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Abstract

Background: Many components of the RNA polymerase Il transcription machinery have been
identified in kinetoplastid protozoa, but they diverge substantially from other eukaryotes.
Furthermore, protein-coding genes in these organisms lack individual transcriptional regulation,
since they are transcribed as long polycistronic units. The transcription initiation sites are assumed
to lie within the 'divergent strand-switch' regions at the junction between opposing polycistronic
gene clusters. However, the mechanism by which Kinetoplastidae initiate transcription is unclear,
and promoter sequences are undefined.

Results: The chromosomal location of TATA-binding protein (TBP or TRF4), Small Nuclear
Activating Protein complex (SNAP,), and H3 histones were assessed in Leishmania major using
microarrays hybridized with DNA obtained through chromatin immunoprecipitation (ChIP-chip).
The TBP and SNAP;, binding patterns were almost identical and high intensity peaks were
associated with tRNAs and snRNAs. Only 184 peaks of acetylated H3 histone were found in the
entire genome, with substantially higher intensity in rapidly-dividing cells than stationary-phase. The
majority of the acetylated H3 peaks were found at divergent strand-switch regions, but some
occurred at chromosome ends and within polycistronic gene clusters. Almost all these peaks were
associated with lower intensity peaks of TBP/SNAP;, binding a few kilobases upstream, evidence
that they represent transcription initiation sites.

Conclusion: The first genome-wide maps of DNA-binding protein occupancy in a kinetoplastid
organism suggest that H3 histones at the origins of polycistronic transcription of protein-coding
genes are acetylated. Global regulation of transcription initiation may be achieved by modifying the
acetylation state of these origins.
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Background

Kinetoplastid disease

Kinetoplastids are early-branching protists with unusual
mechanisms of gene expression. While some are harmless
free-living organisms, other members of this group infect
a range of plants and animals, causing significant human
disease in the form of African Sleeping Sickness (Trypano-
soma brucei), Chagas disease (Trypanosoma cruzi), and
leishmaniasis (Leishmania major), which kill approxi-
mately 400,000 people per year. The parasites are trans-
mitted to their preferred hosts by different insect vectors
where they reside and replicate as host-adapted and vec-
tor-adapted forms, respectively, with remarkably different
morphologies.

Leishmania are transmitted by the bite of a sand fly, where
they dwell in the mid-gut as promastigotes. The parasites
make their way to the salivary glands where they undergo
metacyclogenesis to a form infective to humans when the
sand fly feeds on the victim's blood. Once inside the host
bloodstream they are ingested by macrophages, where the
parasites can escape the host immune system and trans-
form into the amastigote form. Leishmaniasis symptoms
depend greatly on the infecting species of Leishmania and
present as one of three main types: a self-resolving cutane-
ous form, a mucocutaneous form that destroys soft tissue
and cartilage in the face, and a more lethal visceral form
that infects the internal organs.

Regulation of gene expression in kinetoplastids

Kinetoplastids display peculiar molecular mechanisms,
especially when it comes to gene expression. In the
nucleus, functionally unrelated genes are transcribed
polycistronically [1] and are processed into individual
mature transcripts by trans-splicing, acquiring a 39-nt
mini-exon from the spliced leader (SL) RNA that is
attached to the 5' end of each individual messaged before
it can be translated. While bacteria use polycistronic tran-
scription as a method of co-regulating genes within an
operon, kinetoplastid genes are not typically arranged by
function [2], and it is thought that the steady-state levels
of proteins in kinetoplastid cells are determined post-tran-
scriptionally. The organization of genes on kinetoplastid
chromosomes also reflects this high degree of polycis-
tronic transcription; such that protein-coding genes on
chromosome 1 of L. major are arranged in only two long
gene clusters units, on opposite strands separated by a
'divergent strand-switch' region [3]. RNA polymerase II-
mediated polycistronic transcription has been shown to
initiate within this strand-switch region, which can also
enhance expression of a marker gene two- to ten-fold [4].
Transcription also initiates within the divergent strand-
switch region on chromosome 3 [5], even though it shares
no obvious sequence similarity with that one chromo-
some 1. Little else is known about the mechanism(s) of
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transcription initiation for protein-coding genes in these
organisms, but it appears that any promoter elements
used in the process differ from those well-characterized in
eukaryotic model organisms.

Transcription in model eukaryotes

Of all the models of eukaryotic transcription initiation,
the TATA box promoter serves as the most visible [6]. The
TATA-binding protein (TBP) binds to the TATA box with
a cadre of TBP-associated factors and, in association with
general transcription factors TFIIA and TFIIB, this pre-ini-
tiation complex recruits RNA polymerase to the promoter,
allowing the interaction of thee additional general tran-
scription factors (TFIIE, TFIIF, TFIIH) that eventually initi-
ate transcription at a defined distance from the TATA box
position. Much of our mechanistic knowledge of protein-
coding gene transcription in eukaryotes comes from this
promoter type. However, genome-wide studies have put
transcription into a more complete context, revealing that
76% of human promoters lack the canonical TATA box [7-
9]. This overlaps with the larger number of promoters
with initiator (Inr) elements (46%), as some promoters
contain both an Inr and a TATA box. Nevertheless, some
46% of active sites of transcription initiation lack both Inr
and TATA box elements. A subset of these sites is thought
to represent unregulated transcription of housekeeping
genes by an unknown mechanism. The new perspective
provided by whole-genome studies makes it clear that
much remains to be learned about the eukaryotic tran-
scription of protein-coding genes, even in well-character-
ized model organisms.

Aside from protein-coding genes, a whole host of non-
coding RNAs must be transcribed, with many more still
being discovered [10]. Ribosomal RNAs are transcribed
using promoters and recruitment factors that are highly
organism-specific, with only the conserved use of RNA
polymerase I in common. In contrast, tRNAs are tran-
scribed using A/B box promoters that are conserved across
all known eukaryotes, and some of the basic machinery
involved in recruitment to these promoters are conserved,
such as B-related proteins similar to human TFIIIB. The
Small Nuclear Activating Protein complex (SNAP ), which
in humans is a five-member complex, is involved in initi-
ating the transcription of small nuclear (sn)RNAs from
promoters containing a proximal sequence element (PSE)
with or without a TATA box, depending on the gene being
transcribed [11]. A minimal SNAP,, consisting of the three
core proteins, retains its ability to initiate snRNA tran-
scription [12], and these three proteins are indeed con-
served across eukaryotes as diverse as Drosophila and
kinetoplastids [13,14].

Eukaryotic DNA is wrapped around nucleosomes com-

posed of H2A, H2B, H3, and H4 histone proteins, with an

Page 2 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:152

additional H1 histone contributing to larger order struc-
tures. By substituting histone variants, by modifying these
histones, or by changing the layout of nucleosomes,
eukaryotes can regulate access of chromatin to proteins
involved in transcription initiation. There are a wide vari-
ety of modifications that can be made to histones, and
some of these alterations can be used as markers for gene
expression. In model organisms, acetylated histone H3 is
found at the 5' ends of transcription start sites [15], and
has been associated with an increased rate of transcription
[16].

Kinetoplastid transcription

Kinetoplastids do not employ canonical TATA box ele-
ments as part of their transcription initiation, and the Inr
element used with the SL RNA promoter is widely diver-
gent. Interestingly, Trichomonas vaginalis, a more early-
diverging protist, uses Inr elements, suggesting that tran-
scription from Inr-containing promoters may represent an
ancient process lost in kinetoplastids [17]. However, since
unregulated transcription (at promoters lacking Inr and
TATA box elements) occurs in mammals as well as lower
eukaryotes, it appears that they may also represent an
ancestral state common to all eukaryotes. Thus, the tran-
scriptionally-simple kinetoplastids could serve as ideal
model organisms in which to study common mechanisms
of unregulated transcription. If, on the other hand, the
kinetoplastid system is unique, then understanding how
these organisms use conserved transcription factors in
functionally distinct ways may provide insights into how
best to target gene expression with directed drug therapies.

There are few well-defined promoters in kinetoplastids,
including promoters for non-coding RNA genes [18-20],
and the unique RNA polymerase I-mediated promoters of
the T. brucei variant surface glycoprotein and EP/PARP/
procyclin genes [21], which form the basis for our current
knowledge of transcription in these organisms [22]. Sev-
eral proteins with similarity to conserved eukaryotic tran-
scription  initiation factors were identified through
genome comparisons, and preliminary evidence for their
role in kinetoplastid transcription has been demon-
strated. Previous studies have shown that TBP and SNAPs,
bind to snRNA and SL RNA gene promoters [23,24],
although no evidence was found for SNAP;, binding to
tRNA or snRNA promoters in T. brucei [25]. TBP was not
found to bind to the rRNA promoter [24], and TBP knock-
downs using RNA interference (RNAi) failed to affect
rRNA levels [26]. In addition to TBP and SNAP, the
putative homologues of general transcription factors
TFIIA [14], TFIIB [27,28], and TFIIH [29,30] all have roles
in transcription. Conspicuously absent are readily identi-
fiable homologues of TFIIE and TFIIF, of which the latter
is thought to confer promoter specificity. The comple-
ment of trypanosomatid proteins annotated as transcrip-
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tionally relevant is low when compared with other
organisms [2], with an almost complete lack of potential
transcription factors other than those indicated above,
consistent with the apparent lack of regulation of tran-
scription initiation in these organisms.

Much of the work towards characterizing these proteins
has come from binding studies and affinity purification
strategies [24,27,31-35]. Only one study so far has
attempted to study a kinetoplastid transcription factor on
a large scale, using sequencing of precipitated chromatin
to identify sequences that bind to TBP [26]. Although the
sequences generated from this study could not be said to
represent a systematic survey of TBP-binding sites, this
study did hint that TBP interaction with the kinetoplastid
chromatin was complicated.

In terms of chromatin structure, kinetoplastids possess a
standard nucleosome core and their chromatin appears to
undergo some sort of condensation in response to histone
H1 [36], although structural adaptations likely prevent
the formation of higher order structures common in other
model eukaryotes [37]. Studies of epigenetic modifica-
tions in kinetoplastids have, among other accomplish-
ments, identified acetyltransferases and found acetylated
histones at a divergent strand-switch region in Trypano-
soma cruzi [38,39]. Post-translation modifications of his-
tones in kinetoplastids are coming increasingly into focus,
and the reader is referred to the review by Horn et al. for a
brief summary [40].

Whole-genome maps of transcription factor occupancy
Chromatin immunoprecipitation (ChIP) has emerged as
a powerful tool for analysis of interplay between chroma-
tin structure and transcription initiation. This technique
utilizes co-precipitation of DNA-binding proteins and
their associated DNA sequences from live cells. In a recent
adaptation of this technology (ChIP-chip), the immuno-
precipitated DNA can be non-specifically amplified and
hybridized to microarrays containing oligonucleotide
probes tiled across the genome. Since current technology
allows the creation of microarrays containing several hun-
dred thousand to millions of oligonuceotides, ChIP-chip
affords high resolution genome-wide interrogation of
protein-DNA interactions on a small number of microar-
rays. The entire L. major genome is 32.8 Mbp, so the Nim-
blegen microarrays [41] used in this study allowed us to
space 50-nucleotide probes every 85 bp across the entire
genome. Using chromatin that is sheared to ~300 bp, the
binding sites of a sequence-specific transcription factor
can be resolved down to around + 25 bp.
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Results

Validation of antisera effective for L. major ChIP analyses
Antisera raised against Leishmania tarentolae TBP and L.
major SNAP;, have been used for ChIP of L. tarentolae
chromatin [24], and commercial antibodies against
unmodified and Ky/K,, acetylated Tetrahymena histone
H3 have been used for similar analyses in T. cruzi [38].
Western blot analysis using these antisera indicated that
they recognized the L. major homologues of these targets
(data not shown), although the exact residues of L. major
H3 that are acetylated are not known. PCR assays of L.
major chromatin precipitated using the antisera against
TBP and SNAP;, showed enriched amplification of the U2
snRNA/tRNA promoter region when compared to a con-
trol region from within the larger chromosome (chr)1
polycistronic gene cluster (Fig 1), validating these antisera
for ChIP analysis of L. major.

Whole-genome occupancy maps for TBP, SNAP;,, histone
H3, and acetylated histone H3

L. major cells were cross-linked, lysed and the chromatin
sheared before antisera against TBP, SNAP.,, (histone)
H3, or acetyl-H3 were used to precipitate the chromatin.
The precipitated DNA was subsequently unlinked and
amplified before fluorescent labeling and two-color
microarray hybridization. Generally each microarray was
hybridized with an experimental sample and input chro-
matin to control for genomic DNA copy number and
biases introduced due to cross-linking, amplification, and
other technical manipulations; although sometimes
experimental samples were compared directly on the
same array. The signal obtained for acetyl-H3 was normal-
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Figure |

Antisera against TBP and SNAP;, preferentially pre-
cipitate tRNA/snRNA sequences. L. major chromatin was
immunoprecipitated using antisera against TBP (top panel) or
SNAP;, (middle panel) and PCR amplification carried out
using primers specific for the U2/tRNA,, locus on chr31,
which is bound by both TBP and SNAPg in L. tarentolae [24]
and the LmjF01.0530 gene on chrl as a control. The numbers
at top represent PCR cycles. The input control in the bottom
panel represents amplification of chromatin without immu-
noprecipitation.
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ized to total H3 signal and the resulting ratio at each oli-
gonucleotide position was visualized relative to the
annotated L. major Friedlin sequence assembly v5.0 using
Nimblegen's SIGNALMAP software (see Additional file 1).
The results obtained for chromosomes 2, 9, and 27 (Fig 2)
reflect the overall distribution of signal intensity for the
entire genome and illustrate several interesting features.
The acetyl-H3:H3 ratio (shown by the brown trace on the
top row under the gene map in each panel), represents the
abundance of acetylated histone H3 relative to overall
nucleosome levels. The ratios for TBP (green, middle row)
and SNAP;, (red, bottom row) represent the enrichment
of chromatin at each position of the chromosome when
specifically precipitated with these antibodies compared
to a mock precipitation. Peaks in the ChIP-chip ratios
were identified using the MPEAK algorithm [42]. MPEAK
relies on the fact that multiple probes will bind the same
chromatin fragment if the probes are designed to be close
together along the genomic sequence, with maximal bind-
ing seen where the probe sequence and the binding ele-
ment overlap. The program first identifies triangular
shapes with heights above a specific threshold, and then
determines the exact peak position by analyzing the trian-
gular shape. Using parameters in line with the size of
sheared chromatin (~300 bp) and the distance between
tiled probes used for this study (85 bp), binding peaks
were predicted genome-wide for acetyl-H3, TBP and
SNAP:,. A genome-wide summary of all the acetyl-H3:H3
peaks and selected TBP/SNAP., peaks can be found in
Additional file 2. The following sections summarize the
placements of peaks relative to important features of the
genome.

Histone H3 ChIP signal peaks are found at all divergent
strand-switch regions, as well as some telomeres and a few
other sites

Only a small number (2-13) of peaks of H3 acetylation
were found on each chromosome. Only 184 peaks of H3
acetylation were found in the entire genome (not includ-
ing four peaks seen within repetitive regions that probably
represent normalization artifacts). Each of the 58 diver-
gent strand-switch regions in the L. major genome con-
tained peaks of H3 acetylation, as illustrated by two sites
on chr27 (Fig 2) and one site from chr6 (see Fig 3A).
Closer examination of the divergent strand-switch regions
revealed that all but two contained two acetyl-H3 peaks.
The two exceptions occurred at the 5' end of the SL RNA
and rRNA arrays (see Fig 2, chr2 and chr27, respectively).
In both these cases, another acetyl-H3 peak was found at
the 3' end of the RNA locus at the beginning of the next
polycistronic gene cluster (see Fig 3B and 3C). The only
other case of RNA genes within a divergent strand-switch
region is on chr9, where a tRNA cluster is flanked by two
acetyl-H3 peaks (see Fig 2 and 4A). An additional 16
acetyl-H3 peaks were found at the end of chromosomes
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Figure 2

Graphical representation of ChIP-chip results for chromosomes 2, 9 and 27. The x-axis of each graph represents the
position along the chromosome according to the genome reference sequence, and the y-axis indicates the ChIP enrichment
relative to the controls. The scale in each panel is different, since the chromosomes are 357, 573 and 1130 kb in length, respec-
tively. In each panel, the top row shows the location of protein-coding (blue), and non-coding RNA (light green) genes; while
the other rows represents the ratio of acetylated:total histone H3 (brown), TBP:mock (green), and SNAP;;mock (red). The
yellow highlights indicate regions shown in more detail in Figure 3.

that contain a polycistronic gene cluster transcribed away
from the telomere, as illustrated by the ends of chr9 in Fig
2 (and Fig 4B). Thus, every protein-coding gene cluster
contains a peak of H3 acetylation at its 5' end, suggesting
that these peaks correlate with transcription initiation at
these sites. However, another 54 acetyl-H3 peaks were
found internally within polycistronic gene clusters. These
internal peaks fell into two classes: 16 were found imme-
diately downstream of tRNA or snRNA genes (see Fig 4C
for an example from chr11), but 38 were not associated
with any obvious features (see Fig 5A for an example from
chr17).

Each acetyl-H3 peak usually covered 4-6 kb and generally
overlapped the first one or two genes in each polycistronic
gene cluster, as well as the upstream intergenic region.
Peaks of H3 acetylation were not observed near tRNA/

snRNA clusters found within convergent strand switch
regions (see chr9 in Fig 2 and Fig 4A for an example). Like-
wise, snoRNA clusters were not associated with acetyl-H3
peaks (see Fig 5B for an example from chr22), except in
the single case on chr5 where the snoRNAs occur at a
divergent strand-switch region (see Fig 5C).

TBP and SNAP;, bind upstream of the peaks of H3
acetylation

The great majority (174/184) of the acetyl-H3 peaks con-
tained clear TBP-and SNAP.,-binding sites immediately
upstream (see Additional file 2). In strand-switch regions
where two acetylated peaks are observed, two TBP (and
SNAP:,) peaks were usually observed (see Fig 3A), while
telomeric and intergenic H3 acetylation sites were typi-
cally associated with a single peak of TBP and SNAP;,
upstream of the acetylated region (Fig 3B and 3C). It
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Acetylated H3 and TBP peaks are associated with divergent strand-switch regions. A. divergent strand-switch
region on chré; B. SL RNA locus on chr2; C. rRNA locus on chr27. The graphs are the same as for Fig 2, except that the
SNAP; results are not shown. The coordinates on each chromosome are indicated by the scale at top of each panel.

should be noted that the TBP and SNAP;, peaks were gen-
erally of relatively modest intensity, except those at tRNA/
snRNA clusters (Fig 4A), where they are associated with
RNA polymerase Il promoters, as discussed below. The
TBP and SNAP;, signal peaks were highly correlated
(0.714 Pearson's product moment correlation), indicating
very similar DNA-binding patterns genome-wide, and so
only the TBP peaks are shown in Figs 3, 4, 5. The peaks at
tRNA/snRNA clusters were observed universally in four
separate replicates performed using different starting
material and performed at different times. However, the
positions of other sites varied somewhat in intensity,
breadth, and position between replicates. The source of
this variability, either methodological or biological, is
unknown. Fig 6A shows a heat-map plot of TBP and
SNAP;, binding at all acetyl-H3 peaks within the genome.
There is an apparent polarity of binding signal relative to
the direction of transcription, with TBP and SNAP;, peaks
overlapping ~1-2 kb upstream of the peak of H3 acetyla-
tion.

H3 acetylation levels are higher in rapidly dividing cells

The experiments above where performed using rapidly
growing 'mid-log' procyclic promastigotes. Although
kinetoplastids do not regulate transcription on the level of
individual genes, it has been proposed that overall tran-
scription rates may slow when cells approach stationary
phase and begin to undergo metacyclogenesis [43]. To

determine whether there were differences in the genome-
wide H3 acetylation pattern associated with this phenom-
enon, a ChIP-chip experiment was performed using cul-
tures that had been in stationary phase for three days (a
total of 9 days after sub-culture). On average the ratios of
acetyl-H3:total H3 were 5-fold higher in rapidly-growing
cells than in stationary cells, even when normalized to
overall histone content to control for differences between
samples (see Fig 7).

TBP and SNAP;, bind to the SL RNA, tRNA, snRNA, and 5S
rRNA gene promoters

In contrast to the relatively binary nature of the acetyl-
H3:H3 ratio (i.e. either an intense peak or background sig-
nal), the TBP (green, middle row of Fig 2) and SNAP.,
(red, bottom row) ratios appear to reflect at least two dif-
ferent levels of binding, such that very large peaks occur at
certain sites, while a number of much smaller peaks are
distributed throughout the rest of the genome (often, but
not always, associated with acetyl-H3 peaks).

One region associated with substantial TBP and SNAP. -
binding peaks is the SL RNA gene locus on chr2 (see Fig
2). It should be noted that the current genome assembly
puts the number of SL RNA gene copies at 120, but it is
difficult to assemble nearly-identical reads into scaffolds
representing correct genome sequence, especially since
each SL RNA gene repeat is ~450 bp. Thus, the actual
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Acetylated H3 and TBP peaks are associated with some tRNA genes and telomeres. A. tRNA locus on chr9; B.
left telomere of chr9; C. first tRNA locus on chrl |. The graphs are the same as Fig 3.

sequence of the SL RNA gene array will probably turn out
to be somewhat different than what is currently included
in the array design used here. Transcription factor occu-
pancy at repetitive sequences can only be resolved as the
average of binding to all genomic locations with that
sequence, much in the same way that a PCR assay of ChI-
Ped chromatin can not tell which copies of the SL RNA
array the protein was binding to in order to produce a pos-
itive signal. Nevertheless, when averaged to account for
the caveats above, there is a peak of TBP and SNAP;, bind-
ing at position -50 relative to the SL RNA gene transcrip-
tion start site, centered exactly at the promoter sequence
(Fig 8A).

Substantial (at least 10-fold over background) TBP and
SNAP;, peaks were also seen 5' to all the tRNA, snRNA,
and 58 rRNA gene clusters (see Fig 8B, 8C &8D for exam-
ples), consistent with binding of these transcription fac-
tors to RNA polymerase I1I promoters in these regions. No
peaks at the 5' ends of snoRNA clusters (except on the one
case on chr5, described above), consistent with the
hypothesis that these RNAs do not contain individual pro-
moters and are transcribed polycistronically with the
neighboring protein-coding genes.

Unexpected patterns of TBP and SNAP;, binding within
rRNA genes

The most unexpected result of the ChIP-chip experiments
was the pattern of TBP and SNAP,,binding at rRNA genes.
No effect on rRNA expression was detected when TBP was
knocked down due to RNA interference in T. brucei [26],
and TBP and SNAP., did not bind above background to
the rRNA promoter region [44]. The data presented here
clearly show TBP and SNAP,, binding to the rRNA locus
(see chr27 in Fig 2). Surprisingly, the binding peaks corre-
spond to rRNA coding regions and not the promoter
sequences (Fig 3C). This pattern was observed in several
separate precipitations and microarray hybridizations.

Sequence motifs associated with TBP and SNAP;-binding
MEME and MAST software were used to identify motifs that
were overrepresented in a statistically significant way at
sites of TBP and SNAP:,-binding. Three hundred nucle-
otides of sequence surrounding each TBP/SNAP:, peak
was extracted and sorted into four groups representing
presumed transcription initiation sites for SL RNA, rRNA,
tRNA/snRNA/5SRNA, and protein-coding genes, respec-
tively. The B-box promoter element for tRNA genes (Fig
8E) was recovered from the tRNA/snRNA/5SRNA group,
indicating the validity of this approach in identifying con-
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Acetylated H3 and TBP peaks are sometimes found within polycistronic gene clusters. A. putative internal tran-
scription initiation site on chr35; B. snoRNA locus on chr23; and C. snoRNA locus on chr5. The graphs are the same as Fig 3.

served sequence motifs involved in transcription factor
binding.

A single motif was identified from the presumed initiation
sites for protein-coding gene transcription: a long G-tract
(or C-tract in the complement). Two such G-tracts were
found within the 73-bp sequence from the chrl strand-
switch region [3,4] and they are conserved across a range
of Leishmania species [45]. While G-tracts were associated
with TBP/SNAP;,-binding sites upstream of most acetyl-
H3 peaks, G-tracts of similar or longer (>10 nucleotides)
length are peppered throughout the genome, and almost
half of the predicted sites of transcription initiation lack
such G-tracts (data not shown). Furthermore, the posi-
tions of acetyl-H3 peaks contain shorter G-tract lengths on
average than the surrounding regions (see Fig 6B). Thus,
the significance of this motif in terms of TBP/SNAP;,
binding remains an open question.

Summary

Genome-wide ChIP-chip analysis of L. major promastig-
otes showed acetylated histone H3 peaks at the 5' ends of
all polycistronic protein-coding gene clusters. These peaks
occurred within all divergent strand-switch regions, at
some telomeres, and at a few other sites within the gene
clusters. The level of H3 acetylation was higher at these
sites in rapidly growing cells than in stationary ones. Sub-
stantial TBP and SNAP.-binding peaks were associated
with tRNA, snRNA, and SL RNA gene promoter regions,

confirming previous small-scale studies. Less intense
peaks were found immediately upstream of the H3
acetylation regions associated with the putative transcrip-
tion initiation sites for the protein-coding genes, as has
been observed in other eukaryotes. G-tracts were poten-
tially associated with these TBP and SNAP;,-binding
regions, although similar sequences were also found in
other regions of the genome.

Discussion

More than half of all mammalian transcripts are produced
from promoters with no known promoter elements - a
crucial fact that went unappreciated until genome-wide
studies were undertaken. Since kinetoplastid protozoa
share conserved transcription factors with other eukaryo-
tes, but lack complex transcriptional regulation, they may
serve as a model for studying these mechanisms involved
in non-conventional transcription initiation. On the
other hand, if aspects of kinetoplastid transcription turn
out to be distinct among eukaryotes, then these mecha-
nisms could provide good targets for clinical therapy. The
first whole-genome studies aimed at understanding the
mechanisms of kinetoplastid transcription initiation are
presented here.

The roles of TBP and SNAPs, in kinetoplastid transcrip-
tion have been the subject of a several studies, with appar-
ently contradictory observations. This study confirms the
expected role of TBP and SNAP;, in binding to the SL RNA

Page 8 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:152 http://www.biomedcentral.com/1471-2164/10/152

acetyl H3

Figure 6

Genome-scale representation of TBP and SNAP;, binding relative to H3 acetylation. A. Each cell of the heatmap
in the left panel represents a probe from the microarray, with each row of cells representing an 8 kb region of the genome
centered on a peak of H3 acetylation aligned according to direction of transcription (indicated by the black arrow at top). The
color of each cell is determined by the intensity of TBP-binding (green), SNAP;-binding (red), and histone H3 acetylation
(grey). The top three panels to the right indicate the aggregate signal for each heatmap column for acetyl-H3 (top), TBP (mid-
dle) and SNAP;, (bottom). B. The top panel shows (black) acetylation peaks, and the bottom panel shows the average (over all
regions examined) maximum G or C tract length in a 20 bp window around each position.
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H3 acetylation is more pronounced in rapidly-dividing than stationary phase cells. The upper two tracks represent
the ratio of acetylated histone H3 to total H3 signal from confluent stationary (day 9) cells and rapidly-dividing (day 3) cells,
respectively. The vertical scale used normalizes the peak heights to those observed in stationary cells. The bottom track shows
the position and strand of genes from chr36, which is 2682 kb in length.

promoter, as observed in several different kinetoplastids
using a variety of different experimental techniques
[14,24,35,46]. There is also strong evidence that TBP and
SNAP:, are involved in transcription of snRNAs [23,24].
However, in T. brucei, SNAPs, did not bind to an snRNA
promoter under conditions where it efficiently bound the
SL RNA gene promoter [25]. In the data presented here,
TBP and SNAP, bind universally to all snRNA promoter
regions, and both proteins are found at all tRNA and 58
rRNA promoter regions as well. This contrasts with ChIP
data from L. tarentolae, where only TBP was observed
binding to those sites [24]. Without similar whole-
genome studies in these other kinetoplastid model organ-
isms, the apparent contradiction in all of the available
data is difficult to resolve.

With regards to rRNA transcription, TBP knockdown by
RNA interference in T. brucei had no effect on steady-state
rRNA levels [26], and TBP or SNAP;, did not bind above
background to the rRNA promoter region [24], even
though an element of the T. brucei rRNA promoter is
reported to bind SNAPs in vitro [47]. The data here show
both TBP and SNAPs, apparently bind within the rRNA
gene coding sequence, but not the promoter. One possi-
ble explanation is that it may represent precipitation of
rRNAs along with TBP/SNAPs, nascent polypeptides,
although how this RNA would be labeled and why it was
not also seen with H3 is not clear. Alternatively, the appar-
ent pattern of binding may be merely an artifact caused by
repetitive sequences, although this does not appear to be
the case for the SL RNA locus. However, transcription of

rRNAs is notably distinct from organism to organism even
among closely-related crown-group eukaryotes, and spe-
cies-specific effects may explain the apparent differences
between T. brucei and L. major. With key components still
being identified [31], the full story of RNA polymerase I
transcription in kinetoplastids is clearly yet to be written.

Ko/K,, acetylation of histone H3 is a marker for sites of
active transcription initiation in other eukaryotic systems.
Our observation that similar H3 acetylation is found at all
divergent strand-switch regions, as well as a few other sites
throughout the L. major genome, in a polarity consistent
with expected direction of transcription, suggests that this
acetylation represents the first marker for sites of RNA
polymerase II-mediated transcription initiation of pro-
tein-coding genes in kinetoplastids. This conclusion is
bolstered by our finding that peaks of TBP binding were
observed immediately upstream of the vast majority of
acetylated regions. This suggests that histone acetylation is
a marker for open chromatin, which makes specific
regions of the genome available for binding of transcrip-
tion initiation complexes, as observed in other organisms.
Since TBP and SNAP;, signals were correlated genome-
wide, and both were associated with H3 acetylation at the
5' end of polycistronic gene clusters, it seems likely that
SNAP:, has a role as a general transcription factor in kine-
toplastid transcription, an adaptation that would be
unique among all model eukaryotes.

The hypothesis that kinetoplastids regulate overall tran-

scription rates according to cell density [43] led to the idea
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SRP, tRNA Arg, 5S rRNA

TBP and SNAP;, binding to non-coding RNA promoters. High resolution views show the TBP- and SNAP;,-binding
signal at four non-coding RNA gene loci: A. SL RNA locus on chr2; B. tRNA,, locus on chr7; C. snRNA/tRNA locus on chr23;
and D. SRP RNA/tRNA/5S rRNA locus on chr5. The top track in each panel shows the gene organization with protein-coding
genes in blue and RNA genes in green. The middle and lower tracks represents TBP and SNAPg signal, respectively, with the
height of each bar representing the ratio of ChlIP enrichment of specifically-precipitated chromatin to mock controls. Each
black bar represents a unique probe from the microarray with a width of 50 bp, spaced at 85-bp intervals. Panel E shows the B
Box motif recovered by MEME/MAST analysis of tRNA promoter regions.

that the mechanism could involve changes in chromatin
structure. If histone acetylation serves as markers for tran-
scriptional availability, then one should observe a
decrease in acetylation levels in stationary cells when
compared to rapidly-dividing ones. Our observation that
acetyl-H3 peaks are considerably reduced in magnitude in
stationary stage cells supports the hypotheses that kineto-
plastids do regulate overall transcription rates.

Aside from identifying the sites of transcription initiation,
one of the main goals of this research is to identify DNA
elements responsible for recruiting RNA polymerases to
those sites. Several different methods have been used suc-
cessfully in other organisms to identify regulatory ele-
ments from an enriched selection of sequences likely to

contain similar elements. MEME and MAST analysis of
sequences at sites of enhanced ChIP signal easily recov-
ered known tRNA promoter elements; but no clear motifs
were discovered for protein-coding gene transcription ini-
tiation sites. The only identifiable motif found in a major-
ity of the isolated sequences was a G-tract (or C-tract)
longer than 10 nucleotides. Similar elements were found
within the transcription-enhancing 73-bp sequence
derived from the L. major chrl strand-switch region [4]
which is conserved across Leishmania species [45]. How-
ever, because of their ubiquitous presence in regions
devoid of TBP and acetylated H3 peaks, it is unlikely that
these elements are sufficient to direct transcription initia-
tion. Furthermore, the breadth of the TBP and SNAP;,
peaks is not indicative of typical promoter-directed initia-
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tion from a single initiation point. This is consistent with
the finding that the chrl strand-switch region contains
several distinct transcription sites in both directions [4].

Previous bioinformatic analyses of several divergent
strand-switch regions from L. major revealed an unusually
high AT composition, a lack of putative hairpins and a
strong curvature of the DNA [48]. Our data indicate that
the peaks of acetylated H3 are associated with increased
AT content ~1-2 kb downstream of the G/C-tracts above.
The mechanistic implications of this finding are not yet
clear, although it is tempting to speculate that it may be
associated with enhanced melting of the DNA strands
during transcription initiation. Local bending of the diver-
gent strand switch regions could allow access to transcrip-
tion initiation [49] and binding of proteins to DNA can
drastically alter the shape of the DNA in ways that can
increase curvature or facilitate secondary structures. In
mapping predicted curvature genome-wide, it is clear that
the divergent strand-switch regions do possess greater pre-
dicted curvature based on the dinucleotide stacking mod-
els used. However, other regions not associated with ChIP
signal peaks also possess predicted curvatures of similar
magnitudes. Thus, while DNA secondary structures and
curvature may play a role in kinetoplastid transcription,
the mechanisms by which this may happen elude current
bioinformatics predictions. Even with ChIP data suggest-
ing that a protein binds to a given region, the induced
bending that a protein will cause cannot be predicted
without doing very involved in vitro bending assays or
resolving the structure of the protein-bound DNA. Other
secondary structures, like triple helices for example, are
difficult to predict bioinformatically at present.

Conclusion

The use of ChIP-chip analysis to probe genome-wide tran-
scription factor occupancy has been applied for the first
time to the study of kinetoplastids. The results confirm
many conclusions made from previous small-scale studies
and suggest that there are only 184 transcription-initia-
tion sites for protein-coding genes in L. major. They also
extend our understanding of the roles of TBP and SNAP;,
in L. major transcription. TBP and SNAP;, appear to bind
to all RNA polymerase II and III promoters and appear to
have identical binding patterns genome-wide, laying
open the interesting possibility that SNAPc may serve as a
general transcription factor for protein-coding transcrip-
tion in these organisms. The identification of acetylated
H3 histones at divergent strand-switch regions and at a
few other sites throughout the genome suggests that chro-
matin accessibility may restrict transcription initiation of
protein-coding genes in kinetoplastids to a few select sites
throughout the genome. Changes in acetylation between
rapidly-dividing cells and stationary ones may constitute
evidence of wholesale regulation of transcriptional rates

http://www.biomedcentral.com/1471-2164/10/152

by modulation of chromatin availability at these sites.
Future whole-genome studies of epigenetic features and
chromatin remodeling proteins are likely to shed more
light on the mechanisms of kinetoplastid transcription
initiation. The transcriptional machinery of kinetoplastids
is highly reduced, making complete binding maps of all
known kinetoplastid transcription factors and epigenetic
factors likely within the near future once suitable antibod-
ies are developed.

Materials and methods

Chromatin Immunoprecipitation (ChlIP)

ChlIPs were performed as previously described [24], except
that L. major cells were used instead of L. tarentolae. For
each IP, 2.5 x 10° L. major cells were incubated with 1%
formaldehyde at 25°C for 15 min. Next, 2.5 ml of 2.5 M
glycine was added and incubation continued at 25°C for
an additional 5 min. The cells were pelleted and washed
once with 20 ml 1x phosphate buffered saline (PBS), pel-
leted again and washed once more with 2 ml PBS. After
the final pelleting, the cells were re-suspended in 400 pl
ChlIP lysis buffer (50 mM HEPES, pH 7.5, 140 mM NaC(l,
1% Triton X-100, 0.1% sodium deoxycholate and Com-
plete Protease Inhibitor Tablets [Roche]) and an equal
volume of glass beads was added. The sample was shaken
continuously for 30 min on a vortex at 4°C. The lysate was
recovered by piercing the bottom of the tube and collect-
ing drops. The samples were sheared on a Misonix Micro-
son model #XL2007 sonicator with 6-10 s pulses at 12
Watts, followed by a 15 s pause after each pulse. The lysate
was centrifuged at 10,000 rpm for 10 min at 4°C. The
supernatant was taken and its protein concentration
determined. One mg of protein was used for each immu-
noprecipitation reaction. One-fortieth of the amount of
lysate that would be used for an immunoprecipitation
was reverse cross-linked (65°C overnight), and the DNA
was purified on a Qiagen QiaQuick® spin column and
analyzed by agarose gel electrophoresis to determine the
average genomic fragment size achieved by sonication
(300 bp).

Commercial antisera against peptides representing Tet-
rahymena unmodified (ab12079, Abcam) and Hy/Ky,-
acetylated (06-599, Upstate) histone H3 sequence were
used to precipitate chromatin that was subsequently
amplified and used to create fluorescently labeled probes
used in two-color microarray hybridization, as were antis-
era against recombinant L. tarentolae TBP and L. major
SNAP:, [24]. Each antiserum (equilibrated in lysis buffer)
was added to 1 mg of lysate along with 50 pl protein A-
agarose and incubated overnight at 4 °C. Two washes each
of the following were then performed, pelleting beads
after each wash: 1 ml ChIP lysis buffer, 1 ml high salt lysis
buffer (same as lysis buffer except 500 mM NacCl), 1 ml
ChIP wash buffer (10 mM Tris-HCI pH 8.0, 250 mM LiCl,
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0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA),
and 1 ml TE. The beads were mixed with 75 ul of ChIP elu-
tion buffer (50 mM Tris-HCI pH 8.0, 1% SDS, 10 mM
EDTA) and the sample incubated at 65°C for 10 min.
After centrifugation, the supernatant was collected and the
beads eluted again with 75 ul elution buffer. The superna-
tants were combined and incubated at 65 °C overnight to
reverse the cross-linking and the liberated DNA was puri-
fied with a QiaQuick column. Where PCR is used to assay
the chromatin, 1 pl is used for each 10 pl reaction. Chro-
matin to be used in microarray experiments was lyophi-
lized before amplification using the GenomePlex Whole
Genome Amplification Kit (Sigma) to obtain 4 ug of
DNA. The amplified DNAs were sent to Nimblegen for
two-color labeling and hybridization using their standard
ChIP-chip protocol [50]. Following hybridization, the
microarrays were scanned using a GenePix 4000B Scanner
and data processed according to standard Nimblegen
methodology, before being returned for further analysis.

A ChIP sample and a control sample were generated for
each experiment. For the TBP and SNAP;, experiments,
'mock' immunoprecipitations were performed in which
input chromatin was subjected to immunoprecipitation
conditions without the use of antiserum. For acetyl-H3
experiments, the antiserum against unmodified H3 pep-
tides was used as a control.

Microarray design

The 32.8 Mbp L. major genome assembly (version 5.0)
was used to design 50-nt-long tiled probes interspersed by
35-bp gaps, yielding a final custom-designed Nimblegen
microarray containing 387,865 'top strand' probes (as
determined by the orientation of the v5.0 genome
sequence available at the Sanger website). The probe
design data and all microarray data are available from the
NCBI Gene Expression Omnibus (Accession number
GSE13415).

Analysis of microarray data

The microarray data was analyzed in raw form using EDIT-
PAD PRO or the R statistical package, and viewed graphi-
cally (from a gff file format) using Nimblegen's
SIGNALMAP software. A combination of R and PERL scripts
were written for microarray data analysis. Scripts for these
analyses are available upon request. All experiments were
performed in triplicate, using different cell cultures, except
for the comparison of mid-log versus stationary cultures,
which was done only once.

Peak identification, motif discovery, and curvature
analysis

The MPEAK algorithm was used to identify peaks in the
ChIP data [42]. The program identifies significant peaks
in the data and applies a model of chromatin shearing to
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determine how likely it is that the point truly represents a
peak based on the signals of probes nearby in sequence-
space. A PERL script was written to extract the 300 nucle-
otides surrounding each MPEAK-predicted TBP/SNAPs,
peak and the resulting sequences were divided into differ-
ent groups. Sequences representing peaks near SL RNAs,
and rRNA genes were put into two different bins; those
representing tRNA, 5S rRNA, and snRNA genes were put
into a third bin; while a fourth bin represented all other
peaks. A fifth bin represented peaks found within diver-
gent strand-switch regions, and a final bin represented a
random selection of sites throughout the genome as a
control. The sequences in each bin were submitted to the
MEME/MAST algorithm for motif discovery, and the
resulting motifs were analyzed manually to recover
already identified promoter elements and to determine
whether any of the proposed motifs represented a newly
discovered promoter element. For analysis of G-tract dis-
tribution, a PERL script was written to systematically scan
the genome sequence and count the number of uninter-
rupted Gs (or Cs) beginning at each base and to report the
maximum length of G or C tracts in a window, this was
used to demonstrate the lower average length of maxi-
mum G and C tracts at sites of H3 acetylation. A separate
PERL script was written to measure inherent curvature of
the genomic sequence based on previously published
algorithm using a dinucleotide stacking model [49]. This
model assumes B-DNA structure and does not account for
bending that might arise due to alternate conformations,
complex secondary structures, or protein binding. This
script is available upon request.
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Additional material

Additional file 1

Genome-wide distribution of acetylated histone H3, TBP, and
SNAPs,,. The ratio of ChIP enrichment for histone H3 acetylations, TBP-
binding, and SNAPs-binding are presented relative to input control for
all 36 chromosomes, in similar manner to Fig 2. Also included on the bot-
tom row of each figure is the repeat number of each oligonucleotide probe.
On the top track, protein-coding genes and non-coding RNAs are shown
in blue and green, respectively. A red bar at any position indicates that the
value of the signal at that position is greater than the maximum value
shown on the graph.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-152-S1.pdf]

Additional file 2

Predicted sites of polycistronic transcription initiation in L. major.
Each acetylated histone H3 peak region is described in tabular form, list-
ing the chromosome; the approximate boundaries of the region; location
of the signal peak; location(s) of associated TBP/SNAPs, peak(s); a sys-
tematic name; type (see below); strand (T for top, B for bottom); number
of genes in the associated polycistronic gene cluster; and a comment noting
any other features (e.g. RNA genes) associated with the entry. The codes
used to describe the type of peak are D (divergent strand-switch region),
C (convergent strand-switch region), T (telomeric), R (downstream of an
RNA gene cluster); and I (internal within a polycistronic gene cluster).
The total number of each peak type is shown at the bottom of the table.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-152-S2.pdf]

Acknowledgements

The authors would like to thank Patricia Respuela for advice on selecting
antibodies to target histone H3 and acetylated H3 in L. major. This work

was supported by PHS Grant 5 ROI Al053667 to P.J.M and AI34536 to D.C.

S.T was supported by a postdoctoral fellowship from the University of

Washington Pathobiology Training grant.

References

Johnson PJ, Kooter M, Borst P: Inactivation of transcription by
UV irradiation of T. brucei provides evidence for a multicis-
tronic transcription unit including a VSG gene. Cell 1987,
51(2):273-281.

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman
M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou
Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G,
Borzym K, Bothe G, Bruschi CV, Collins C, Cadag E, Ciarloni L, Clay-
ton C, Coulson RMR, Cronin A, Cruz AK, Davies RM, De Gaudenzi
), Dobson DE, Duesterhoeft A, Fazelinia G, Fosker N, Frasch AC, Fra-
ser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler
C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke
N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli
S, Mottram JC, Mueller-Auer S, Munden H, Nelson S, Norbertczak H,
Oliver K, O'Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail
MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta ], Robben J, Rob-
ertson L, Ruiz JC, Rutter S, Saunders D, Schifer M, Schein ], Schwartz
DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares
S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H,
Woodward }, Zhou S, Zimmermann W, Smith DF, Blackwell }, Stuart
KD, Barrell B, Myler P): The genome of the kinetoplastid para-
site, Leishmania major. Science 2005, 309(5733):436-442.

Myler PJ, Sisk E, McDonagh PD, Martinez-Calvillo S, Schnaufer A,
Sunkin SM, Yan S, Madhubala R, Ivens A, Stuart K: Genomic organ-

20.

21.

22.

23.

http://www.biomedcentral.com/1471-2164/10/152

ization and gene function in Leishmania. Biochem Soc Trans
2000, 28(5):527-531.

Martinez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ:
Transcription of Leishmania major Friedlin chromosome |
initiates in both directions within a single region. Mol Cell
2003, 11(5):1291-1299.

Martinez-Calvillo S, Nguyen D, Stuart K, Myler P): Transcription
initiation and termination on Leishmania major chromosome
3. Eukaryot Cell 2004, 3(2):506-517.

Smale ST, Kadonaga JT: The RNA polymerase Il core promoter.
Annu Rev Biochem 2003, 72:449-479.

Yang C, Bolotin E, Jiang T, Sladek FM, Martinez E: Prevalence of the
initiator over the TATA box in human and yeast genes and
identification of DNA motifs enriched in human TATA-less
core promoters. Gene 2007, 389(1):52-65.

Denissov S, van Driel M, Voit R, Hekkelman M, Hulsen T, Hernandez
N, Grummt |, Wehrens R, Stunnenberg H: Identification of novel
functional TBP-binding sites and general factor repertoires.
Embo | 2007, 26(4):944-954.

Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu
Y, Green RD, Ren B: A high-resolution map of active promot-
ers in the human genome. Nature 2005, 436(7052):876-880.
Hannon GJ, Rivas FV, Murchison EP, Steitz JA: The expanding uni-
verse of noncoding RNAs. Cold Spring Harb Symp Quant Biol 2006,
71:551-564.

Hernandez N: Small nuclear RNA genes: a model system to
study fundamental mechanisms of transcription. | Biol Chem
2001, 276(29):26733-26736.

Hinkley CS, Hirsch HA, Gu L, LaMere B, Henry RW: The small
nuclear RNA-activating protein 190 Myb DNA binding
domain stimulates TATA box-binding protein-TATA box
recognition. | Biol Chem 2003, 278(20):18649-18657.

Li C, Harding GA, Parise ), McNamara-Schroeder K|, Stumph WE:
Architectural arrangement of cloned proximal sequence
element-binding protein subunits on Drosophila Ul and Ué
snRNA gene promoters. Molecular and cellular biology 2004,
24(5):1897-1906.

Schimanski B, Nguyen TN, Gunzl A: Characterization of a multi-
subunit transcription factor complex essential for spliced-
leader RNA gene transcription in Trypanosoma brucei. Mol
Cell Biol 2005, 25(16):7303-7313.

Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger
D), Egger G, Takai D, Gonzales FA, et al.: Distinct localization of
histone H3 acetylation and H3-K4 methylation to the tran-
scription start sites in the human genome. Proceedings of the
National Academy of Sciences of the United States of America 2004,
101(19):7357-7362.

Rando OJ: Global patterns of histone modifications. Current
opinion in genetics & development 2007, 17(2):94-99.

Liston DR, Johnson PJ: Analysis of a ubiquitous promoter ele-
ment in a primitive eukaryote: early evolution of the initia-
tor element. Mol Cell Biol 1999, 19(3):2380-2388.

Yu MC, Sturm NR, Saito RM, Roberts TG, Campbell DA: Single
nucleotide resolution of promoter activity and protein bind-
ing for the Leishmania tarentolae spliced leader RNA gene.
Mol Biochem Parasitol 1998, 94(2):265-281.

Nunes LR, Carvalho MR, Shakarian AM, Buck GA: The transcrip-
tion promoter of the spliced leader gene from Trypanosoma
cruzi. Gene 1997, 188(2):157-168.

Gunzl A, Ullu E, Dorner M, Fragoso SP, Hoffmann KF, Milner |D,
Morita Y, Nguu EK, Vanacova S, Wunsch S, et al: Transcription of
the Trypanosoma brucei spliced leader RNA gene is depend-
ent only on the presence of upstream regulatory elements.
Mol Biochem Parasitol 1997, 85(1):67-76.

Pays E, Tebabi P, Pays A, Coquelet H, Revelard P, Salmon D, Steinert
M: The genes and transcripts of an antigen gene expression
site from T. brucei. Cell 1989, 57(5):835-845.

Campbell DA, Thomas S, Sturm NR: Transcription in kineto-
plastid protozoa: why be normal?  Microbes Infect 2003,
5(13):1231-1240.

Gilinger G, Luo H, Bellofatto V: In vivo transcription analysis uti-
lizing chromatin immunoprecipation reveals a role for
trypanosome transcription factor PBP-1 in RNA polymerase
Ill-dependent transcription. Mol Biochem Parasitol 2004,
134(1):169-173.

Page 14 of 15

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-10-152-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-10-152-S2.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3664637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3664637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11044368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12769852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15075279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17123746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17123746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17123746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17268553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17268553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11390411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11390411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12621023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12621023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12621023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16055738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9747976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9133587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9108549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747156

BMC Genomics 2009, 10:152

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.
43.

44.

Thomas S, Yu MC, Sturm NR, Campbell DA: A non-universal tran-
scription factor? The Leishmania tarentolae TATA box-bind-
ing protein LtTBP associates with a subset of promoters. Int
J Parasitol 2006, 36(10-11):1217-1226.

Schimanski B, Ma L, Gunzl A: Failure to detect binding of
Trypanosoma brucei SNAPc to U2 and Ué snRNA gene
sequences by in vitro transcription competition and pull-
down assays. Mol Biochem Parasitol 2004, 137(2):293-296.

Ruan JP, Arhin GK, Ullu E, Tschudi C: Functional characterization
of a Trypanosoma brucei TATA-binding protein-related fac-
tor points to a universal regulator of transcription in
trypanosomes. Mol Cell Biol 2004, 24(21):9610-9618.

Schimanski B, Brandenburg J, Nguyen TN, Caimano MJ, Gunzl A: A
TFIIB-like protein is indispensable for spliced leader RNA
gene transcription in Trypanosoma brucei. Nucleic Acids Res
2006, 34(6):1676-1684.

Palenchar JB, Liu W, Palenchar PM, Bellofatto V: A divergent tran-
scription factor TFIIB in trypanosomes is required for RNA
polymerase ll-dependent spliced leader RNA transcription
and cell viability. Eukaryot Cell 2006, 5(2):293-300.

Lecordier L, Devaux S, Uzureau P, Dierick JF, Walgraffe D, Poel-
voorde P, Pays E, Vanhamme L: Characterization of a TFIIH
homologue from Trypanosoma brucei. Mol Microbiol 2007,
64(5):1164-118I.

Lee JH, Nguyen TN, Schimanski B, Gunzl A: Spliced leader RNA
gene transcription in Trypanosoma brucei requires transcrip-
tion factor TFIIH. Eukaryotic cell 2007, 6(4):641-649.

Nguyen TN, Schimanski B, Gunzl A: Active RNA polymerase | of
Trypanosoma brucei harbors a novel subunit essential for
transcription. Molecular  and  cellular  biology 2007,
27(17):6254-6263.

Martinez-Calvillo S, Saxena A, Green A, Leland A, Myler P): Charac-
terization of the RNA polymerase Il and Il complexes in
Leishmania major. Int | Parasitol 2007, 37(5):491-502.
Brandenburg |, Schimanski B, Nogoceke E, Nguyen TN, Padovan JC,
Chait BT, Cross GA, Gunzl A: Multifunctional class | transcrip-
tion in Trypanosoma brucei depends on a novel protein com-
plex. The EMBO journal 2007, 26(23):4856-4866.

Nguyen TN, Schimanski B, Zahn A, Klumpp B, Gunzl A: Purification
of an eight subunit RNA polymerase | complex in Trypano-
soma brucei. Mol Biochem Parasitol 2006, 149(1):27-37.

Schimanski B, Nguyen TN, Gunzl A: Highly efficient tandem affin-
ity purification of trypanosome protein complexes based on
a novel epitope combination. Eukaryotic  cell 2005,
4(11):1942-1950.

Masina S, Zangger H, Rivier D, Fasel N: Histone HI regulates
chromatin condensation in Leishmania parasites. Exp Parasitol
2007, 116(1):83-87.

Aslund L, Carlsson L, Henriksson ], Rydaker M, Toro GC, Galanti N,
Pettersson U: A gene family encoding heterogeneous histone
HI proteins in Trypanosoma cruzi. Mol Biochem Parasitol 1994,
65(2):317-330.

Respuela P, Ferella M, Rada-Iglesias A, Aslund L: Histone acetyla-
tion and methylation at sites initiating divergent polycis-
tronic transcription in Trypanosoma cruzi. | Biol Chem 2008,
283(23):15884-15892.

Ochaya S, Respuela P, Simonsson M, Saraswathi A, Branche C, Lee J,
Bua J, Nilsson D, Aslund L, Bontempi EJ, et al.: Characterization of
a Trypanosoma cruzi acetyltransferase: cellular location,
activity and structure. Mol  Biochem  Parasitol 2007,
152(2):123-131.

Horn D: Introducing histone modification in trypanosomes.
Trends Parasitol 2007, 23(6):239-242.

Xu W, Aparicio |G, Aparicio OM, Tavare S: Genome-wide map-
ping of ORC and Mcm2p binding sites on tiling arrays and
identification of essential ARS consensus sequences in S. cer-
evisiae. BMC genomics 2006, 7:276.

Zheng M: ChIP-chip: data, model and analysis. In Thesis (Ph. D.)
UCLA; 2005.

Elias MCQB, Marques-Porto R, Freymiiller E, Schenkman S: Tran-
scription rate modulation through the Trypanosoma cruzi life
cycle occurs in parallel with changes in nuclear organisation.
Mol Biochem Parasitol 2001, 112(1):79-90.

Thomas S, Westenberger SJ, Campbell DA, Sturm NR: Intragen-
omic spliced leader RNA array analysis of kinetoplastids

45.

46.

47.

48.

49.

50.

http://www.biomedcentral.com/1471-2164/10/152

reveals unexpected transcribed region diversity in Trypano-
soma cruzi. Gene 2005, 352:100-108.

Puechberty ], Blaineau C, Meghamla S, Crobu L, Pages M, Bastien P:
Compared genomics of the strand switch region of Leishma-
nia chromosome | reveal a novel genus-specific gene and
conserved structural features and sequence motifs. BMC
Genomics 2007, 8:57.

Das A, Zhang Q, Palenchar B, Chatterjee B, Cross GA, Bellofatto V:
Trypanosomal TBP functions with the multisubunit tran-
scription factor tSNAP to direct spliced-leader RNA gene
expression. Molecular and cellular biology 2005, 25(16):7314-7322.
Schimanski B, Laufer G, Gontcharova L, Gunzl A: The Trypanosoma
brucei spliced leader RNA and rRNA gene promoters have
interchangeable TbSNAP50-binding elements. Nucleic acids
research 2004, 32(2):700-709.

Tosato V, Ciarloni L, Ivens AC, Rajandream MA, Barrell BG, Bruschi
CV: Secondary DNA structure analysis of the coding strand
switch regions of five Leishmania major Friedlin chromo-
somes. Curr Genet 2001, 40(3):186-194.

Bolshoy A, McNamara P, Harrington RE, Trifonov EN: Curved DNA
without A-A: experimental estimation of all 16 DNA wedge
angles. Proc Natl Acad Sci USA 1991, 88(6):2312-2316.

NimbleGen: NimbleGen User's Guide. vol. Roche NimbleGen 2008
[http://www.nimblegen.com/products/lit/chip_userguide v4p|.pdf].

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 15 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16753168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16753168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15383299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17542913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17275824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17972917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17972917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16730080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17207482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7969272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18400752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17270289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17270289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17433777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17067396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11166389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11166389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15925459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17319967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17319967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14757834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14757834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11727994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11727994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006170
http://www.nimblegen.com/products/lit/chip_userguide_v4p1.pdf
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Kinetoplastid disease
	Regulation of gene expression in kinetoplastids
	Transcription in model eukaryotes
	Kinetoplastid transcription
	Whole-genome maps of transcription factor occupancy

	Results
	Validation of antisera effective for L. major ChIP analyses
	Whole-genome occupancy maps for TBP, SNAP50, histone H3, and acetylated histone H3
	Histone H3 ChIP signal peaks are found at all divergent strand-switch regions, as well as some telomeres and a few other sites
	TBP and SNAP50 bind upstream of the peaks of H3 acetylation
	H3 acetylation levels are higher in rapidly dividing cells
	TBP and SNAP50 bind to the SL RNA, tRNA, snRNA, and 5S rRNA gene promoters
	Unexpected patterns of TBP and SNAP50 binding within rRNA genes
	Sequence motifs associated with TBP and SNAP50-binding
	Summary

	Discussion
	Conclusion
	Materials and methods
	Chromatin Immunoprecipitation (ChIP)
	Microarray design
	Analysis of microarray data
	Peak identification, motif discovery, and curvature analysis

	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

