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Abstract: Background: Stroke is the second cause of mortality worldwide and the first in women.
The aim of this study is to develop a predictive model to estimate the risk of mortality in the
admission of patients who have not received reperfusion treatment. Methods: A retrospective cohort
study was conducted of a clinical–administrative database, reflecting all cases of non-reperfused
ischaemic stroke admitted to Spanish hospitals during the period 2008–2012. A predictive model
based on logistic regression was developed on a training cohort and later validated by the “hold-out”
method. Complementary machine learning techniques were also explored. Results: The resulting
model had the following nine variables, all readily obtainable during initial care. Age (OR 1.069),
female sex (OR 1.202), readmission (OR 2.008), hypertension (OR 0.726), diabetes (OR 1.105), atrial
fibrillation (OR 1.537), dyslipidaemia (0.638), heart failure (OR 1.518) and neurological symptoms
suggestive of posterior fossa involvement (OR 2.639). The predictability was moderate (AUC 0.742,
95% CI: 0.737–0.747), with good visual calibration; Pearson’s chi-square test revealed non-significant
calibration. An easily consulted risk score was prepared. Conclusions: It is possible to create a
predictive model of mortality for patients with ischaemic stroke from which important advances
can be made towards optimising the quality and efficiency of care. The model results are available
within a few minutes of admission and would provide a valuable complementary resource for
the neurologist.

Keywords: predictive model; risk score; mortality; stroke; vascular neurology

1. Introduction

Ischaemic stroke is the second cause of mortality in Spain in the general population
and the first in women [1]. It is also the second cause of mortality worldwide and the third
most common in industrialised countries [2,3]. The prevalence of this major public health
problem puts significant strain on health system resources.
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A large proportion of strokes (approximately 62%) are attributable to ischaemic pro-
cesses, many of which are not treated with reperfusion treatment (pharmacological or
mechanical) because they do not meet the strict criteria for its application [4,5]. Determin-
ing the proportion of patients undergoing reperfusion is a complex task. Among other
factors, it depends on the time of onset of the stroke, the priorities and capacities of the
health system and the emergency management elements available in each case. A recent
study using data from 44 European countries reported a mean reperfusion rate with throm-
bolysis of 72.5 cases per 1000 stroke episodes; with mechanical thrombectomy, this rate
fell to 19.3 cases per 1000 episodes [5,6]. Although these figures are open to improvement,
it is apparent that the period from the onset of the stroke to the administration of the
fibrinolytic therapy or thrombectomy provides a window of opportunity for successful
treatment. Thus, during the first three hours following the onset of this condition, the
application of fibrinolytics achieves a marked reduction in disability in 25% of patients.
Mechanical thrombectomy, which is normally only available in specialised centres and
presents a heterogeneous international distribution, also increases survival rates and drasti-
cally decreases sequelae [7–10]. However, a high proportion of strokes are not suitable for
any type of reperfusion, and it is these on which our study is focused.

Various risk factors have been detected for the occurrence of an ischaemic event and
for the probability of death or major sequelae [11,12]. Among other studies in this respect,
Smith et al. [13] proposed a predictive model for hospital mortality following ischaemic
or haemorrhagic stroke. This model had a moderate–high discriminant capacity. Other
studies have also reported satisfactory predictive models to assess the risk of mortality in
acute stroke [14–18].

In Spain, studies have been undertaken to establish the determinant factors of mor-
tality due to ischaemic stroke, based on an analysis of hospital records. However, to our
knowledge, none have proposed a predictive model based on the national database that
provides the basic information obtained for each hospital admission episode (the Spanish
Minimum Basic Data Set, MBDS). Analysis of data from this source would allow us to
estimate the probability of mortality during the hospitalisation for acute stroke when reper-
fusion treatment is not provided. However, these administrative data are not amenable to
analysis, and it can be a complex task to determine the severity of the stroke exclusively
from the information contained in this database [19].

In addition, the aforementioned characteristics of stroke have recently led to an increas-
ingly frequent use of machine learning (ML) or deep learning (DL) techniques. Recently,
attempts have been made to predict stroke mortality using principal component analysis
methods scaled to neural networks with very good predictive results [20]. In addition
to stroke, other pathologies such as heart failure and sepsis are being studied using this
methodology. In the case of heart failure, there are promising ML studies that validate and
increase the performance of classical statistical models [21]. In the study of mortality due
to sepsis, the use of convolutional neural networks is gaining ground [22].

When a stroke patient is admitted to the emergency room, the time elapsed since the
event, the therapeutic measures adopted and the training of the care team are of decisive
importance in reducing in-hospital mortality.

Subsidiary data compiled on admission or during the first hours of the patient’s
hospital stay can be incorporated into a predictive model that can be used to estimate the
probability of mortality during admission. The successful development and application of
such a model would have important benefits for hospital procedures and efficacy.

On admission following a stroke, patients are rigorously evaluated by specialised
personnel, who assess not only the degree of severity but also the time elapsed from the
onset of symptoms to the provision of initial care. Many patients are not considered candi-
dates for reperfusion treatment because the window for treatment has closed, because they
present contraindications or because there is a high risk of haemorrhagic transformation,
among other reasons. For these patients, an individualised prognostic study is required.
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In view of these considerations, we aim to construct a predictive model to identify
patients at greatest risk of dying during admission for ischaemic stroke when they are
not eligible for reperfusion treatment. Such a model would make it possible to optimise
clinical actions and improve treatment outcomes for this substantial group of patients. In a
complementary analysis, we also assess the performance of ML–DL techniques.

2. Materials and Methods
2.1. Study Design and Data Source

This analytical observational study considers a cohort representing all the episodes
of hospitalisation in Spain for patients with ischaemic stroke and who did not receive
reperfusion therapy (diagnostic group 14 in the Spanish classification system, GRD), during
the period 2008–2012. It was assumed that the attribution of cases to DRG-14 was correct in
all cases.

The source of information was the Minimum Basic Data Set (MBDS) compiled by the
Ministry of Health, Consumer Affairs and Social Welfare. This database contains both
treatment and administrative information. The system originated in the USA and was
later adopted by the European Economic Community. In Spain, the MBDS has been of
mandatory implementation since 1987.

The unit of statistical analysis considered was the hospitalisation episode and not
the individual; in total, 186,245 hospitalisation episodes classed as GRD-14 were analysed.
Each group within this system is homogeneous by resource consumption but not in terms
of disease severity. Accordingly, the processes can be grouped to enable comparability
between different health regions and geographical areas.

To facilitate subsequent internal validation, the cohort was randomly segmented into
two subsamples, a training set (80% of the episodes) and a test set (20% of the episodes).
These subcohorts were established using a blind process of simple random sampling,
and all statistical studies except the internal validation process were performed on the
training set.

2.2. Variables

In all our statistical analyses, the main variable was in-hospital mortality, that is, death
during hospitalisation due to an ischaemic stroke when no reperfusion treatment had been
received. This variable was used to develop the intermediate and final models, as well as
during the validation process.

The remaining variables were taken as independent or predictor variables and were
composed of two main groups: the sociodemographic covariates of age, sex and geo-
graphic origin; and the comorbidities, mainly ischaemic heart disease, chronic bronchop-
neumopathy, renal and/or respiratory insufficiency, dyslipidaemia, arterial hyperten-
sion, diabetes, obesity, valvular heart disease, anaemia, arrhythmias—especially atrial
fibrillation—and pneumonia.

In addition to the above, a specific analysis was performed of case management
variables and those related to hospital admission characteristics. The latter included the
number of diagnoses on discharge (NDD), as a proxy for the level of comorbidities, and the
number of procedures at discharge (NPD), as a proxy for the diagnostic–therapeutic effort
received. Other key variables were the length of stay and readmission for the same reason
within one month of discharge.

The definition of readmission deserves special attention. The approximation to the
number of patients and readmissions was made by identifying the same patient for a
hospital and for a specific year, based on the history number, hospital code, date of birth
and sex. This allowed us to identify patients treated more than once in the same hospital.

The database was subjected to a moderate screening procedure for outliers regarding
the length of stay, using the formula T2 = Q3 + 1.5 (Q3 − Q1), where Q is the quartile and
T2 is the length of stay for DRG-14 above which values are considered extreme. In the
present case, stays exceeding 21 days were considered atypical.
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2.3. Statistical Analysis

The statistical analysis was carried out on the training cohort except for the final phase,
in which the results were validated on the test cohort using the hold-out method. The
entire analytical procedure was performed using SPSS v.21 (IBM Corp., Armonk, NY, USA
and Stata v.14 software (StataCorp LLC, College Station, TX, USA).

The initial phase of the analysis consisted of a descriptive study of the variables of
interest (sex, age, NDD, NPD, readmission, mortality and comorbidities). The qualitative
variables are expressed as percentages and frequency distributions, and the quantitative
ones as means and standard deviations.

A bivariate analysis was performed to detect associations between mortality and each of
the predictors considered. These associations are expressed as unadjusted odds ratios (ORu),
accompanied by the corresponding 95% confidence interval and statistical significance.

Finally, a binary logistic regression model was developed for the dependent variable
“mortality”, using the manual introduction method to force the inclusion of significant
variables in the bivariate analysis, together with other appropriate variables, according to
the literature. The variables were manually withdrawn from the model according to their
degree of contribution to its overall performance, prioritising the withdrawal of those that
were not present at the moment of hospital admission or very shortly afterwards.

The model was evaluated for its discriminant capacity using the area under the curve
(AUC) or C-statistic. The calibration was evaluated by visual comparison of the risk deciles
obtained using the Hosmer−Lemeshow test, since the level of significance did not provide
a suitable measure, due to the large sample size; in this case, therefore, visual interpretation
provides more information. Pearson’s chi-square goodness-of-fit test was also used, as it is
more appropriate when a large sample size is considered [23].

Finally, the model developed on the training cohort was applied to the test cohort,
by the hold-out method, to establish internal validity. The AUC values obtained for each
cohort were compared using the method described by DeLong et al. [24].

To facilitate an immediate estimation of the risk of mortality and to enable rapid access
to the results during treatment for patients with stroke, we created a smartphone app
and a web equivalent (URL: https://calculadora-ictus.firebaseapp.com/, accessed on 1
June 2021). A mobile application for smartphones was designed using the free framework
“Ionic” [25] and Visual Studio Code. In order to achieve greater accessibility from any
location with Internet access from this application, a progressive web application (PWA)
was created, which is accessible from the aforementioned URL.

From the above procedures, a risk score for mortality was derived, using the coeffi-
cients of the logistic regression model, as described by Sullivan et al. [26]. In this method,
each coefficient is divided by the lowest value, and the score thus obtained is rounded
to the nearest integer, which is taken as the weight assigned to each factor in the final
score. For each patient included in the study, we calculated the total score according to the
presence or absence of each factor. The score obtained for each patient was in the range
from −12 to 61 points.

A complementary analysis of the database was conducted using deep learning (DL)
techniques. The most relevant variables for the model were selected using random forest
(RF) [27], and the permutations test was used as a further correction mechanism [28,29].
After selecting the variables with the highest predictive capacity, a multilayer perceptron
neural network was constructed, and the performances of the network and the random
forest procedure per se were obtained.

3. Results

The final analysis consisted of 186,245 episodes of hospitalisation for non-reperfused
stroke. Of these episodes, 80% (n = 148,891) were taken as the training cohort and 20%
(n = 37,354) as the test cohort. All statistical studies except the internal validation process
were performed on the former.

https://calculadora-ictus.firebaseapp.com/
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The patients were mainly elderly (mean age 73.92 ± 12.53 years) and the mean du-
ration of hospital stay was 7.54 days. Just over half (53.30%) were male and 4.8% were in
readmission due to ictal symptoms. In-hospital mortality during the initial admission was
6.8%. Table 1 lists the main comorbidities presented and the other variables analysed.

Table 1. Descriptive variables.

VARIABLE

Quantitative, mean ± sd

Age 73.92 ± 12.53 (years)
Stay 7.54 ± 4.54 (days)
NDD 6.92 ± 2.95 (diagnostics)
NPD 3.27 ± 2.45 (procedures)

Qualitative, n (%)

Male sex 79,412 (53.30)
Re-admission 7140 (4.80)

Mortality 10,141 (6.80)
COPD 9898 (6.60)

Ischaemic heart disease 7181 (4.80)
Arterial hypertension 95,822 (64.4)

Obesity 9358 (6.30)
Renal insufficiency 9035 (6.10)

Anaemia 7840 (5.30)
Atrial fibrillation 37,050 (24.9)

Diabetes 46,241 (31.10)
Dyslipidaemia 52,857 (35.70)
Heart failure 11,141 (7.50)

Basilar artery stenosis 660 (4.00)
NDD: number of diagnoses on discharge; NDP: number of procedures on discharge; COPD: chronic obstructive
pulmonary disease.

The proportion of outliers was 6.11% when a stay of more than 21 days was considered
an atypical stay (Figure 1). After removing the outliers, the global database was composed
of 186,245 episodes of hospitalisation for non-reperfused stroke.
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The bivariate analysis (Table 2) revealed significant differences in several of the vari-
ables. Thus, positive associations with mortality were obtained for female sex (ORu 1.792,
95% CI: 1.720–1.787), readmission (OR 2.324, 95% CI 2.165–2.493) and among comorbidities,
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COPD (OR 1.188, 95% CI: 1.101–1.282), renal failure (OR 1.664, 95% CI: 1.551–1.786), atrial
fibrillation (OR 2.414, 95% CI: 2.316–2.516) and ischaemic heart disease (OR 1.324, 95%
CI: 1.217–1.441). On the contrary, both dyslipidaemia (OR 0.489, 95% CI: 0.466–0.514) and
hypertension (OR 0.792, 95% CI: 0.760–0.826) were negatively associated with the risk of
death during the admission.

Table 2. Bivariate study. Mortality-associated factors in the training cohort.

Total Death

n % n %* ORu 95% CI p

Sex Male 79,412 53.3 4045 5.1 1
Female 69,473 46.7 6096 8.8 1.792 1.720–1.787 <0.0001

Age 24–34 853 0.6 8 0.9 1
35–44 2791 1.9 37 1.3 1.419 0.658–3.059 0.372
45–54 9233 6.2 124 1.3 1.438 0.701–2.949 0.322
55–64 18,857 12.7 381 2 2.178 1.078–4.402 0.030
65–74 33,122 22.3 1196 3.6 3.957 1.968–7.957 <0.001
75–84 54,662 36.7 3856 7.1 8.017 3.993–16.095 <0.001
>84 29,373 19.7 4539 15.5 19.305 9.616–38.758 <0.001

Year 2008 29,509 19.8 2104 7.1 1
2009 29,577 19.8 2076 7.0 0.983 0.923–1.047 0.559
2010 30,019 20.2 2059 6.9 0.959 0.901–1.022 0.195
2011 29,885 20.1 1966 6.6 0.917 0.861–0.978 0.008
2012 29,901 20.1 1936 6.5 0.902 0.846–0.961 0.002

NDD 0–3 17,460 11.7 1414 8.1 1
4–7 72,890 49.0 4686 6.4 0.78 0.733–0.829 <0.0001
8–11 46,083 31.0 3137 6.8 0.829 0.766–0.885 <0.0001
≥12 12,458 8.4 904 7.3 0.888 0.814–0.968 0.007

NPD 0–3 87,960 59.1 7909 9.0 1
4–7 52,485 35.3 1930 3.7 0.386 0.367–0.407 <0.0001
8–11 7385 5 255 3.5 0.362 0.319–0.411 <0.0001

12–15 935 0.6 41 4.4 0.464 0.339–0.635 <0.0001
≥16 126 0.1 6 4.8 0.506 0.223–1.149 0.104

COPD No 138,929 93.3 9355 6.7 1
Yes 9898 6.6 782 7.9 1.188 1.101–1.282 <0.0001

Arterialhypertension No 52,448 35.2 4083 7.8 1
Yes 95,822 64.4 6007 6.3 0.792 0.760–0.826 <0.0001

Diabetes No 101,044 67.9 7018 6.9 1
Yes 46,241 31.1 3035 6.6 0.941 0.901–0.984 0.007

Anaemia No 140,813 94.6 9470 6.7 1
Yes 7840 5.3 657 8.4 1.269 1.168–1.378 <0.0001

Renal failure No 139,807 93.9 9191 6.6 1
Yes 9035 6.1 947 10.5 1.664 1.551–1.786 <0.0001

Atrialfibrillation No 11,126 75.0 5746 5.2 1
Yes 37,050 25.0 4310 11.6 2.414 2.316–2.516 <0.0001

Dyslipidaemia No 95,200 63.9 7891 8.3 1
Yes 52,857 35.5 2239 4.2 0.489 0.466–0.514 <0.0001

Ischaemic heart
disease No 140,837 94.6 9458 6.7 1

Yes 7181 4.8 625 8.7 1.324 1.217–1.441 <0.0001
Readmission No 141,751 95.2 9154 6.5 1

Yes 7140 4.8 987 13.8 2.324 2.165–2.493 <0.0001
SSPF No 148,231 99.6 10,057 6.8 1

Yes 660 0.4 84 12.7 2.004 1.592–2.521 <0.0001
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Table 2. Cont.

Total Death

n % n %* ORu 95% CI p

n Mean SD Difference of
the Means 95% CI p

Age Survival 138,750 73.34 12.527 −8.872–8.374
Death 10,141 81.96 9.510 −8.623 −8.819–8.426 <0.0001

Length of stay Survival 138,750 7.67 4.501 1.876–2.058
Death 10,141 5.71 4.700 1.967 1.873–2.062 <0.0001

NDD Survival 138,750 6.9224 2.94810 −0.011–0.108
Death 10,141 6.8735 3.09802 0.04893 −0.013–0.111 0.1240

NPD Survival 138,750 3.3534 2.45031 1.099–1.98
Death 10,141 2.2044 2.21442 1.14901 1.104–1.194 <0.0001

SSPF: symptoms suggestive of posterior fossa infarction. ORu: odds ratio unadjusted; NDD: number of diagnoses
on discharge; NDP: number of procedures on discharge; UA: urgent admission; SA: scheduled admission; COPD:
chronic obstructive pulmonary disease; %: percentage from total sample; %*: percentage within the deceased.

The final logistic model built on the training cohort was composed of ten variables
and provided an AUC of 0.742 (95% CI: 0.737–0.747). This model was also applied to the
test cohort, and both presented a moderate–high and very similar discriminant capacity
(Table 3).

Table 3. Logistic regression model to predict mortality. Training cohort.

Logistic
Regression Observations = 145,400

Log likelihood = −32,531.838 Pseudo R2 = 0.0975

Death OR SE P > z 95% CI

Lower Upper
Age 1.069 0.001 0.000 1.067 1.072
Sex 1.202 0.023 0.000 1.149 1.257

Readmission 2.008 0.038 0.000 1.862 2.165
Ischaemic

heart disease 1.342 0.046 0.000 1.227 1.467

Arterial
hypertension 0.726 0.023 0.000 0.695 0.759

Diabetes
mellitus 1.105 0.024 0.000 1.054 1.158

Atrial
fibrillation 1.537 0.023 0.000 1.471 1.607

Dyslipidaemia 0.638 0.026 0.000 0.606 0.671
Heart failure 1.518 0.034 0.000 1.421 1.622

SSPF 2.639 0.124 0.000 2.071 3.364
AUC: 0.742, 95% CI: 0.737–0.747; Pearson’s χ2 test: 0.176. SSPF: symptoms suggestive of posterior fossa infarction.

The logistic model built from the training cohort was composed of ten variables and
presented a moderate–high discriminant capacity, with an AUC of 0.742 (Table 3, Figure 2).



Int. J. Environ. Res. Public Health 2022, 19, 3182 8 of 16

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 8 of 17 
 

 

The logistic model built from the training cohort was composed of ten variables and 
presented a moderate–high discriminant capacity, with an AUC of 0.742 (Table 3, Figure 
2). 

 
Figure 2. ROC curve of the mortality predictor model applied to the training cohort. AUC 0.742, 
95% CI: 0.737–0.747. 

Application of the model to the test cohort (to verify its internal validity) produced 
an AUC of 0.736, 95% CI 0.727–0.746 (Figure 3). The difference in the AUC was 0.006 units 
and the DeLong test was significant (p < 0.001) despite the minimal differences in relation 
to the large sample size. The model met the classical internal validation criterion, i.e., a 
decrease in the C-statistic of no more than one-tenth of a unit. 

 
Figure 3. ROC curves for the training and test cohorts. AUC Train: 0.742, 95% CI: 0.737–0.74; AUC 
Test: 0.736, 95% CI: 0.727–0.746. AUC Train − AUC Test = 0.006, CI difference of the means 0.002–
0.005. 

0.
00

0.
25

0.
50

0.
75

1.
00

Se
ns

iti
vi

ty

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Figure 2. ROC curve of the mortality predictor model applied to the training cohort. AUC 0.742, 95%
CI: 0.737–0.747.

Application of the model to the test cohort (to verify its internal validity) produced an
AUC of 0.736, 95% CI 0.727–0.746 (Figure 3). The difference in the AUC was 0.006 units and
the DeLong test was significant (p < 0.001) despite the minimal differences in relation to the
large sample size. The model met the classical internal validation criterion, i.e., a decrease
in the C-statistic of no more than one-tenth of a unit.
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The calibration was also evaluated by the Hosmer–Lemeshow test and through the
visual representation of the risk deciles (Figure 4). The Pearson test [30], which is highly
recommended for large sample sizes, was also applied. This test showed there were no
significant differences between the values observed and those predicted by the model
(Pearson χ2 ungrouped, p = 0.176); the visual interpretation of the observed and expected
deciles is consistent with this result.
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The risk score produced values in the range of −12 to 61 points. Its graphical repre-
sentation facilitates a rapid estimate of the relation between the score on the probability
curve and the risk of death (Table 4 and Figure 5).

Table 4. Risk scores.

Attribute Points

Age > 76 16
Sex (female) 4
Readmission 9

Ischaemic heart disease 5
Hypertension −5

Diabetes 1
Atrial fibrillation 7

Dyslipidaemia −7
Heart failure 6

Symptoms of posterior fossa infarction 14
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From the perspective of DL, a random forest analysis provided the variables with
the highest weights as possible predictors of mortality (Figure 6), with age, heart failure,
readmission and female sex, among others, standing out. The permutation test reduced the
overestimation of the RF (Figure 7) although the same variables were maintained.
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Using the variables selected from the previous tests as predictors, a multilayer percep-
tron neural network presented an AUC of 0.651. Table 5 shows the comparative values of
the different metrics obtained for the different methodologies used.
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Table 5. Results of the different metrics according to the method of analysis.

Balanced Accuracy AUC ROC Precision Recall

Logistic
regression 0.667 0.742 0.320 0.712

Random forest 0.669 0.726 0.326 0.698
Neural network

MLP 0.651 0.651 0.356 0.863

4. Discussion
4.1. Findings

In this study, we analyse information obtained from clinical–administrative databases
managed by the Spanish Ministry of Health, with respect to the period 2008–2012. These
data were used to develop a predictive model based on logistic regression with a moderate–
high capacity to estimate the risk of mortality in patients hospitalised for an ischaemic
stroke when neither thrombolysis nor thrombectomy have been performed.

The model obtained provides an accurate visual calibration in terms of the concordance
between the observed values and the mortality predicted according to the risk deciles
obtained by the Hosmer–Lemeshow method. To streamline the risk estimation procedure,
we also developed an auxiliary web application that allows the exact risk to be estimated
almost immediately [31].

As the final outcome, we obtained a score to represent the mortality risk of each patient.
It can be derived quickly and easily, and we believe it will be of great use to the clinician.
It can be accompanied by a graphical representation that is equally fast and easy to use,
either in combination with the results of the logistic model or independently.

On the other hand, the DL-based approach showed that modern data science method-
ologies do not always provide better results than more traditional statistical techniques. In
this sense, logistic regression showed a predictive performance equal or superior to RF and
neural network methodologies.

The use of techniques such as ML or DL to tackle this type of problem is growing
every day, but in the studies consulted, there is one element that tends to be constant, and
that is the use of databases that are more specific and oriented towards specific pathologies
than the one we have used [20,22].

One of the frequent problems when working with databases in which the outcome
variable represents a very small proportion is the imbalance of the data. There is a tendency
towards asymmetry and imbalance in the classification tables that makes it necessary to
use metrics other than the AUC-ROC, such as accuracy, precision and recall metrics. All of
these are displayed in Table 5 and denote an acceptable behaviour of the model despite the
difficulties imposed by the dataset.

4.2. Comparison with Previous Studies

Numerous prediction models and mortality scores for stroke patients have been
presented, but to our knowledge, none in Spain based on the MBDS or any other clinical-
administrative database using such a high volume of cases as in the present study. Instead,
reference is frequently made to clinical records, using only small-to-moderate sample sizes
and, in most cases, without generating a complete model. On the other hand, interesting
studies based on artificial intelligence, using the random forest method, have been made
to predict mortality risk. However, the theoretical basis, the details of the method applied
and the combined use of clinical, neuroimaging and biochemical markers substantially
distance these studies from the approach we describe [32]. Moreover, the model proposed
in this paper can be built to obtain a very rapid estimate, during the initial assessment of
the patient, thus enhancing care efficiency.

Numerous studies have been conducted in other countries, using various sources
of information to develop and validate mortality risk scores, but most of them present
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significant differences from our work, especially as concerns the medium- to long-term
estimation of mortality risk [13,15–19,33].

The PREMISE score, for predicting early mortality due to stroke, was developed from a
prospective register with data from 38 stroke units in Austria. This score has been validated
internally and externally and provides optimal results [16,34]. From a multi-variate model,
the authors derived a score that performed well in terms of discriminant capacity (AUC
0.879) and visual calibration. The information source used in this study was a group of
stroke units that supplied data to a specific national register. This source, hence, was much
more precise than our own (a national clinical–administrative database that presents a
certain lack of exhaustiveness, as it is not designed specifically for recording details of
patients who have suffered a stroke). Clinical severity instruments such as the NIH Stroke
Scale/Score (NIHSS), although they make comparability more complex, also enhance
predictive capacity.

Three important scores have been developed to estimate short- and medium-term
mortality. Two of these (providing 30-day estimates) were produced by the Canadian Stroke
Network, and the third considered in-hospital mortality in a way similar to the approach
we describe (Smith et al., 2010) [13]. In the latter work, a risk score method was devised
to estimate in-hospital mortality, based on a study of 274,988 patients treated in 1036
U.S. hospitals. The study data were obtained from the “Get with the Guidelines—Stroke
Program” [35,36]. Using this information, the authors developed referral and validation
cohorts, alternately including and omitting the severity scale of the NIHSS. This procedure
generated two risk models: the one excluding the NIHSS had a discriminant capacity of
0.72, and the one including it had a discriminant capacity of 0.85. Although the latter was
clearly better, in both cases, discrimination was good, as was the visual plot calibration.

The results obtained in the present study reveal a discriminant capacity (based on the
C-statistic) similar to that of Smith et al. when the NIHSS severity scale was not used. In
common with these authors, we not only developed a model that excluded this key variable
but also created one that both incorporates estimates of in-hospital mortality and uses only
the variables present at the time of admission. This feature is extremely important, since
knowing the patient’s risk profile in the first few minutes of evaluation facilitates the use
of personalised medicine and enables clinical circuits and schedules to be organised for
optimal effectiveness and efficiency.

Notably, therefore, our model obtains a similar discriminant capacity to that offered by
the one proposed by Smith et al., in both cases excluding the NIHSS variable. This is a useful
achievement because our model is based on a clinical–administrative information source,
which is inevitably less exhaustive than the database used in the earlier study [37]. The
visual representation of the risk deciles (observed vs. expected) in the Hosmer–Lemeshow
(HL) test shows our calibration data to be acceptable. However, the HL test is based on
a chi-square test, which with such large sample sizes is usually non-significant. To avoid
this limitation, we applied the Pearson χ2 test, implemented by Stata software [38], which
confirmed the absence of significant differences in our calibration analysis, as we hoped.

Studies in this respect have also been conducted in non-industrialised countries, for
example by Gondar et al. [33]. These authors analysed medical records from Ethiopia, pro-
ducing a predictive model to assess the risk of in-hospital mortality due to ischaemic stroke.
However, the sample size was only modest, and the multivariate analysis performed was
unable to achieve an optimal model based on logistic regression. However, a subanalysis
based on Cox proportional hazards showed that intercurrent infections and impaired renal
function were associated with higher mortality while, as in our study, dyslipidaemia was
associated with lower mortality.

Finally, a recent study conducted in Canada proposed a risk score to classify stroke
severity, basing their analysis on administrative data [19]. The discriminant capacity of
this score was evaluated according to the inclusion of certain critical variables, producing
an AUC value of 0.82 when the Canadian Neurological Scale (CNS) with real observed
data was included. This value fell to 0.76 when the CNS was used with the data estimated
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by the model and further still when the CNS was excluded (C = 0.69). This model has the
undoubted advantage of its inclusion of critical variables (via the CNS) in the assessment of
stroke mortality risk. Nevertheless, our own model, despite lacking these critical variables,
obtained results similar to those of the intermediate model above, derived from the CNS.

In conclusion, having compared the outcomes of the present study with those reported
in the literature in this regard, we believe our work is consistent in methodology and results
with most international studies in this field and achieves results similar to those of studies
that use only general clinical and administrative variables and not those of a critical nature
in patients with stroke.

4.3. Strengths of the Study

We present a model for estimating the risk of mortality in patients admitted for an
acute non-reperfused stroke. This model is composed of variables obtained from clinical–
administrative databases and provides moderate–high discriminant capacity and good
calibration. It is the first such model to be based on the Spanish Minimum Basic Data
Set that considers mortality, and, moreover, it is accompanied by a smartphone app that
facilitates immediate estimation of the mortality risk.

Another major strength of this study is the large sample size considered and the long
duration of the data collection period (five years). In addition, it takes into account all
patients admitted for stroke, nationwide, during this period.

Prior to our investigation, many such risk scores and prediction models have been
developed to address the same problem, but most attempt to predict mortality at different
times after hospital discharge. Furthermore, the majority are constructed using information
from real-life cases, not from clinical–administrative databases.

In most of these previous studies, the patients included in the analysis were treated in
hospital stroke units or, to a lesser extent, conventional neurology wards. In consequence,
little research attention has been paid to the profile of patients addressed in the present
study [16,17,34]. Moreover, some studies examined only non-reperfused ischaemic strokes
while others addressed haemorrhagic strokes and ICU treatment in separate analyses [15].
It is important to note that stroke units make greater use of specialist procedures and
therapeutic effort than is the case with patients managed conservatively, as is the case
of those examined in our study [38]. Only Aylin et al. [39] used data from a database
comparable to the Spanish MDBS (in their case, from the British NHS) but this analysis
was applied to non-cerebral vascular pathologies. In relation to the latter, therefore, our
prediction and score model can be considered totally novel. Furthermore, the creation
of a web tool, accessible from any device with an Internet connection, together with
the provision of a smartphone application, enable the physician to resolve a complex
logistic equation almost immediately, taking into account only variables that can readily be
evaluated in the first moments of patient care.

Finally, a notable strength of the study is the model’s “explainability”. The model
presented is easily interpretable, and the approach using logistic regression is optimal
from the point of view of explainability, as this method makes it possible to understand
the way in which the predictions are made with relative simplicity. The model is also
very easy to implement (in a mobile application, on the web, etc.), and it can be easily
modified and re-adapted after external validation processes, using new coefficients with
significant efficiency.

4.4. Potential Limitations

A potentially significant limitation of the present study is the absence of data from
the NIHSS scale in our source of information, which makes it much more difficult to raise
the discriminant capacity of the model. Nevertheless, moderate, efficient AUC levels are
achieved for use in clinical practice.

In addition, the databases consulted do not contain sufficient information to determine
the severity of the stroke upon admission. For example, in our study, it was not possible to
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obtain variables enabling us to reproduce or estimate the NIHSS or the CNS. This inevitably
reduces the precision obtained, compared to studies that do consider these critical variables.
The Spanish clinical–administrative database is not pathology specific but is designed to
encode any pathological process.

The classification used in this study (ICD 9MC) predates the ICD10 version currently
in use; the clinical and outcome profile of patients with reperfusion criteria (thrombectomy
or thrombolysis) has changed over the years, something that is not observed for patients
who are managed conservatively. In fact, increasing the time available from stroke onset for
the possible application of new therapies has been the main change in stroke management.

In the present study, we have assumed a correct attribution of episodes to DRG 14;
undoubtedly there is a source of variability in coding that may make this a priori assump-
tion a limitation to some extent. Moreover, the origin of the data is very heterogeneous
and difficult to integrate, as it combines information from a large number of regional
databases. In relation to these characteristics of the ICD version used, no attempt has been
made to validate the obtained model outside the country or to other classifications, which
would have placed a significant bias on the study. Finally, our study may be subject to
underreporting bias, a well-known limitation of this type of information source [40].

4.5. Implications

The study we describe proposes a method to determine the stratification of mortality
risk in a patient being treated in the emergency room (with no reperfusion) after undergoing
an acute ischaemic stroke. This parameter is of fundamental importance in establishing the
type and urgency of healthcare to be applied.

Personalising this risk allows clinicians to optimise the pathways provided and the
complementary tests performed, ensuring that critical times are not exceeded. By establish-
ing maximum delay times before consultation with the neurology specialist and time limits
for performing imaging tests or initial care, and ultimately by promoting personalised
medicine targeting the specific risk presented, hospitals can optimise the care provided
for patients with this pathology. Furthermore, these measures would be valid not only for
urgent care but also for more routine decision-making in the hospitalisation ward.

The model proposed is not intended to replace, under any circumstances, the opinion
of the expert neurologist. However, we believe it will be a valuable resource when used in
conjunction with clinical scales and specialist opinion.

5. Conclusions

We propose a practical means of obtaining a predictive model of the risk of mortality
during the admission of patients with non-reperfused stroke. The use of such a model
would have beneficial clinical and healthcare repercussions and contribute to optimising
care for this group of patients.

Finally, we emphasise that, although the discriminant capacity of this model is similar
to that offered in related work, our model and risk score are based exclusively on variables
that can be determined just a few minutes after admission, with evident advantages for
patient care.
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