway Preclinical 100

NT157 Colorectal Targets STAT3 and IGF-1R pathways Preclinical 101

Targeting the CAF hyperproliferative phenotype Relevant life cycle stages: CAF maturation and mature CAF

Tranilast Lymphoma, lung Anti-fibrotic agent that suppresses proliferation
and TGF-β release

Preclinical 102

Pirfenidone Pancreatic, NSCLC Anti-fibrotic agent that suppresses proliferation
and downregulates TGF-β, PDGF and collagen
synthesis

Phase 1 (NCT03177291) 103

Targeting mature CAF function Relevant life cycle stages: CAF maturation and mature CAF

Metformin Ovarian Inhibits IL-6 secretion by suppressing NF-κB
signalling

Preclinical 105

Imatinib Cervical Blocks PDGF receptors Preclinical 106

Sonidegib (LDE225) Triple-negative breast Inhibits Hedgehog signalling through SMO
inhibitor

Phase 1 (NCT02027376) 109

Val-boroPro (Talabostat) Colorectal Inhibits FAP enzymatic activity Phase 2 119

Pasireotide (SOM230
analogue)

PDAC Inhibits mTOR/4E-BP1 protein synthesis pathway Phase 1 (NCT01385956) 120

Losartan Breast Decreased collagen I synthesis Preclinical 121

AMD3100 Gastric Inhibits CXCL12/CXCR4 signalling Preclinical 122

Inactivating the CAF phenotype Relevant life cycle stages: mature CAF, senescent CAF and CAF inactivation

AC1MMYR2 Breast, glioblastoma and
gastric

Inhibits microRNA-21 maturation via NF-κB/miR-
21/VHL axis

Preclinical 123

Dasatinib Lung Inhibits PDGFR Preclinical 124

Vitamin D receptor
ligand (Calcipotriol)

PDAC Binds to master transcriptional regulator of CAFs Preclinical (NCT02030860) 97

All-trans-retinoic acid PDAC Biomechanical reprogramming through an ATRA-
dependent downregulation of actomyosin
contractility via the RARβ/MLC2 pathway

Phase 1 (STAR_PAC:
NCT03307148)

125

Ruxolitinib Head and neck, lung
and breast

Inhibits JAK/STAT pathway and DNA
methyltransferase activity

Phase 2 (NCT03153982) 60

Minnelide PDAC Suppresses TGF-β signalling pathway Preclinical 107

Depleting the CAF population Relevant life cycle stages: mature CAF, senescent CAF and CAF inactivation

aFAP-PE38 Breast Immunotoxin that binds to FAP Preclinical 108

Navitoclax (ABT-263) Cholangiocarcinoma BH3 mimetic that initiates cell death by inhibiting
Bcl-2 proteins

Preclinical 95

ATRA all-trans-retinoic acid, BH3 Bcl-2 homology domain 3, CAF cancer-associated fibroblast, CXCL12 CXC motif ligand 12, CXCR4 CXC motif chemokine receptor
4, IGF-1R insulin-like growth factor type 1 receptor, IL-6 interleukin-6, FAP fibroblast activation protein, JAK Janus kinase, MLC2 myosin light chain 2, mTOR
mammalian target of rapamycin, NF-κB nuclear factor κB, NSCLC non-small-cell lung cancer, PDAC pancreatic ductal adenocarcinoma, PDGF platelet-derived
growth factor, RARβ retinoid acid receptor β, ROCK Rho kinase, SMO smoothened, STAT3 signal transducer and activator of transcription 3, TGF-β transforming
growth factor-β, VHL von Hippel–Lindau
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The overview presented here highlights that the life cycle of a
CAF is strewn with knowledge gaps, particularly in its temporal
trajectory (Fig. 2). Studies examining fibroblast activation in
preinvasive tumours suggest that initial activation must occur
very early on in tumour progression, although the mechanisms of
this fibroblast priming are unclear. Furthermore, provided that the
stages of myofibroblast activation in wound healing are recapi-
tulated in tumour stroma, it remains uncertain how the transient
entity of protomyofibroblasts fits into this picture, both chron-
ologically during recruitment, and spatially at increasing distances
from the stiffened, desmoplastic tumour lesion. In addition,
biomarkers for identifying and targeting fibroblasts during their
maturation period are currently not available, although they could
have interesting therapeutic implications for inactivating fibrotic
stroma. Similarly, in invasive disease, although a consensus exists
on the causal relationship between the persistence of activating
signals in the cancer wound and the inability of CAFs to undergo
inactivation, the mechanism responsible for this within CAF cells is
unknown—albeit of great interest for therapeutic purposes.
Our review also emphasises that CAF heterogeneity represents

another challenging aspect of tumour biology. The concurrent
existence of CAFs with different properties within the TME might
depend on the origin of the precursor cell or the evolutionary
stage or clonal composition of the TME. At the same time,
myofibroblasts/CAFs have been described as cellular entities of a
particular functional state, rather than as a singular cell type.110

These views imply the convergence of multiple progenitor
populations towards a specific set of functionalities within the
TME, such as enhanced contractility and protein synthesis. They
also raise the question of whether current research efforts are
merely capturing snapshot data from tumours, which in reality
harbour a much wider hierarchical network of CAF maturation
stages. Future studies aiming at revealing the ‘differentiation
hierarchy’ of CAFs during tumour evolution must focus on stage-
specific and stage-matched in vitro models of CAF–cancer cell co-
cultures and untangle intratumoural heterogeneity on a single-cell
or CAF subpopulation basis, as well as answering the question of
whether in vitro culture approaches are supporting the full
spectrum of CAFs present in vivo, and if so, which of these types of
CAF might be clinically relevant.
The unknowns scattered throughout the CAF life cycle

represent challenges for therapeutic intervention. Understanding
these aspects could have implications for therapies that aim to
reduce the presence of activated, pro-tumorigenic CAFs in tumour
stroma. Such therapies could act on CAFs during their maturation
phase, halting their differentiation into fully and irreversibly
activated fibroblasts, and thereby cutting off further supply of
CAFs for the growing tumour. Finally, a paramount consideration
for any CAF-centred therapy will be the question of which part of
the CAF spectrum remains unaffected by, or is specifically induced
by, a given treatment. Given both the pro- and anti-tumorigenic
potential of CAFs, understanding how to appropriately modulate
these phenotypes at a given tissue/cancer stage will probably be
critical in determining the failure or success of a fibroblast-
targeting therapy.
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