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Abstract von Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that causes 
a predisposition to renal clear-cell carcinoma, hemangioblastoma, pheochromocytoma, and 
autosomal-recessive familial polycythemia. pVHL is the substrate conferring subunit of an E3 ubiq-
uitin ligase complex that binds to the three hypoxia-inducible factor alpha subunits (HIF1-3α) for 
polyubiquitylation under conditions of normoxia, targeting them for immediate degradation by 
the proteasome. Certain mutations in pVHL have been determined to be causative of VHL disease 
through the disruption of HIFα degradation. However, it remains a focus of investigation and debate 
whether the disruption of HIFα degradation alone is sufficient to explain the complex genotype-
phenotype relationship of VHL disease or whether the other lesser or yet characterized substrates 
and functions of pVHL impact the development of the VHL disease stigmata; the elucidation of 
which would have a significant ramification to the direction of research efforts and future manage-
ment and care of VHL patients and for those manifesting sporadic counterparts of VHL disease. 
Here, we examine the current literature including the other emergent pseudohypoxic diseases and 
propose that the VHL disease-phenotypic spectrum could be explained solely by the varied disrup-
tion of HIFα signaling upon the loss or mutation in pVHL.

Introduction
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome passed down in an autosomal-
dominant fashion. It is named after physicians Eugen von Hippel and Arvid Lindau, who first described 
families with a genetic predisposition to retinal and central nervous system (CNS) hemangioblastoma, 
respectively (Lindau, 1904; Davison et al., 1936; Hippel, 1904). VHL disease is rare, afflicting approx-
imately 1 in 35,000 people (Neumann and Wiestler, 1991; Maher et al., 1991). In addition to the 
retinal and central nervous system hemangioblastoma, other cardinal features of VHL disease include 
clear-cell renal cell carcinoma (RCC), the commonest form of kidney cancer, and pheochromocytoma, 
a neuroendocrine tumor derived from adrenal chromaffin cells, in addition to pancreatic, renal and 
epididymal cysts, endolymphatic sac tumors, and polycythemia (Lindau, 1904 ; Davison et al., 1936; 
Hippel, 1904).

In 1993, the VHL gene was cloned and mutations of the locus were determined to be causative 
of VHL disease (Latif et al., 1993). By sequencing the VHL gene in various families afflicted with VHL 
disease, a complex genotype-phenotype correlation emerged. First, VHL disease is broadly separated 
into two types based on the propensity of developing pheochromocytoma where Type 1 patients 
have a low risk while Type 2 patients have a high risk of pheochromocytoma. Type 1 patients also 
develop hemangioblastoma and RCC. Type 2 disease is further stratified into Type 2a (high risk of 
hemangioblastoma with low risk of RCC), Type 2b (high risk of hemangioblastoma and RCC), and Type 
2c (only pheochromocytoma without the other disease manifestations). Moreover, VHL mutations 
have been found to be causative of autosomal-recessive familial polycythemia, which is sometimes 
referred to as Type 3 VHL disease (Table 1). While polycythemia refers to a nonspecific increase in 
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the volume percentage of red blood cells in the blood, also known as hematocrit, this increase in VHL 
disease and other pseudohypoxic diseases is known to result from excess red blood cell production, 
termed erythrocytosis. VHL disease Type 1 and 2 are inherited in an autosomal-dominant manner, 
which predisposes an individual to developing cancer upon the loss of the remaining wild-type allele. 
In other words, there must be a loss of heterozygosity resulting either from large deletions, mitotic 
recombination, or hypermethylation of the wild-type allele in a susceptible cell for a tumor to form 
(Prowse et al., 1997). However, to develop polycythemia associated with VHL disease Type 3, an 
individual must inherit two mutated VHL alleles, meaning it is an autosomal-recessive disease.

The protein product of VHL is termed pVHL, which forms an E3 ubiquitin ligase complex (pVHL-E3) 
with elongin B, elongin C, cullin 2, and Rbx1 (Kamura et al., 1999; Cardote et al., 2017). pVHL serves 
as the substrate-conferring component of the pVHL-E3 ligase, an integral component in the metazoan 
oxygen-sensing pathway (Figure 1). The best-characterized substrates of the pVHL-E3 ligase remain 
the hypoxia-inducible factor (HIF) alpha subunit paralogs HIF1α, HIF2α, and HIF3α. HIFs are heterod-
imeric transcription factors consisting of an oxygen-labile α subunit and a constitutively expressed β 

Table 1. VHL disease classification.

VHL disease

Type 1 Type 2A Type 2B Type 2C Type 3

RCC + - + - -

Hemangioblastoma + + + - -

PPGL - + + + -

Polycythemia - - - - +

Fe2+
OHOH OHOH

PHD

HIFα/β

HIFα/β

OHOH

OHOH

Ub
Ub
Ub
Ub
Ub

O2
+

α-Ketoglutarate

O2

CO2
+

Succinate

HIFα

HIFα

E2 Ub

E2

Nuclear Translocation

Transcriptional regulation
of hypoxia genes

Proteasome-mediated 
destruction

Hydroxylation 
of HIFα by PHD

Dimerization of
HIFα and HIFβ

Recognition of 
hydroxylated HIFα

by pVHL

Poly-ubiquitylation
Cytoplasm

Nucleus

HIFα

E1

Ub + ATP

ADP + Pi

E1Ub

pVHL-E3

OHOH

UbUb
Ub

Ub
Ub

UU

HIFα

Figure 1. The canonical regulatory components of the metazoan oxygen-sensing pathway. The dotted line connected to the solved HIFα fragment 
represents the unstructured C-terminal region of HIFα, which contains the oxygen dependent degradation domain. PDB codes of structures used 
to construct the protein depictions are 4ZP4 (HIF2α+HIFβ), 4ZPK (HIF2α+HIFβ+Hypoxia-response element), 5L9B (PHD2), 5N4W (Cul2 +Rbx1+EloB 
+ EloC+pVHL), and 3ZRF (EloB +EloC + pVHL). The structural representation of the pVHL-E3 ubiquitin ligase complex was constructed by aligning 
structures 5N4W and 3ZRF and keeping the most complete model of each duplicated subunit.
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subunit (Figure 1). In the presence of sufficient oxygen, prolyl hydroxylase (PHD) enzymes hydroxylate 
the conserved proline residues on HIFα, which results in pVHL binding to HIFα and subsequent poly-
ubiquitylation leading to 26 S proteasomal-mediated degradation of HIFα (Figure 1; Epstein et al., 
2001; Jaakkola et al., 2001; Ivan et al., 2001; Bruick and McKnight, 2001). Under hypoxic condi-
tions, HIFα remains unhydroxylated, escapes recognition via pVHL, and is therefore not degraded. 
This pool of stabilized HIFα is able to both dimerize with HIFβ and translocate to the nucleus where it 
transcriptionally regulates many genes involved in the adaptive hypoxic response including metabolic 
enzymes, erythropoietin (EPO), and vascular endothelial growth factor (VEGF) (Figure 1; Jiang et al., 
1996).

Although the connection between HIF deregulation and VHL disease was readily appreciated, 
a hypothesis emerged that the complicated genotype-phenotype correlation in VHL disease could 
not be fully explained by HIF dysregulation alone. This argument implies that pVHL carries out other 
cellular functions and/or targets other substrates for ubiquitin-mediated degradation that are integral 
to the manifestation of the full spectrum VHL disease phenotypes. Here, we revisit the available and 
emerging evidence surrounding the relationship between HIF and VHL disease and propose that HIF 
dysregulation is the driver of the genotype-phenotype correlation in VHL disease.

Limited evidence for non-HIF characteristics of VHL disease
The strongest evidence for additional non-HIFα related functions came from early biochemical studies 
of Type 2c pVHL mutants. Type 2c VHL disease is associated with pheochromocytoma without other 
disease phenotypes, and several Type 2c pVHL mutants were found to promote HIFα polyubiquityla-
tion at seemingly wild-type levels (Hoffman et al., 2001; Clifford et al., 2001). A second peculiarity 
centered on Type 1 VHL disease. Despite Type 1 disease driven by mutations predicted to profoundly 
inactivate pVHL, including nonsense, frameshift and splicing mutations, these patients do not develop 
pheochromocytoma (Stebbins et al., 1999; Chen et al., 1995; Crossey et al., 1995; Stolle et al., 
1998). Thus, pheochromocytoma seemed uncoupled from HIF stabilization (more on this later).

To better understand VHL disease, researchers searched for other targets and/or functions of 
pVHL. Notably, pVHL has been linked to the regulation of extracellular matrix proteins collagen and 
fibronectin (Ohh et  al., 1998; Kurban et  al., 1998a; Grosfeld et  al., 2007; Stickle et  al., 2004; 
Kurban et al., 1998b), microtubules (Thoma et al., 2009; Hergovich et al., 2006; Hergovich et al., 
2003), primary cilia (Montani et al., 2010; Esteban et al., 2006), NFκB (Cummins et al., 2006; Yang 
et al., 2007), Human Antigen R (HuR) (Danilin et al., 2009; Massfelder et al., 2004), AKT kinase 
(Guo et al., 2016), p14/ARF (Minervini et al., 2015; Lai et al., 2011), and ZHX2 (Zhang et al., 2018).

A subset of these potential pVHL regulatory targets, including AKT, are proposed to interact with 
pVHL in a hydroxylproline-dependent manner following PHD-mediated hydroxylation. Notably, a 
systemic attempt to detect PHD-mediated hydroxylation of 24 non-HIFα substrates failed to repro-
duce and confirm previously published findings (Cockman et al., 2019). Further, a list of potential 
pVHL substrates, including fibronectin, collagen, tubulin, HuR, and p14/ARF, have been identified as 
pVHL interactors in high throughput studies with additional low-throughput supporting evidence in 
the BioGRID database (Oughtred et al., 2021). Each of these potential interactors, however, have 
only been identified in a single high-throughput experiment and all but HuR have been identified 
by the same high-throughput study (Lai et al., 2011; Oughtred et al., 2021). In contrast, the HIFα 
substrates of pVHL have been identified by numerous high-throughput and low throughput studies 
(143 identify HIF1α and 19 identify HIF2α in the BioGRID database) demonstrating a disparity in the 
confidence of the interactions (Oughtred et al., 2021). Thus, strong evidence of non-HIFα related 
bona fide biological functions of pVHL remains lacking.

Evidence for a HIF-centric model of VHL disease
Clinical evidence
Since the association of pVHL mutations with VHL disease, clinicians noted that largely unique groups 
of pVHL mutations were associated with the different types of VHL disease. It has been generally 
accepted that mutations that more markedly impact the ability of pVHL to degrade HIFα result in 
more ‘severe’ VHL disease phenotypes. Patients with large deletion and frameshift mutations gener-
ally develop Type 1 VHL disease, while patients with missense mutations develop Type 2 disease 
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(Chen et al., 1995; Stolle et al., 1998; Maher et al., 1996). This concept can be further extrapolated 
to explain the heterogeneity of phenotypes within Type 2 VHL disease. Type 2c pVHL mutants, for 
example, cause exclusively pheochromocytoma and have been shown to degrade HIFα nearly as 
well as wild-type pVHL (Hoffman et al., 2001). Further, some pVHL mutations are associated with 
incomplete phenotypic penetrance, which has even been observed among members of the same VHL 
disease family. Thus, we propose that the various clinical phenotypes associated with VHL disease 
require different ‘doses’ of HIF. From polycythemia to pheochromocytoma to hemangioma/heman-
gioblastoma to RCC, a greater dose of HIF is required for disease onset. Inter-family heterogeneity 
among VHL disease patients reflects a differential loss of pVHL function — a mutation that completely 
abrogates the ability of pVHL to negatively regulate HIF leads to a greater HIF dose and more severe 
phenotype than mutations that only mildly impair pVHL function. Lastly, observed intra-family hetero-
geneity supports the idea that different phenotypes associated with VHL disease exist on a gradient 
of increasing HIF dose. Some individuals in a family, due to environmental, metabolic, and/or genetic 
factors, experience greater stabilization of HIF than other relatives with the same mutation, which 
leads to the development of phenotypes otherwise associated with greater loss of pVHL function 
(Figure 2).

pVHL Y98 and Y112 are recognized as residues of interest as different missense mutations at these 
sites can elicit drastically different phenotypes. Both the Y98H and Y112H VHL mutations are classi-
cally associated with VHL Type 2a disease with a high penetrance of pheochromocytoma, but while 
the Y112H mutation appears to result in hemangioma/hemangioblastoma in only 20% of cases, the 
Y98H mutation displays a greater penetrance at ~50% (Brauch et al., 1995; Chen et al., 1996). This 
observation is also consistent with the fact that patients with the Y98H pVHL mutation are diagnosed 
earlier (mean of 19.7 years-old) than patients with the Y112H pVHL mutation (28.8 years-old) (Nielsen 
et al., 2011a). The fact that hemangioma/ hemangioblastoma penetrance lags behind pheochromo-
cytoma penetrance in VHL disease patients with the Y112H mutation points to the idea of a gradient, 
where only a subset of these Type 2a patients develop the cardinal feature of vascular hemangioma/
hemangioblastoma tumors.

Figure 2. HIF-centric unifying model of VHL and other pseudohypoxic diseases. See text for details. VHL, Elongin B, Elongin C (PDB:1VCB); HIF2α C-
Terminal PAS Domain (PDB:3F1P); HIF1α C-Terminal PAS Domain (PDB:4ZPR); PHD2 Catalytic Core (PDB: 5L9B).

https://doi.org/10.7554/eLife.80774
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In addition, a small number of patients with Type 2a pVHL mutants also develop RCC. Indeed, 
Type 2a VHL disease is classically defined as a ‘low’ chance of RCC rather than ‘no’ chance. A study 
of 16 families harboring the Y98H mutation found that some affected individuals exhibited symp-
toms consistent with Type 1 or 2b VHL disease. Out of 116 affected family members, 73 developed 
pheochromocytoma while 4 developed RCC (Brauch et al., 1995). Two individuals developed RCC in 
addition to pheochromocytoma (Type 2b) and two solely developed RCC (Type 1). Similarly, ~3% of 
individuals with the Y112H mutations also develop RCC (Nielsen et al., 2011b). In comparison, in a 
family harboring Y112N, 7 individuals developed RCC and only one developed pheochromocytoma, 
suggesting Y112N presents more commonly as Type 1 VHL disease (Bradley et al., 1999).

While Type 2c VHL disease is associated with pheochromocytoma, Type 2c mutations can some-
times ‘spillover’ and also cause hemangioma/hemangioblastoma. One example is the classic Type 2c 
VHL mutant V84L, which is associated solely with pheochromocytoma in most patients but in some 
cases, vascular tumors, including the possibility of spinal hemangioblastoma, and renal cysts are 
observed (Abbott et al., 2006). Similarly, the Type 2c VHL mutant G93S was linked with pheochro-
mocytoma across multiple generations in a family with VHL disease, but further diagnostic workup 
revealed two retinal angiomas in the index patient and bilateral renal cysts in the index patient’s father 
(Schreinemakers et  al., 2007). While renal cysts can be found in a population not carrying pVHL 
mutations, it is important to note that this could be evidence of progression of Type 2c VHL disease 
as individuals age.

As mentioned above, Type 2c VHL disease has perplexed the field as Type 2c pVHL mutants appear 
to regulate HIFα in a manner similar to wild-type pVHL, which would suggest that pheochromocytoma 
is uncoupled from HIFα degradation (Hoffman et al., 2001; Clifford et al., 2001). For example, a 
patient with bilateral pheochromocytoma and no other VHL-related symptoms was found to harbor 
a Y175C VHL mutation. When compared to wild-type pVHL, Y175C pVHL was able to degrade HIF 
efficiently under normoxic conditions (Astapova et  al., 2018). But while in vitro studies failed to 
associate pheochromocytoma pathogenesis with HIF stabilization in the context of VHL disease, clin-
ically observed EPAS1 (encodes HIF2α) and EGLN1 (encodes PHD2) mutations that result in HIF2α 
stabilization are now known to cause disease phenotypes that partially overlap with the VHL disease 
spectrum. Of particular interest, pheochromocytoma carcinogenesis is clinically associated with PHD2 
loss-of-function mutations and HIF2α gain-of-function mutations in addition to pVHL loss-of-function 
mutations (Gardie et al., 2014; Ladroue et al., 2008; Därr et al., 2016; Taieb et al., 2016; Tarade 
et al., 2018). Therefore, it is possible that previous experiments suggesting the near wild-type activity 
of Type 2 c pVHL mutants lacked the sensitivity to assess differences in HIFα stabilization relative to 
wild-type pVHL that are biologically relevant. It is also possible that there is a more complex interplay 
between the relative stabilization of the different HIFα paralogs, which may be differentially affected 
by certain pVHL mutations.

HIF2-driven disease is particularly interesting because like VHL disease, it also presents as a gradient 
with escalating phenotypes comparable to Type 3, Type 2c, and even Type 2a VHL disease. Patients 
with mutations in EPAS1, the gene encoding HIF2α, have been reported to develop polycythemia 
and neuroendocrine tumors in dozens of patients (Därr et al., 2016; Taieb et al., 2016; Tarade et al., 
2018). HIF2-driven disease can be segregated into two broad classes: Class 1 characterized by the 
presence of pheochromocytoma and/or paraganglioma (PPGL) with or without polycythemia, and 
Class 2 in which patients present solely with polycythemia (Tarade et al., 2018). Class 1 is further 
divided into three sub-classes where Class 1a presents with PPGL, somatostatinoma, and polycy-
themia, Class 1b presents with PPGL and polycythemia, and Class 1c presents with PPGL exclusively 
(Table 2). More rarely, patients with gain-of-function HIF2α mutations also present with hemangiomas 

Table 2. HIF2-driven disease classification.

HIF2-driven disease

Class 1A Class 1B Class 1C Class 2

PPGL + + + -

Somatostatinoma + - - -

Polycythemia + + - +

https://doi.org/10.7554/eLife.80774
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and hemangioblastoma. While there is only a single case of hemangioblastoma linked to a HIF2α gain-
of-function mutation, a unique and uncharacterized double F374Y and Q561K missense mutation, 
(Taieb et al., 2016) the clinical literature includes three reports of patients with HIF2-driven disease 
developing hemangiomas of the retina, liver, and cranial vault (Pacak et al., 2013; Dmitriev et al., 
2020; Buffet et al., 2014). All three of these patients also developed polycythemia and pheochro-
mocytoma/paraganglioma and were determined to have a HIF2α gain-of-function mutation otherwise 
associated with a complete penetrance of PPGL. While there is less clinical evidence of HIF2α driving 
hemangioma, relative to PPGL, liver hemangiomas associated with loss-of-pVHL mouse models can 
be rescued by co-deletion of HIF2α or HIFβ, which provides further evidence for the gatekeeping role 
of HIF2α in hemangioma and hemangioblastoma (Rankin et al., 2008; Rankin et al., 2005). Much 
like Type 2c VHL disease, Class 1a/b HIF2-driven disease can sometimes ‘spillover’ and trigger the 
formation of vascular hemangioma tumors. The remarkable fact that HIF2α gain-of-function mutations 
can phenocopy Type 2a VHL disease provides strong evidence for the role of HIF2α in Type 2c VHL 
disease. Not only do some canonical Type 2c VHL mutations also cause hemangiomas, a phenotype 
strongly linked with HIF2α signaling in Type 2a VHL disease, some VHL disease patients concurrently 
develop polycythemia, pheochromocytoma, and somatostatinoma, which matches the phenotypic 
profile of Class 1a HIF2-driven disease (Karasawa et al., 2001).

PHD2 mutations have been widely found to cause polycythemia. More rarely, PHD2 mutations, 
like PHD2 H374R and PHD2 A228S, trigger development of pheochromocytoma and/or paragan-
glioma (PPGL) in addition to polycythemia (Gardie et al., 2014; Ladroue et al., 2008; Yang et al., 
2015). The patient harboring the H374R mutant originally presented with erythrocytosis, but a tumor 
matching the characteristics of a paraganglioma was later diagnosis at 43 years old (Ladroue et al., 
2008) This individual displayed loss of the remaining wild-type EGLN1 allele. This observed loss of 
heterozygosity suggests that PHD2 plays a tumor suppressor role in chromaffin cells and the closely 
related paraganglia cells that are transformed in paraganglioma. Other reports of PHD2 mutation in 
polycythemia note that patients inherit a single mutated allele (Percy et al., 2006; Percy et al., 2007; 
Barradas et al., 2018). This could imply that haploinsufficiency of wild-type PHD2 might be enough to 
induce symptoms. Indeed, deletion of a single PHD2 allele or knock-in of a single mutant PHD2 allele 
in mice successfully recapitulates polycythemia, which was also found to be dependent on HIF2α 
(Arsenault et al., 2013). These cases also suggest mutations of EGLN1 may have a limited phenotypic 
range compared to VHL and HIF2-driven disease. The loss of PHD2 function may be compensated for 
by the other PHD paralogs, PHD1 and PHD3, preventing most instances of tumor formation but not 
all. Indeed, there has been one documented case of a disease-causing PHD1 mutation. This mutant, 
S61R, induced erythrocytosis development by age 6 and recurrent PPGL at age 14 (Yang et al., 2015).

There have also been documented cases of pVHL mutant-induced polycythemia (Type 3 VHL 
disease). R200W and H191D have both been identified as autosomal-recessive pVHL mutations that 
cause polycythemia (Pastore et al., 2003; Ang et al., 2002). And similarly to the role of HIF2α in liver 
hemangioma pathogenesis in loss-of-pVHL mouse models, inhibition of HIF2α rescues polycythemia 
in mouse models of polycythemia driven by the R200W mutation (Ghosh et al., 2021; Hickey et al., 
2007; Ghosh et al., 2018).

While pVHL induced polycythemia is generally inherited in an autosomal-recessive manner, a study 
investigating eight children with polycythemia revealed one case in which a family harbored a hetero-
zygous VHL mutant inducing a phenotype. Two siblings in the family were found to be heterozygous 
for D126Y and had increased levels of hematocrit and erythropoietin. One of the siblings had a history 
of tumors, developing a pulmonary angioma at age 10 and a renal subcapsular hemangioma at age 
15. This would indicate that pVHL D126Y straddles the line between Type 3 and Type 2a disease. All 
the patients in this study were young (10–19 years old; Pastore et al., 2003); therefore, it remains 
unclear whether these patients will develop tumors later in life.

Just like VHL disease, HIF2α and PHD2 mutations can present a wide range of phenotypes where 
mutations that most stabilize HIF2α cause the worst phenotypes (more on this later). Thus, mutations 
in these three separate components of the HIFα-degradation pathway — substrate (HIF2α), hydroxy-
lase (PHD2), and E3 ubiquitin ligase (pVHL) — all present with similar phenotypes. The common factor 
in the disruption of these three components of the pathway is the ultimate stabilization of HIFα, in 
particular HIF2α, and the correlation between the severity of disease and the degree of disruption to 
the HIFα degradation pathway naturally suggest that the causative factor is HIFα (Figure 2).

https://doi.org/10.7554/eLife.80774
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Biochemical evidence
The clinical evidence that pseudohypoxic diseases resulting from mutations in multiple components of 
the metazoan oxygen-sensing pathway have similar phenotypes to VHL disease suggests a common 
mechanism underlying these diseases. The notion that the magnitude of HIF stabilization is the sole 
mechanism that gives rise to the various phenotypic spectrum of VHL disease would infer that the 
downstream pathways and gene regulation by HIF have sufficient complexity to explain the multi-
faceted genotype-phenotype relationship. The oxygen-sensing pathway in humans is canonically 
comprised of three PHD paralogs (PHD1, PHD2, PHD3), three HIFα paralogs (HIF1α, HIF2α, HIF3α), 
two HIFβ paralogs (ARNT and ARNT2), and a single pVHL-E3 ligase (Figure 1; Kaelin and Ratcliffe, 
2008). The complexity of the pathway is also influenced by the differential behavior of the paralogs 
of each component; each PHD paralog has varying hydroxylation activity toward the HIFα paralogs 
(Appelhoff et al., 2004), each HIFα paralog has 2 hydroxylation sites with varying oxygen-dependent 
hydroxylation sensitivities (Tarhonskaya et al., 2015), HIF3α has multiple splice variants (Maynard 
et al., 2003) and the HIFα paralogs regulate partially overlapping as well as unique sets of genes 
(Schödel et al., 2011). Thus, the complexity of the oxygen-sensing pathway allows for mutations to 
have differential effects on HIF stabilization and the expression of downstream genes and pathways 
depending on the specific component of the pathway affected and the severity of the mutation.

The disease-associated pVHL mutations can be segregated into three categories; those that 
affect pVHL protein-protein interfaces, those that affect pVHL stability and folding, and those that 
completely inactivate pVHL through gross truncation or deletion. All VHL disease-associated muta-
tions are observed to stabilize the HIFα substrates through reductions in polyubiquitination of the 
three HIFα paralogs. However, the degree to which the HIFα substrates are stabilized varies between 
the different types of mutations (Rechsteiner et al., 2011), VHL Type 1 mutations in which pVHL is 
grossly or completely inactivated through truncation or frameshift result in maximal stabilization of 
HIFα whereas VHL Type 2 mutations affecting the folding, stability, or substrate-binding interface of 
pVHL have an intermediate effect on HIFα stabilization due to the remaining pVHL activity (Rech-
steiner et al., 2011; Knauth et al., 2006; Hacker et al., 2008; Forman et al., 2009). Among the 
various sub-types of VHL disease, multiple biochemical studies demonstrate that Type 2b mutations 
result in greater HIF stabilization than Type 2a mutations (Knauth et al., 2009; Li et al., 2007). While 
multiple studies suggest that VHL Type 2c mutations do not negatively impact the ability to regu-
late HIFα, other studies argue that Type 2c mutations result in an unstable pVHL-E3 ubiquitin ligase 
complex and a mild stabilization of HIF1α (Knauth et al., 2009). These data indicate that more delete-
rious mutations in pVHL lead to a correspondingly more HIFα stabilization, which appears to correlate 
with disease severity.

Numerous missense mutations in the C-terminal prolyl-hydroxylation site in the oxygen-dependent 
degradation domain of HIF2α have been reported to cause polycythemia, pheochromocytoma, para-
ganglioma, somatostatinoma, hemangioma, and in one case hemangioblastoma (Taieb et al., 2016; 
Tarade et al., 2018). These phenotypes linked to HIF2α mutations have been collectively referred to 
as HIF2-driven disease, which has been broadly separated into two classes where Class 1 is causative 
of neuroendocrine tumors including paraganglioma, pheochromocytoma, and somatostatinoma (as 
well as possible hemangioma/hemangioblastoma) with or without polycythemia while Class 2 is caus-
ative of only polycythemia (Tarade et al., 2018). Notably, the HIF2-driven disease classes are linked 
to unique sets of HIF2α mutations defining a genotype-phenotype correlation similar to VHL disease 
(Tarade et al., 2018). These HIF2α mutations reduce the affinity of hydroxylated HIF2α to pVHL with 
increasing reductions in binding affinity correlated to increasing severity of the disease phenotype 
with Class 1 mutations being more deleterious than Class 2 mutations (Tarade et al., 2018).

As mentioned above, there are also reports of mutations in PHD2 and one mutation in PHD1, 
which cause deficiencies in the hydroxylation of HIFα paralogs and therefore regulation of HIFα. These 
PHD mutations are causative of polycythemia and PPGL (Ladroue et al., 2008; Yang et al., 2015; 
Ladroue et al., 2012). Studies have shown that PHD2 mutants have an impaired ability to reduce 
HIF1α and HIF2α levels when transfected and expressed in mammalian cells (Yang et al., 2015; Percy 
et al., 2006; Ladroue et al., 2012). Further, the PPGL-associated H374R PHD2 mutation was found to 
severely abrogate the capacity for HIF2α regulation relative to most mutations that cause only polycy-
themia (Ladroue et al., 2012). Thus, there are similarities between VHL disease, HIF2-driven disease 
and the pseudohypoxic disease caused by PHD mutations, which are driven by a common mechanism, 
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the dysregulation of HIFα paralogs, particularly HIF2α. The inhibition of hydroxylation or abrogation 
of recognition of hydroxylated HIF2α by pVHL leading to the dysregulation of HIF2α may be sufficient 
to explain the disease phenotypes of all three pseudohypoxic diseases.

However, mutations in HIF2ɑ and PHD2 have not been observed to be causative of RCC indi-
cating that HIF2α stabilization independent of improper HIF1α regulation is not sufficient to drive the 
development of RCC. This is interesting as in vivo experiments using nude mouse xenograft assays 
provide some insight into the role of HIF2α in RCC. Tumors extracted from mice injected with 786-O 
cells co-expressing Type 2a pVHL mutant (Y98H or Y112H) and a stabilized form of HIF2α (proline 
hydroxylation site double mutant, P405A and P531A) were observed to have increased RCC tumor 
mass as compared to mice injected with cells lacking the stabilized HIF2α. The opposite effect was 
observed in nude mouse xenograft assays where mice were injected with 786-O cells co-expressing 
Type 2b mutant pVHL (Y98N or Y112N) and a HIF2α-targeted shRNA to knockdown HIF2α expres-
sion. Additionally, a ~50% decrease in the number of mice with tumors relative to mice injected 
with cells expressing the control shRNA was observed with the Y112N pVHL mutant. These obser-
vations suggested that increases to intracellular HIF2α concentration promotes RCC tumor growth 
and decreases to the intracellular HIF2α concentration inhibits tumor growth and initiation (Li et al., 
2007). A recent mouse model system using induced gene deletion of combinations of VHL, HIF1α, 
HIF2α, Trp53, and Rb1 revealed that RCC tumor formation is strongly dependent on HIF1α (Hoefflin 
et al., 2020). VHLΔ/ΔHIF1αΔ/Δ mice (Note: all mice in the study were also Trp53 Δ/ΔRb1Δ/Δ) showed a 
drastic reduction in tumor frequency relative to VHLΔ/Δ mice. VHLΔ/ΔHIF2αΔ/Δ mice by comparison only 
had a moderate reduction in tumor frequency relative to VHLΔ/Δ mice (Hoefflin et al., 2020). It was 
also observed that the stabilization of both HIF1α and HIF2α in VHLΔ/Δ mice promotes the clear cell 
phenotype of tumor cells while tumor cells from VHLΔ/ΔHIF1αΔ/Δ mice and VHLΔ/ΔHIF2αΔ/Δ mice had 
reduced frequency of the clear cell phenotype (Hoefflin et al., 2020). These data suggest a more 
complex relationship between the relative expression of HIF1α and HIF2α in RCC. Taken together, the 
deregulation of HIF2α expression alone is sufficient to explain a subset of VHL disease phenotypes 
(i.e. Type 2A, 2C, and 3 VHL disease), and there are data to suggest that the remaining phenotypes 
related to RCC (i.e. Type 1 and 2B VHL disease) could be explained by the co-involvement of HIF1α 
and HIF2α.

Dual role of HIF1α and HIF2α in kidney cancer
Given the clear clinical and biochemical evidence pointing towards HIF2α driving polycythemia and 
PPGL, the balance of HIF-dependent or HIF-independent pVHL roles in RCC instead becomes the 
focus. Unlike the other cardinal stigmata associated with VHL disease, loss-of-function PHD2 muta-
tions or gain-of-function HIF2α mutations have not been observed in RCC (Morris et al., 2009; Astuti 
et al., 2011). This suggests that either the dysregulation of HIF-independent VHL functions plays a 
role in RCC or the coupled deregulation of HIF1α and HIF2α is uniquely required for RCC.

Some researchers argue that HIF2α is the main driver of RCC arising from VHL disease. Human 
RCC 786-O cell line lacks both pVHL and HIF1α while overproducing HIF2α, making them useful for 
studying VHL disease. 786-O cells transfected with HIF2α P405A/P531A double mutants (unable to be 
hydroxylated by PHDs) can induce tumors in nude mice when implanted. Growth of these tumors can 
be reduced via siRNA-mediated knockdown of HIF2α, but this defect cannot be rescued by expres-
sion of a basic helix-loop-helix (bHLH) HIF2α mutant incapable of DNA binding (Kondo et al., 2003; 
Kondo et al., 2002; Zimmer et al., 2004). This suggests HIF2α suppression is necessary for pVHL 
tumor suppression and that HIF2α is, therefore, a driver of RCC. There is also evidence that the loss of 
chromosome 14q, harboring the HIF1α gene, is a hallmark of RCC metastasis and results in poor prog-
nosis for patients (Shen et al., 2011; Monzon et al., 2011; Turajlic et al., 2018). In addition, downreg-
ulation of HIF1α in kidney cancer cells promotes tumor growth, while supplementing HIF1α deficient 
cell lines with HIF1α leads to tumor regression (Shen et al., 2011). These data argue that HIF1α may 
have a tumor suppressive role as low levels or loss of HIF1α is associated with tumor progression while 
HIF1α supplementation reduces tumor growth. Altogether, a more complicated relationship between 
HIF1α and HIF2α in their roles in RCC development is suggested.

Other convincing data on the RCC tumorigenesis process comes from recent genetic mouse 
models. Through the inactivation of pVHL via conditional knockout in collecting ducts and distal 
tubules, mice develop overt carcinoma (Pritchett et  al., 2015). Deletion of HIF1α but not HIF2α 
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completely abolishes tumorigenesis in these models (Pritchett et  al., 2015). Further, the forced 
expression of HIF1α leads to the formation of dysplasia, cysts, and precancerous lesions while HIF2α 
expression results in only minor cellular phenotypes (Fu et  al., 2011; Fu et  al., 2015; Fu et  al., 
2013). Most recent models highlight the role of both HIF1α and HIF2α in RCC (Hoefflin et al., 2020; 
Pritchett et al., 2015; Fu et al., 2015; Schönenberger et al., 2016). Further, common mutations in 
other tumor suppressors, such as SWI/SNF protein PBRM1, have been linked to the amplification of 
HIF1α signaling (Nargund et al., 2017; Gao et al., 2017).

In conjunction, genetic mouse models and xenograft models suggest a unique role for HIF1α in 
the development of RCC. HIF1α is absolutely required for the initial dysplasia and cyst formation 
that defines the early stages of tumorigenesis while both HIF1α and HIF2α are required for overt 
carcinoma. In an established tumor, like those used to create the cell lines used in xenograft studies, 
HIF1α may suppress tumor growth and/or metastasis, and the loss of HIF1α therefore may induce 
worse prognoses. At minimum, HIF1α is expendable once a tumor is established. This model is 
further supported by the staining of human tissues, where HIF1α and carbonic anhydrase IX (CAIX) 
staining is prominent in precancerous lesions and cysts while HIF2α is expressed most in overt carci-
noma (Mandriota et al., 2002). It is possible therefore, HIF1α first acts as an oncogene and tumor 
initiator but following a switch in HIF expression, it acts as a tumor suppressor, preventing disease 
progression.

Importantly, this model of RCC does not need to appeal to HIF-independent functions of pVHL 
to explain the broad process of tumorigenesis. For example, multiple studies have linked dysregu-
lation of fibronectin deposition to the loss of pVHL function (Ohh et al., 1998; Tang et al., 2006). 
The loss of pVHL is associated clinically with both the stabilization of HIF1 and the inappropriate 
cytoplasmic accumulation of fibronectin in the earliest lesions and cysts that appear during the 
RCC transformation process (Mandriota et al., 2002). So while loss of pVHL function is correlated 
with the dysregulation of some matrix proteins like fibronectin and collagen, only HIF stabiliza-
tion is causally linked with the development of VHL disease. Other functions of pVHL may indeed 
play a role and impact cellular phenotypes, but the transformation process itself can be driven by 
the coupled, perhaps interlinked, regulation of HIF1α and HIF2α. This should be noted and taken 
into consideration as novel HIF-PHI (Prolyl-Hydroxylase Inhibitor) drugs begin to gain widespread 
approval and use.

Other considerations
Distinguishing SNPs from disease-causing mutations
When studying mutations in VHL, EGLN1, and EPAS1, it is imperative to exclude single nucleo-
tide polymorphisms (SNP), hypomorphic alleles, and passenger mutations observed in individuals 
presenting with pseudohypoxic diseases when other verified disease-causing mutations are also 
present. These apparent mutations are not causative of disease and thus can confound genotype-
phenotype relationships. One example of this is the P25L VHL mutant. This mutation was found in 
conjunction with another VHL mutant P86R in a patient diagnosed with VHL disease. P86R has been 
identified as a disease-causing mutation, suggesting P25L is a rare polymorphic allele of VHL rather 
than a disease-causing mutation (Rothberg et al., 2001). When considering that P25L localizes to 
the N-terminal acidic domain, which has no known role in regulating HIF, we argue that this mutation 
should be excluded from genotype-phenotype studies.

Although most reported HIF2α mutations cluster around the C-terminal hydroxylation site, P531, 
a handful impact residues with no clear role in HIFα regulation. Although it is tempting to speculate 
about new modes of HIF regulation, most of these mutations present as rare SNPs, including F374Y 
(rs150797491), M538I (rs61757375), and T519M (rs377001303). Indeed, by comparing the frequency 
of the previously mentioned F374 allele in cohorts with and without PPGL, a lifetime penetrance of 
only 5% was predicted (Dwight et al., 2021). This is consistent with the observation that in familial 
cases, the F374Y mutation is uncoupled from the PPGL phenotype (Lorenzo et  al., 2013). Thus, 
mutations with well-characterized biochemical or molecular mechanism and firmly associated with a 
particular phenotype ought to be the focus of future genotype-phenotype studies and care should be 
taken to assess whether novel mutations are truly disease causing or not.
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The intersection of genetic lesions and environment
In addition to the presence of SNPs mis-identified as bona fide disease-causing mutations, those 
investigating the genetic basis of pseudohypoxic diseases must also keep in mind the interaction 
between genetic lesions and the environment. We argue that environmental factors can complicate 
disease presentation. Generally, hypoxemia associated with living at altitude or a chronic health condi-
tion like cyanotic heart disease is a known risk factor for developing a carotid body paraganglioma 
(Lack, 1977; Lack, 1978; Arias-Stella and Valcarcel, 1976; Heath et al., 1970). Further, it has been 
reported that patients with germline mutations in SDHD, the gene encoding succinate dehydroge-
nase subunit D, are more likely to present with multiple PPGL tumors if they live at altitude than 
patients living at sea level (Astrom et al., 2003). The implication is that low levels of hypoxemia or 
systemic hypoxia increases HIF2α activity, which drives hyperplasia and increases the odds of multiple 
transformation events occurring over time (Astrom et al., 2003). It is also broadly accepted that as 
an individual ages, the risk of cancer increases due to various factors such as telomere shortening and 
accumulated exposure to carcinogens (Anisimov, 2003). Patients with pseudohypoxic disease there-
fore may develop additional symptoms as they age, shifting their disease presentation into a different 
class or type.

These observations may help deconvolute the spectrum of phenotypes relating to HIF2 disease-
causing mutations. Although there is a strong genotype-phenotype relationship regarding cancer-
causing and non-cancer-causing HIF2α mutations, patients presenting with PPGL display a wide range 
of clinical outcomes, ranging from a single PPGL tumor and no polycythemia to multiple PPGL tumors 
with polycythemia to PPGL tumors comorbid with both polycythemia and somatostatinoma (Tarade 
et al., 2018). As there is no clear genotype-phenotype relationship governing these possible clinical 
outcomes, we instead propose that environmental factors governing overall oxygen saturation likely 
play a key role (Tarade et al., 2018).

Indeed, even the boundary between cancer-causing and non-cancer-causing mutations in HIF2-
driven disease may become blurred as more patient data becomes available. Recently, the HIF2α 
D539N mutation has been reported in patients with both PPGL and polycythemia (i.e. Class 1 pheno-
type) and patients with only polycythemia (i.e. Class 2 phenotype), suggesting that this mutation can 
cause either Class 1 and 2 HIF2-driven disease in different individuals (Oliveira et al., 2018; Pacak 
et al., 2014; Pang et al., 2019). Although it is possible that the patient diagnosed with polycythemia 
may go on to develop PPGL, as PPGL diagnosis always lags polycythemia diagnosis in these patients, 
it is also possible that this mutation straddles the line between polycythemia and PPGL and environ-
mental factors may play a deciding role in the degree of penetrance. Combined, this supports our 
hypothesis that the presentation of VHL disease and other pseudohypoxic disorders depends on the 
degree of HIF2α activation, HIF1α dysregulation and the influence of environment and other defects 
in cardiovascular function that can impart a degree of hypoxemia.

Next steps
Fully elucidating molecular mechanism underlying VHL disease remains difficult given a dearth of 
relevant culture and animal models. VHL-null kidney cancer cell lines led to the discovery of the role 
of pVHL and prolyl hydroxylases in negatively regulating HIF, but overexpression of mutant pVHL, 
PHD2, or HIF2α remains a blunt tool that is not well-suited for differentiating different disease classes. 
Without a cell culture system relevant to the RCC, hemangioma or PPGL carcinogenesis process, the 
principal readout available is overall stabilization of HIF2α, a decidedly qualitative result. Thus, the 
study of pseudohypoxic disease, which benefits greatly from rich clinical data, requires a model for 
the one-to-one comparison of pVHL, HIF2α, and PHD2 mutants. If our HIF-centric model of pseudo-
hypoxic disease holds then we would expect that Type 2c pVHL mutants would result in similar HIF2α 
stabilization as Class 1 HIF2α mutants or cancer-causing PHD2 mutants; Type 2a pVHL mutants would 
result in greater stabilization of HIF2α than either Type 2c pVHL mutants or Class HIF2α mutants; and 
Type 2b pVHL mutants would result in even greater stabilization of HIF2α.

Any model developed to assess the HIF-centric model of VHL disease, where increasing dysreg-
ulation of HIF corresponds to a wider range of phenotypes, will need to be able to assess overall 
HIF stabilization in a system that includes all components of the PHD-pVHL-HIF axis. Further, these 
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components will need to reflect physiologically relevant concentrations. Lastly, quantitative readouts 
directly related to the stabilization of HIF2α and/or HIF1α would be required.

Although possible to recapitulate the PHD-pVHL-HIF axis in living systems, the ability to introduce 
disease-causing mutations without over-expressing one component is limited. CRISPR-mediated gene 
editing of endogenous VHL, EGLN1, or EPAS1 loci remains one possibility to directly compare the 
impact of disease-causing mutations on the regulation of cellular HIF pools. By comparing this cellular 
data with known clinical phenotypes, the HIF-centric model could be directly addressed.

Further, there is some limited success in recapitulating pseudohypoxic disease phenotypes in mice 
(Rankin et al., 2005; Hickey et al., 2007; Wang et al., 2019; Tan et al., 2013). Generation of trans-
genic mice with representative VHL, EGLN1, and EPAS1 mutants thus represents another avenue 
by which the HIF-centric model can be tested. So far, polycythemia has been recapitulated in trans-
genic mice with either VHL loss or EPAS1 gain-of-function mutation. Importantly, a gradient in EPO 
levels could be discerned between heterozygous and homozygous HIF2α gain-of-function mutation, 
suggesting this is a sensitive and quantitative readout (Tan et al., 2013). Unfortunately, it’s been diffi-
cult to generate a mouse model of pseudohypoxic pheochromocytoma or paraganglioma (Lussey-
Lepoutre et al., 2018). One exception is the work of the Bishop group where the inactivation of PHD2 
in the Type 1 cells of carotid body resulted in the formation of paraganglioma (Fielding et al., 2018).

Another possible model for testing the HIF-centric hypothesis is the in vitro reconstitution of the 
entire pVHL-PHD-HIF axis. Purification of PHD2, pVHL-E3 ubiquitin ligase complex, and fluorescein-
labeled HIF2α would allow for the real-time monitoring of HIF2α ubiquitylation and degradation. By 
substituting wild-type components with disease-associated mutations, the level of HIF2α stabilization 
could be precisely assessed and compared to known clinical phenotypes.

Lastly, the development and clinical evaluation of a specific HIF2α inhibitor, Belzutifan, represents 
another opportunity to assess the necessity of HIF2α activity for the various clinical manifestations 
associated with VHL disease (Cho et al., 2016; Chen et al., 2016). Recently, Belzutifan received 
approval in the US for treatment of RCC, hemangioblastoma, and pancreatic neuroendrocrine 
tumors (pNET) associated with VHL disease following a successful phase 3 clinical trial (Fallah 
et  al., 2022). A small number of pheochromocytoma tumors in that clinical trial meant that the 
critical requirement of HIF2α signaling for VHL disease-associated pheochromocytoma could not be 
assessed, but a single-patient clinical trial of a patient with Pacak-Zhuang syndrome (another name 
for Class 1a/b HIF2-driven disease) revealed that Belzutifan treatment can result in the shrinkage 
of paraganglioma tumors and the resolution of polycythemia (Kamihara et al., 2021). Expanded 
studies evaluating the efficacy of Belzutifan in PPGL tumors associated with VHL disease and HIF2-
driven disease will allow for the exploration of the necessity of HIF2α for PPGL in different genetic 
contexts.

Conclusions
VHL disease is a rare hereditary cancer syndrome that causes a perplexingly wide variety of pheno-
types. Despite a myriad of suggested HIF-independent functions for pVHL, we propose that the 
complexities of VHL disease can be explained solely within the context of HIF dysregulation. The 
most striking supportive evidence of this notion is the genetics of HIF2- and PHD2-driven diseases 
in which mutations in these critical components of the metazoan oxygen-sensing pathway have been 
found to cause similar phenotypes to those observed in VHL disease. Disease caused by mutations 
in HIF2α, PHD2, and pVHL all stabilize HIF to cause an inappropriate hypoxic response. A gradient 
can be observed in which mutations that most stabilize HIF induce the most severe phenotypes 
(Figure 2). A complex molecular interplay between HIF1α and HIF2α is likely required for the devel-
opment of RCC, which in turn can explain some puzzling aspects of VHL disease. Further investi-
gations surrounding the complexities of VHL disease should not overlook, but rather return to, the 
one bona fide function of pVHL to interrogate how differing VHL mutations affect the degree of 
stabilization of HIFα.
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