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Background.   Protection against Plasmodium falciparum is observed in a population deficient in glucose-6-phosphate dehy-
drogenase (G6PD), particularly in African and Mediterranean regions. However, such protection remains unknown among G6PD-
deficient individuals in Southeast Asia. 

Methods.   In this study, we assessed the invasion and maturation of P falciparum K1 in a culture of erythrocytes isolated from 
Thai subjects carrying Viangchan (871G > A) and Mahidol (487G > A). 

Results.   We found that the parasites lost their ability to invade hemizygous and homozygous G6PD-deficient erythrocytes of 
Viangchan and Mahidol variants in the second and third cycles of intraerythrocytic development. It is interesting to note that P fal-
ciparum parasites selectively grew in erythrocytes from hemi- and homozygous genotypes with normal G6PD activity. Moreover, 
externalization of phosphatidylserine upon P falciparum infection was significantly increased only in Viangchan hemizygous variant 
cells. 

Conclusions.   This study is the first to show that blockage of invasion in long-term culture and potentially enhanced removal of 
parasitized erythrocytes were observed for the first time in erythrocytes from Viangchan and Mahidol G6PD-deficient individuals.

Keywords.   glucose-6-phosphate dehydrogenase (G6PD); malaria; Plasmodium falciparum.

Glucose-6-phosphate dehydrogenase (G6PD) is critical for 
cells to survive under oxidative stress [1]. Glucose-6-phosphate 
dehydrogenase deficiency is the most common inherited 
enzymopathy, affecting ~400 million people worldwide [2]. 
More than 200 mutations in G6PD-coding regions cause var-
ious degrees of deficiency [2]. Because of X-chromosome 
linkage, hemizygous males and homozygous females are mark-
edly deficient in G6PD activity, whereas the distribution of 
G6PD activity in populations of heterozygous females is widely 
distributed from levels close to those observed in hemizygous 
males/heterozygous females to those observed in normal 
phenotypes. Although most individuals with G6PD deficiency 

are asymptomatic, each is vulnerable to neonatal jaundice and 
acute hemolytic anemia when exposed to drugs or infection [1].

Geographically, the prevalence of G6PD deficiency overlaps 
with malaria-endemic areas [3, 4]. Accordingly, a protective role 
of G6PD deficiency against malaria has been proposed, even 
though the findings are controversial. A study of children in Mali 
reported a similar protection associated with both genotypes 
but not heterozygous females [5]. Despite a reduction in the risk 
of cerebral malaria with heterozygous mutant G6PD alleles, an 
increased risk of severe malarial anemia has been reported [6, 
7]. In addition, a study of the G6PD c0.202T allele in children 
in Kilifi County, Kenya, showed a protective effect against se-
vere malaria in females carrying heterozygous variants but 
not in hemizygous males or homozygous females [8]. A meta-
analysis of G6PD deficiency revealed potential protective effects 
against uncomplicated malaria in African heterozygotes but not 
in Asian heterozygotes [9, 10]. Another meta-analysis of G6PD 
Mediterranean variants revealed a protective effect against symp-
tomatic Plasmodium vivax malaria in both hemizygous males 
and homozygous females and, to a lesser extent, in heterozygous 
females in the Pashtun ethnic group in Afghanistan [9]. In main-
land Southeast Asia, G6PD Mahidol and Viangchan variants are 
the 2 most common mutations [11]. Epidemiological studies of 
both variants reported protective effects against P vivax in male 
hemizygotes and female heterozygotes but not against falciparum 
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malaria [12, 13, 14, 15]. Despite these discrepancies, G6PD de-
ficiency likely confers protection against malaria, particularly in 
female heterozygotes/homozygotes, male hemizygotes, or both.

Many studies have investigated the mechanisms underlying the pro-
tective effect of G6PD deficiency. In the first cycle of intraerythrocytic 
development, G6PD-deficient erythrocytes were refractory to para-
site growth [16, 17, 18, 19]. However, serial passages of Plasmodium 
falciparum in G6PD-deficient erythrocytes revealed parasite growth 
adaptation [19]. Moreover, membrane damage in ring-stage parasites 
grown in G6PD-deficient erythrocytes enhanced phagocytosis [20]. 
These studies of African and Mediterranean genotypes demonstrate 
that invasion blockage, growth arrest, and loss of host cell membrane 
integrity likely contribute to protection against malaria. However, 
the protective role of G6PD deficiency remains largely unknown in 
Southeast Asia. To investigate whether the protective effect of G6PD 
deficiency is relevant to invasion and growth retardation of parasites, 
P falciparum strain K1 parasites were cultured with erythrocytes from 
individuals carrying G6PD Mahidol and Viangchan variants. To 
our knowledge, this is the first study to investigate protective effects 
for all allelic types: hemizygotes, heterozygotes, and homozygotes. 
Furthermore, selective invasion of parasites and membrane changes 
in G6PD-deficient erythrocytes were examined.

METHODS

Ethics Statement

The research protocol was approved by the Ethical Review 
Committee for Research Involving Human Subjects in Research, 
Chulalongkorn University, in accordance with the International 
Conference on Harmonization-Good Clinical Practice 
([ICH-GCP] COA. No. 156/2011).

Sample Collection

Venous blood samples of normal G6PD (n = 15), Viangchan 
(871G > A) G6PD (n = 15; hemizygote = 5, heterozygote = 
5, homozygote = 5), and Mahidol (487G > A) G6PD (n = 15; 
hemizygote = 5, heterozygote = 5, homozygote = 5) partici-
pants were obtained using ethylenediamine tetraacetic acid 
(EDTA) and acid-citrate-dextrose ([ACD] Sigma, St. Louis, 
MO)-containing vacutainers for genotyping and culture, re-
spectively. Hemoglobin abnormalities were examined using 
either hemoglobin electrophoresis on a cellulose acetate mem-
brane or an automatic high-performance liquid chromatog-
raphy system. The hemoglobin concentration was measured 
using an automated cell counter (ADVIA 120 System; Siemens 
Healthineers). All subjects had normal hemoglobin levels and 
no hemoglobinopathies.

Deoxyribonucleic Acid Extraction and Identification of G6PD Mutations

Deoxyribonucleic acid (DNA) was extracted using a Qiaquick Blood 
DNA extraction kit (QIAGEN) and subjected to polymerase chain 
reaction (PCR)-restriction fragment length polymorphism as pre-
viously described [21]. To identify less frequent G6PD mutations, 

amplification of exons 6, 9, 11, 12, and 13 was performed by PCR, and 
primer pairs were designed using Primer 3 software. Fluorescence-
based cycle labeling of amplicons was performed using the BigDye 
Terminator v3.1 cycle sequencing kit (Applied Biosystems). The la-
beled products were analyzed using an ABI Prism 3100 Genetic 
Analyzer (Applied Biosystems). All mutations and polymorphisms 
were confirmed using both reverse and forward primers. Sequencing 
results were confirmed by Sanger Sequencing and Fragment Analysis 
Software Trials (Thermo Fisher Scientific) [21].

Measurement of Hemoglobin Concentration and Glucose-6-Phosphate 

Dehydrogenase Activity

The ACD-preserved blood samples were stored at 4°C and 
subjected to G6PD activity measurement within 24 hours 
postcollection following the manufacturer’s instructions 
(BIOLABO). In brief, leukocytes were removed, and erythro-
cytes were lysed at 4°C. After enzymatic reaction for 5 minutes, 
nicotinamide adenine dinucleotide (NADH) in the hemolysate 
was measured using 340-nm visible light spectrophotometry 
(Randox Daytona, IMED). The spectrometric measurement was 
performed at 37°C within 5 minutes. The rate of NAD phosphate 
(NADPH) production was measured as the change in absorbance 
(ΔAbs) per minute. The hemoglobin concentration was quanti-
fied using the cyanmethemoglobin method. The G6PD activity 
and hemoglobin concentration were determined in duplicate. The 
G6PD enzyme activity was calculated, and the result is expressed 
in international units (IU) per gram of hemoglobin (IU/gHb) 
using the following formula according to the manufacturer’s in-
structions. Levels of G6PD deficiency were established according 
to World Health Organization guidelines, and G6PD activity less 
than 1.5 IU/gHb was regarded as indicating a deficiency [22]. 
Moreover, the normal range of G6PD activity for the Thai popu-
lation was 7.9–16.3 IU/gHb. Thus, a value of 7.9 IU/gHb was set 
as a cutoff for normal and heterozygous G6PD deficiency.

G6PD (IU/gHb) =
(∆Abs/min)× 5000

Hb(g/dL)

Plasmodium falciparum K1 Strain Culture

Cell culture was performed within 24 hours as described pre-
viously [23]. The malaria culture medium consisted of Roswell 
Park Memorial Institute (RPMI) 1640 medium supplemented 
with 5.96 g/L HEPES, 2 g/L NaHCO3, 80 μg/mL gentamicin, and 
10% heat-inactivated AB human serum. The parasite culture 
was maintained in 5% hematocrit and 5% CO2 at 37°C. Parasite 
development was assessed using Giemsa staining of thin blood 
smears and observed under a light microscope [24, 25].

Parasite Invasion and Maturation Assays

A highly synchronous culture of parasites was prepared according 
to previous reports [26]. In brief, parasites were cultured to obtain 
mostly ring-stage trophozoites and were mixed with 5% d-sorbitol. 
Ninety-five percent synchronicity of ring-stage parasites was 
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acceptable. After 20–24 hours of culture, schizonts were separated 
using Percoll gradients [27]. The purified schizonts were adjusted 
to 1% parasitemia with freshly prepared normal or G6PD-
deficient erythrocytes at a final hematocrit of 5%. Plasmodium 
invasion and maturation were assessed according to a previous 
report, with some modifications [20, 28] (Figure 3A). In brief, 
invasion of erythrocytes was assessed at 12, 60, and 108 hours 
postinoculum (hpi) of purified schizonts (Figure 3A); maturation 
was assessed at 36, 84, and 132 hours. For the comparison among 
blood samples, first-cycle invasion is the ratio of ring parasitemia 
at 10–12 hpi to the inoculated schizont parasitemia; the second-
cycle invasion is the ratio of ring parasitemia at 60–62 hpi to the 
trophozoite parasitemia at 36–38 hpi; and the third-cycle invasion 
is the ratio of ring parasitemia at 106–108 hpi to the trophozoite 
parasitemia at 82–84 hpi. The following ratios were calculated for 
the maturation assay: (1) trophozoite parasitemia at 36–38 hpi/
ring parasitemia at 10–12 hpi was set as first-cycle maturation; (2) 
trophozoite parasitemia at 82–84 hpi/ring parasitemia at 60–62 
hpi was set as second-cycle maturation; and (3) trophozoite para-
sitemia at 132–134 hpi/ring parasitemia at 106–108 hpi was set as 
third-cycle maturation. Thin blood films were prepared to eval-
uate parasitemia (100 fields of 100× objective lenses) and parasite 
development at each time point. The developmental stages of P 
falciparum were morphologically distinguished based on criteria 
described in previous reports [24, 25].

Measurement of Intracellular Glucose-6-Phosphate Dehydrogenase 

Activity and Parasitemia

Intracellular G6PD activity was examined using nitro blue tetra-
zolium chloride (Sigma-Aldrich, Hamminkeln, Germany), with 
NADH being reduced to dark-colored formazan [29, 30]. Thus, 
normal G6PD-containing erythrocytes contain dark-purple 
granules, hereinafter called G6PD-positive cells (GPCs). In con-
trast, G6PD-deficient erythrocytes, called G6PD-negative cells 
(GNCs), remain unstained. Parasitized erythrocytes among 
GPCs and GNCs were counted. The selectivity of parasite inva-
sion is expressed as a selectivity index (SI): a ratio of the number 
of malaria parasites in GPCs to that in GNCs among 1000 cells 
of GSCs plus GNCs. The procedure and calculation of the SI 
were adapted from Nantakomol et al [31]:

SI =
Number of P falciparum − infected GPCs

Number of P falciparum − GNCs

Measurement of Phosphatidylserine-Externalizing Erythrocytes

Erythrocytes were incubated with FITC-conjugated annexin-V 
(Becton Dickinson Biosciences), a specific marker for 
phosphatidylserine (PS), and phycoerythrin (PE)-conjugated 
glycophorin A (Becton Dickinson Biosciences), as described 
previously [32]. At 96 hours postinfection, the samples were ana-
lyzed using a FACSCalibur flow cytometer (Becton Dickinson 
Biosciences). The mean fluorescence intensity of externalized PS 
was assessed using FlowJo version 1.0.

Statistical Analysis

Data are presented as the means ± standard deviation. 
GraphPad Prism 7 was used for data display and statistical 
analyses. Differences were evaluated using Student’s t test 
(Mann-Whitney test). A P value less than .05 was considered 
statistically significant.

RESULTS

Glucose-6-Phosphate Dehydrogenase Activity in the Studied Subjects

No mutations in exons 6, 9, 11, 12, or 13 were identified 
molecularly. Both females (n = 28) and males (n = 17) ex-
pressed Viangchan (33% male and 67% female) and Mahidol 
(33% male and 67% female) G6PD variants (Supplementary 
Table 1). There was no difference in G6PD activity between 
wild-type G6PD male and female subjects (P = .95) ((Figure 
1). However, G6PD activity was significantly decreased in 
erythrocytes of males carrying hemizygous Viangchan and 
Mahidol variants. Likewise, erythrocytes of female heterozy-
gotes and homozygotes of both variant types exhibited lower 
enzymatic activity than wild-type cells (P < .05) (Figure 1). 
The G6PD-deficient erythrocytes of female heterozygotes 
exhibited higher G6PD activity than male hemizygotes, 
which lack normal G6PD erythrocytes. Severe G6PD defi-
ciency was observed in both female homozygotes and male 
hemizygotes.

*P < .01
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Figure 1.  Glucose-6-phosphate dehydrogenase (G6PD) activity of the studied 
subjects. Scatter plot of G6PD activity in each genotype of G6PD. Each circle repre-
sents an individual subject. For each column, horizontal bars indicate the mean, and 
vertical bars indicate the standard deviation. Stars indicate a statistically signifi-
cant difference in the values of the 2 groups. HemiM, Hemizygous Mahidol; HemiV, 
Hemizygous Viangchan; HeteroM, Heterozygous Mahidol; HeteroV, Heterozygous 
Viangchan; HomoM, Homozygous Mahidol; HomoV, Homozygous Viangchan.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab484#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab484#supplementary-data
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Parasitemia in Normal and Glucose-6-Phosphate Dehydrogenase-

Deficient Erythrocytes

To determine the cycle numbers in which P falciparum could 
develop in G6PD-deficient erythrocytes, highly synchronous 
schizonts were cultured in erythrocytes with various degrees of 
G6PD activity. At 12 hpi, parasitemia was not different between 
cultures of normal and G6PD-deficient erythrocytes (Figure 
2A). At the second and third cycles of culture, parasitemia in 
G6PD-deficient erythrocytes decreased significantly compared 
with that in normal erythrocytes, regardless of the mutation 
type or zygosity (P < .01) (Figure 2A, middle and right panels).

Invasion and Maturation of the Parasite in Glucose-6-Phosphate 

Dehydrogenase (G6PD)-Normal and G6PD-Deficient Erythrocytes

To assess the ability of P falciparum to invade and mature in 
G6PD-deficient erythrocytes, parasites were cultured for 3 cycles. 
There was no statistically significant difference in the invasion or 
maturation rates of P falciparum in G6PD-deficient erythrocytes 
in the first cycle (left panel in Figure 3B and C). Intriguingly, a 
decline in the invasion rate of parasites cultured with cells from 
males hemizygous and females homozygous for the Viangchan 
and Mahidol variants was observed in the second cycle (Figure 
3B, middle panel with P < .01), although the parasites were able 
to develop into trophozoites, with a tendency toward an increase 
in maturation in Mahidol hemizygote cells (Figure 3C, middle 
panel). The observed decrease in the invasion rate continued at a 
higher rate in the third cycle of development in erythrocytes from 
hemizygous males and females homozygous for the Viangchan 
and Mahidol variants (Figure 3B, right panel). The third invasion 
rates in cells from females carrying heterozygous Viangchan and 
Mahidol variants were not different compared with those in cells 
from females carrying wild-type alleles. It is interesting to note 
that the invasion rate was likely decreased in female homozygotes, 
but the difference was not statistically significant. Moreover, an 
increasing trend with regard to maturations was detected in some 
cells from males hemizygous for the Viangchan and Mahidol 

variants, but a similar tendency was not detected in all females 
(Figure 3B, right panel). All results are also shown in Table 1.

Selectivity of Parasite Growth in Different Erythrocyte Phenotypes

To examine the preferential invasion and growth of para-
sites, we enumerated the number of trophozoites living 
in normal and G6PD-deficient erythrocytes. At 96 hours 
postculture with purified schizonts, the GPCs (arrowheads 
in Figure 4A) appeared dark blue, whereas the GNCs (arrows 
in Figure 4A) were unstained. In agreement with Figure 
2A, the percentages of parasitized GNCs were significantly 
lower than those of parasitized GPCs in male hemizygous 
Viangchan and Mahidol and female homozygous Viangchan 
and Mahidol variants. However, there was no difference in 
the proportion of parasitized GNCs and GPCs of female het-
erozygous Viangchan and Mahidol variants (Supplementary 
Table 2). There was no difference in the average SI of cells 
from males and females carrying wild-type G6PD. Thus, we 
pooled individual data for statistical analysis. The average 
SI of hemizygous Viangchan and Mahidol variants was sig-
nificantly higher than that of wild-type G6PD erythrocytes 
(P = .0079) (Table 2, Figure 4B). In contrast, cells from fe-
males harboring heterozygous Viangchan and Mahidol 
variants showed SI values similar to those of wild types. It 
is significant that the SIs of cells from homozygous females 
were higher than those of cells from heterozygous females 
(P = .0079). Moreover, between Viangchan and Mahidol 
variants, the average SIs of cells from hemizygous males 
and homozygous females were not different; however, these 
values were still 3-fold higher than those of wild-types 
(P < .01). Of note, there were no significant differences in 
the SI of Viangchan and Mahidol variants for each genotype. 
Next, we examined the correlation between G6PD activity 
and SI in a quantitative manner, and SI correlated conversely 
with G6PD activity, regardless of sex (Figure 4C). Cells 
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Figure 2.  Parasitemia in normal and glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes. At 10 to 12 hours post-schizont culture, Giemsa-stained, para-
sitized erythrocytes were enumerated under a microscope. In each scatter plot, dark dots represent parasitemia according to the level of G6PD activity, namely, normal and 
deficient, according to the World Health Organization classification. Both Mahidol and Viangchan G6PD deficiency variants were included. Plasmodium falciparum strain K1 
was cultured for 3 cycles of development. (A) The fist round of invasion. (B) The second round of invasion. (C) The third round of invasion. For each column, horizontal bars 
indicate the mean, and vertical bars indicate the standard deviation.
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from individuals with G6PD activity less than 0.3 IU/gHb, 
involving hemizygous and heterozygous variants, were likely 
to have an SI greater than 2.0.

Phosphatidylserine Externalization on Glucose-6-Phosphate Dehydrogenase-

Deficient or Normal Erythrocytes After Plasmodium falciparum K1 Infection

Enhanced clearance of parasitized erythrocytes causes low 
parasitemia [33, 34]. Indeed, erythrocytes are regularly elim-
inated from blood circulation via recognition of PS external-
ization by macrophages of the reticuloendothelial system [35, 

36]. Hence, we hypothesized that P falciparum infection in 
G6PD-deficient erythrocytes may induce PS externalization to 
a higher degree than that occurring in normal erythrocytes. 
To ensure that the 96-hour culture period is suitable for as-
sessing the effect of G6PD activity on PS externalization, we 
first examined the stability of G6PD activity at 0 and 96 hours 
postinfection. The level of G6PD activity remained stable in 
the culture (Supplementary Figure 1A). Moreover, the level 
of PS exposure on the 96-hour cultured infected erythrocytes 
significantly increased compared with that at the time point 
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before infection (Supplementary Figure 1B and C). Thus, we 
analyzed PS exposure at 96 hours of culture in a quantita-
tive manner using flow cytometry. In this analysis, the mean 
fluorescence intensity indirectly indicates the PS level. In 
Figure 5A, the basal level of PS was 102.3 ± 27.1 in infected 
erythrocytes with normal G6PD. Among all genotypes, a sig-
nificant increase in PS was detected in cells from hemizygous 

males carrying the Viangchan variant (261 ± 119) compared 
with wild types (P = .016). Furthermore, the PS of Viangchan 
homozygotes (122 ± 6.9) was slightly higher than that of het-
erozygotes (103 ± 8.6) (P = .008), indicating dependence on 
G6PD deficiency. Moreover, plotting PS intensity values against 
G6PD activity revealed an increasing PS trend (>150) in some 
hemizygous and homozygous individuals with G6PD activity 
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Figure 4.  Selectivity index (SI) of Plasmodium falciparum. (A) Representative images of the intracellular glucose-6-phosphate dehydrogenase (G6PD) assay. Normal G6PD-
containing erythrocytes (G6PD-positive cells [GPCs]) have dark-purple granules (arrowheads); G6PD-deficient erythrocytes (G6PD-negative cells [GNCs]) remain unstained (arrows). 
Plasmodium falciparum inside erythrocytes appears as dense dark purple granules. Mahidol G6PD deficiency variants (heterozygote, hemizygote, and homozygote) are shown. (B) 
Scatter plot of the SI. The SI is the ratio of the number of malaria parasites in GPCs and that in GNCs among 1000 cells of GSCs plus GNCs. Each dot represents an individual subject. 
For each column, horizontal bars indicate the mean, and vertical bars indicate the standard deviation. Stars indicate statistically significant differences in the values of the 2 groups. 
(C) Scatter plot of the SI and G6PD activity. Blue dots represent normal G6PD. Green dots represent Viangchan and Mahidol heterozygous G6PD variants. Orange dots represent 
Viangchan and Mahidol hemizygous G6PD variants. Red dots represent Viangchan and Mahidol homozygous G6PD variants. HemiM, Hemizygous Mahidol; HemiV, Hemizygous 
Viangchan; HeteroM, Heterozygous Mahidol; HeteroV, Heterozygous Viangchan; HomoM, Homozygous Mahidol; HomoV, Homozygous Viangchan.

Table 1.  Percentage of Parasite Invasion and Maturation in G6PD-Normal and G6PD-Deficient Erythrocytes

 

First Cycle Second Cycle Third

Invasion Maturation Invasion Maturation Invasion Maturation 

G6PD normal
(n = 15)

0.48 ± 0.02 0.51 ± 0.08 0.91 ± 0.13 0.58 ± 0.28 1.95 ± 0.08 0.61 ± 0.07

G6PD 
Viangchan

(n = 13)

0.45 ± 0.08 0.44 ± 0.04 0.78 ± 0.03 0.46 ± 0.30 0.75a ± 0.04 0.21a,b ± 0.01

G6PD 
Mahidol

(n = 12)

0.42 ± 0.03 0.49 ± 0.01 0.80 ± 0.06 0.50 ± 0.10 0.72 a ± 0.02 0.18 a,b ± 0.05

aStatistical significance of comparison among groups (P < .05).
bStatistical significance of comparison among cycle of development (P < .05).

https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab484#supplementary-data
https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab484#supplementary-data


1244  •  JID  2022:225  (1 April)  •  Palasuwan et al

less than 0.3 IU/gHb. Nonetheless, no correlation between the 
level of PS and SI was observed (R2 = 0.093, P < .075). These 
data suggest that decreased G6PD activity accelerates PS 
externalization.

DISCUSSI�ON

Geographical overlap of malaria-endemic areas with G6PD 
deficiency leads to a selective advantage hypothesis, in 
which G6PD-deficient individuals are protected against ma-
laria. Despite many epidemiological studies of African and 
Mediterranean variants, the underlying mechanisms remain 
unclear. Most attempts have provided an explanation for G6PD 
African and Mediterranean variants. To our knowledge, this 
is the first study to include all genotypes of Viangchan and 
Mahidol variants, the most common G6PD deficiency in 
Southeast Asia [11]. In summary, a reduction in parasitemia 
in subsequent cycles of intraerythrocytic development suggests 
a defect in invasion and/or maturation of P falciparum. Nitro 
blue tetrazolium chloride-based staining suggests that P fal-
ciparum parasites selectively develop inside erythrocytes with 

normal G6PD activity. In this study, G6PD-mediated protec-
tion was revealed by extending the culture longer than a pre-
vious study [20]. First, parasites selectively grow in erythrocytes 
with normal G6PD activity. Second, accelerated PS externali-
zation upon infection may enhance the removal of parasitized 
G6PD-deficient erythrocytes, likely reducing the risk of severe 
P falciparum malaria, as reported in epidemiological studies 
[37, 5, 6, 7].

In agreement, the G6PD activity of erythrocytes from 
hemizygous males carrying the Mahidol and Viangchan vari-
ants was similar to that in a previous report [38], suggesting 
that the subjects recruited were suitable as a reference popula-
tion for an in vitro study. Roth et al [17] provided evidence of 
the protective effect of African A-12,13 and Mediterranean G6PD 
deficiency during the first cycle of development in vitro. In ad-
dition, Cappadoro et al [20] found that 2-cycle development of 
P falciparum in Mediterranean G6PD-deficient erythrocytes 
exhibited indistinguishable invasion and growth, suggesting 
no protective effect of Mediterranean G6PD deficiency in male 
hemizygotes. In this study, we extended the culture of P falcip-
arum to a third cycle and recruited not only male hemizygotes 

Table 2.  The Selectivity Index of the Plasmodium falciparum K1 Strain with G6PD-Deficient Erythrocytes

Selectivity index Normal 

Hemizygous Heterozygous Homozygous

Viangchan Mahidol Viangchan Mahidol Viangchan Mahidol 

Median 1.1 3.2 3.8 1.1 1.2 4.1 5.3

25%–75% percentile 0.95–1.3 2.15–5.5 2.15–5.7 1.05–1.25 0.85–1.25 2.2–5.55 2.55–5.5

Mean 1.12 3.7 3.9 1.14 1.08 3.92 4.28

Standard deviation 0.23 1.88 2.23 0.11 0.22 1.68 1.59

Figure 5.  Phosphatidylserine (PS) externalization. (A) Scatter plot of the mean fluorescence intensity of PS. Each dot represents an individual subject grouped according to genotype. 
For each column, horizontal bars indicate the mean, and vertical bars indicate the standard deviation. Stars indicate statistically significant differences in the values of the 2 groups. 
(B) Scatter plot of the mean fluorescence intensity of PS and glucose-6-phosphate dehydrogenase (G6PD) activity. Blue dots represent normal G6PD. Green dots represent Viangchan 
and Mahidol heterozygous G6PD variants. Orange dots represent Viangchan and Mahidol hemizygous G6PD variants. Red dots represent Viangchan and Mahidol homozygous G6PD 
variants. (C) Regression analysis of the selectivity index (SI) and mean fluorescence intensity of phosphatidylserine. HemiM, Hemizygous Mahidol; HemiV, Hemizygous Viangchan; 
HeteroM, Heterozygous Mahidol; HeteroV, Heterozygous Viangchan; HomoM, Homozygous Mahidol; HomoV, Homozygous Viangchan.
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but also female heterozygotes and homozygotes for Mahidol 
and Viangchan variants. We found that the invasion rate of P 
falciparum in the second and third cycles of intraerythrocytic 
development declined slightly in cultures with normal erythro-
cytes but decreased markedly in those with G6PD-deficient 
erythrocytes, particularly when using cells from severely defi-
cient hemizygotes and homozygotes. The discrepancy may be 
due to differences in parasite strain, variant type, or develop-
mental cycle number. In contrast to invasion, maturation of P 
falciparum in the second and third cycles increased slightly in 
cultures of hemizygous Viangchan and Mahidol variant cells, 
indicating growth adaption similar to Plasmodium survival 
after serial passages in G6PD-deficient erythrocytes [19].

Human erythrocytes rely on NADPH to cope with ox-
idative stress, and G6PD is the only source of NADH. 
With time, G6PD activity declines without replenishment, 
causing the accumulation of oxidants and clearance by 
macrophages [39, 40]. Plasmodium falciparum reportedly 
increases PS externalization, resulting in adherence of para-
sitized cells to macrophages and endothelial cells [41]. In 
addition, membrane damage in ring-stage parasites grown 
in G6PD-deficient erythrocytes enhanced phagocytosis 
[20]. Consistent with these findings, we observed a sig-
nificant increase in PS exposure on P falciparum grown in 
Viangchan hemizygous erythrocytes, with a tendency to-
ward an increase for cells from Viangchan homozygotes. 
However, there are limitations that need to be addressed. 
First, the G6PD activity of Plasmodium trophozoites replen-
ished the loss of host G6PD [20]. This may explain parasite 
survival in G6PD-deficient host cells in the second and third 
cycles of development, particularly in the harsh microen-
vironment caused by hemizygous Viangchan and Mahidol 
variant cells. Second, similar to other hemoglobinopathies 
[28], enhanced phagocytosis of P falciparum-infected 
erythrocytes deficient in G6PD has been proposed to ex-
plain low parasitemia [20]. An increase in PS exposure by 
G6PD-deficient erythrocytes may support this proposal, but 
further phagocytic analysis is needed. Third, merozoites in-
vade the host via Band3, and a loss-of-function of Band3 
is enhanced by oxidative stress [42, 43, 44]. Thus, the ex-
pression of Band3 may provide an explanation. Finally, 
formazan-based detection of intracellular G6PD is not able 
to distinguish between live and dead parasites, confounding 
the selection index of this study. Fluorescence dyes capable 
of directly detecting NADH and living and dead parasites 
would allow accurate estimation. 

CONCLUSIONS

In conclusion, our data provide laboratory-based evidence to sup-
port the hypothesis that Viangchan and Mahidol variant G6PD 
deficiency protects against P falciparum, likely through reduced 
invasion, growth retardation, and loss of cell membrane integrity.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Supplementary materials consist of 
data provided by the author that are published to benefit the 
reader. The posted materials are not copyedited. The contents of 
all supplementary data are the sole responsibility of the authors. 
Questions or messages regarding errors should be addressed to 
the author.

Supplementary Figure 1. Evaluation of the 96-hour culture for 
assessing the phosphatidylserine (PS) externalization of normal 
G6PD erythrocytes. A. Stability of G6PD activity at 0 and 96 hours 
postinfection. Each filled circle is from 3 independent experi-
ments. The Wilcoxon matched-pairs signed rank test was used to 
assess statistical significance. B. Microscopic images indicate PS 
exposure at 0 and 96 hours postinfection. Cells were incubated 
with FITC-conjugated Annexin V following the manufacturer’s 
instructions. After washing, the cells were subjected to confocal 
microscopic examination. More than 1000 cells were examined 
under the microscope. Representative images were from 3 inde-
pendent experiments. Noncircular shaped, green dots were ex-
cluded from analysis. Scale bars = 50 μm. C. Scatter plot of PS 
exposure at 0 and 96 hours postinfection. Filled circles of each 
panel represent individual cells of 3 independent experiments. 
The fluorescence intensity of FITC in individual cells was analyzed 
using ImageJ and indicated PS exposure. The Mann-Whitney test 
was performed to assess statistical significance. A P value less than 
0.05 was considered statistically significant.
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