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This study aimed to establish the occurrence and frequency of HLA alleles and haplotypes for a healthy
British Caucasian population bioresource from Oxfordshire. We present the results of imputation from
HLA SNP genotyping data using SNP2HLA for 5553 individuals from Oxford Biobank, defining one- and
two-field alleles together with amino acid polymorphisms. We show that this achieves a high level of
accuracy with validation using sequence-specific primer amplification PCR. We define six- and eight-
locus HLA haplotypes for this population by Bayesian methods implemented using PHASE. We determine
patterns of linkage disequilibrium and recombination for these individuals involving classical HLA loci
and show how analysis within a haplotype block structure may be more tractable for imputed data.
Our findings contribute to knowledge of HLA diversity in healthy populations and further validate future
large-scale use of HLA imputation as an informative approach in population bioresources.
� 2017 The Authors. Published by Elsevier Inc. on behalf of American Society for Histocompatibility and

Immunogenetics. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
1. Introduction

The high level of polymorphism involving classical HLA alleles
reflects the importance of the encoded molecules in human health
and disease, notably in terms of transplantation and autoimmunity
but also for diverse phenotypes including drug response and sus-
ceptibility to infection [1]. For bone marrow and other donor reg-
istries, population level HLA allele frequency data is available for
diverse ethnic groups worldwide through the International HLA
and Immunogenetics Workshop [2,3] and Allele Frequencies Net
Database (AFND) [4–6]. These include high resolution HLA haplo-
type frequencies in US populations for the entire US donor registry
[7] and large scale data for German donors [8,9] while databases of
allelic reference sequences and nomenclature are maintained by
IPD-IMGT/HLA (http://www.ebi.ac.uk/imgt/hla) [10]. There are a
range of methods for direct HLA typing including serological
testing, use of sequence-specific amplification primers (SSP) or
probes (SSO), Sanger sequencing and next generation sequencing
based typing [11,12]. Imputation of HLA alleles from SNP genotyp-
ing [13–17] provides a further complementary approach of signif-
icant interest given the low cost and broad availability of accurate
high throughput genotyping through genome-wide association
studies and other initiatives. With the high number of disease
associations mapping to the MHC and the diverse collections of
disease cohorts with high density chip data becoming available,
accurate HLA imputation can enhance the informativeness of SNP
data significantly [16,18].

Here, we sought to apply SNP based HLA imputation to a large
United Kingdom (UK) Bioresource to add to the existing data on the
accuracy and application of the approach, to define HLA allele fre-
quencies for a homogenous health British Caucasian cohort
recruited from Oxfordshire UK and understand patterns of haplo-
typic recombination in this group. Oxford Biobank (OBB) is a biore-
source of male and female residents from Oxfordshire used in
different studies including the opportunity to recruit-by-
genotype and recruit-by-phenotype [19] and is part of the NIHR
National Bioresource. Existing British individuals with large-scale

http://crossmark.crossref.org/dialog/?doi=10.1016/j.humimm.2017.01.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ebi.ac.uk/imgt/hla
http://dx.doi.org/10.1016/j.humimm.2017.01.006
http://creativecommons.org/licenses/by/4.0/
mailto:julian@well.ox.ac.uk
http://dx.doi.org/10.1016/j.humimm.2017.01.006
http://www.sciencedirect.com/science/journal/01988859
http://www.elsevier.com/locate/humimm


M.J. Neville et al. / Human Immunology 78 (2017) 242–251 243
HLA typing data include the Welsh bone marrow registry (>21,000
individuals) [20] and the UK renal transplant list (7007 individuals)
[21] while the 1958 Birth Cohort (http://www.cls.ioe.ac.uk) has
provided both gold-standard two-field typing data for 918 individ-
uals and SNP genotyping. In this paper, we report application of the
SNP2HLA methodology [16] to impute HLA alleles and amino acid
polymorphisms from dense SNP genotyping data on the OBB
cohort with validation using direct typing. The authors of the
SNP2HLA software have previously shown that with a suitably
large training set high levels of accuracy in HLA imputation can
be achieved [16]. This method also adds a further level of informa-
tion for genetic disease studies by imputing amino acid differences
involving classical HLA genes, which is of growing interest given
evidence that specific disease associations can be resolved to par-
ticular amino acid polymorphisms such as seen in rheumatoid
arthritis [22] and psoriasis [23], and is of significant potential value
in the setting of bioresource cohorts.
2. Materials and methods

2.1. Study population

OBB (www.oxfordbiobank.org.uk) was established in 2000 as a
random population based cohort of healthy Caucasian men and
women aged 30–50 years to enable recruitment of participants
into primary and early translational research for the Oxford and
UK research community [19]. As of July 2016, 7900 participants
have been recruited. The OBB is also part of the UK National NIHR
Bioresource (https://bioresource.nihr.ac.uk), a collection of over
100,000 individuals from both control and disease cohorts with
consent in place to recall for recruit-by-genotype studies. Exten-
sive screening information is collected on all individuals including:
anthropometry, biochemistry, questionnaires and blood pressure.
In addition, DXA body composition imaging using Lunar iDXA
(GE Healthcare, Lunar, Madison, WI) (n = 5200 participants), NMR
based (n = 5500) and Metabolon mass spectroscopy based
(n = 2250) metabolomics data have been generated together with
SNP genotyping (detailed in Section 2.2) (n = 6000). All individuals
have given informed consent to be contacted again at a later date
for targeted research studies (COREC reference 08/H0606/107+5).

2.2. DNA extraction, genotyping and quality control

DNA was extracted commercially from 8 to 10 ml whole blood
and 260/280 nm spectrophotometer ratios generated to assess
quality (LGC Genomics, Hoddesdon, UK). Samples were genotyped
using the Illumina HumanExome-12v1_A beadchip array (Illumina,
San Diego, CA) and variants called using Illumina GenCall algo-
rithm [24] from standard Illumina cluster files. Samples were
excluded on call rate <98%, heterozygosity 4SD of mean, exact
HWE <10�4, and on self-reported non-Caucasian ancestry. The Illu-
mina HumanExome array was designed to facilitate large-scale
genotyping of 247,870 mostly rare (minor allele frequency (MAF)
<0.5%) and low-frequency (MAF 0.5–5%) protein altering variants
selected from sequenced exomes and genomes of �12,000 individ-
uals. In addition, a set of 2536 SNPs from within the HLA region of
chromosome 6 were included in the design to facilitate future clas-
sical HLA type imputation [16].

2.3. HLA imputation using SNP2HLA

The SNP2HLA software tool [16] was used to impute one and
two field resolution classical HLA alleles and to impute amino acid
substitutions identified as a consequence of polymorphic nucleo-
tides for the HLA-A, -C, -B, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1
gene loci within the MHC region on chromosome 6. SNP2HLA_
package_v1.0.2 [16], Beagle.3.0.4 [25], linkage2beagle_2.0 [16]
and Plink1.07 [26] were used following recommended parameters
with 10 iterations and a marker window size of 1000. The pre-built
Type 1 Diabetes Genetics Consortium (T1DGC) reference panel of
5225 European individuals and 8961 binary markers was down-
loaded along with the SNP2HLA tool and used as a training set
for the HLA imputation. After quality control and sample exclu-
sions (Section 2.2), the OBB Illumina Exome Chip dataset com-
prised data for 5553 individuals. A total of 4098 SNP markers
between coordinates chr 6:25653609-45095163 (GRCH37/hg19)
were extracted using PLINK [26] for HLA imputation. There was
an overlap of 1694 markers between the OBB data set and the
T1DGC data set. As well as the imputed HLA alleles and amino
acids, imputation posterior probabilities were also determined to
inform the accuracy of the imputed alleles.

2.4. HLA typing using sequence-specific primer amplification

To assess the accuracy of the HLA imputation, intermediate res-
olution classical HLA class I and II typing of 5 loci (HLA-A, B, C,
DRB1, DQB1) was performed on 70 of the OBB individuals by SSP
as previously described [27]. This was carried out in the Transplant
Immunology Laboratory at the Oxford Transplant Centre. Interme-
diate resolution was considered a practical resolution level to com-
pare with imputation. Whilst this resolution does not define the
definitive two-field HLA types it does give extra information above
one-field to enable groups of alleles to be differentiated into
smaller groups that separate common subtypes (eg B*14:01/
07N/14/26/32/40/46/47/49/54 can be distinguished from B*14:02/
04/09/11/15/16/17/18/20/22/25/29/31/34/35/36/38/39/41N/43/44/
45/48/50/51/52).

2.5. HLA haplotypes and recombination rate estimation

Linkage disequilibrium (LD) extends across the whole of the
MHC with ancestral extended haplotypes spanning HLA-A and
HLA-DQB1 defined in a number of populations. Homozygous cell
lines have been established for several of these haplotypes from
which sequence data has been generated [28–30]. There is interest
in using HLA typing to impute ancestral haplotypes at a population
level [7,8,31,32]. To assess such haplotypes in OBB, we applied
Bayesian methods implemented with the PHASE V2 software
[33,34] to the two-field resolution SNP2HLA data. For six-locus
haplotypes (HLA-A, -C, -B, -DRB1, -DQA1, -DQB1), PHASE was run
with 30,000 iterations, a thinning interval of 10 and a burn-in of
100, this took about 4 weeks to run (on iMac 3.4 GHz Intel Core
i7 with 32 Gb ram running OSX10.8). For the more complex full
eight-locus haplotypes (HLA-A, -C, -B, -DRB1, -DQA1, -DQB1,
-DPA1, -DPB1) the computational time proved to be prohibitively
long therefore a reduced number of 1000 iterations was run to gen-
erate an estimate, all be it at a reduced accuracy compared to the
six-locus haplotypes. As with the SNP2HLA software, confidence
probabilities generated by PHASE were also used to assess the cer-
tainty of the haplotype being correct. Pairwise LD between specific
HLA alleles defined in the most frequent eight-locus haplotypes
was calculated in PLINK. To estimate the recombination rate and
assess recombination hotspots within the selected HLA region,
additional runs were performed in PHASE V2 using the – MR flag
to specify the PAC-likelihood recombination rate model [35]. This
was run with 1000 iterations and the algorithm was run 5 times
using the – x5 flag. The median recombination rate estimates
between each locus were calculated from the PHASE_recom output
and rescaled to the PHASE calculated background recombination
rate. Optimal haplotype blocks were defined based on analysis
of recombination rates across the region. Haplotypes were then
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constructed for these multi-locus haplotype blocks using PHASE V2
with 10,000 iterations.

2.6. Principal components analysis

SNPs located in coding regions were used to carry out a princi-
pal components analysis (PCA) using the SNPRelate program [36].
The Illumina HumanExome array SNPs for the 5553 OBB individu-
als were compared to SNP genotypes for 1397 individuals from 11
human populations generated by the HapMap project (phase III)
[37]. From the 206526 SNPs in the OBB exome chip data that
passed the QC cutoffs and the 1457897 SNPs in HapMap, a total
of 20560 SNPs overlapped in both data sets. These were merged
using Plink [26]. 146 mis-matching SNPs between the two datasets
and 172 SNPs on non-autosomes were additionally removed. SNPs
with LD threshold more than 0.2 were excluded from the analyses
to avoid the effect of SNP clusters in PCA. After filtering by LD, there
were 11780 SNPs available for genome-wide PCA analysis. For PCA
restricted to the MHC region, 242 SNPs were used after filtering by
LD. Due to the imbalance in number of individuals in different pop-
ulation between the two datasets, we further randomly selected
150 samples from OBB data and performed PCA analysis.
Fig. 1. Principal component analysis comparing Oxford Biobank participants with
11 different human populations from the HapMap project. (A) Data is shown for
British Caucasian individuals from Oxfordshire participating in OBB (5553 people)
and for individuals from 11 HapMap populations (1397 people) using genome-wide
SNP typing. First and second principal components shown plotted as eigenvectors
(EV). ASW (African ancestry in Southwest USA, n = 87); CEU (Utah residents with
Northern andWestern European ancestry from the CEPH collection, 165); CHB (Han
Chinese in Beijing China, 137); CHD (Chinese in Metropolitan Denver Colorado,
109); GIH (Gujarati Indians in Houston Texas, 101); JPT (Japanese in Tokyo Japan
113); LWK (Luhya in Webuye Kenya 110), MEX (Mexican ancestry in Los Angeles,
California 86); MKK (Maasai in Kinyawa Kenya 184); TSI (Toscani in Italia, 102); YRI
(Yoruba in Ibadan Nigeria, 203). (B) PCA restricted to SNPs in the MHC region.

Table 1
Summary of imputed HLA alleles for OBB British Caucasian population (n = 5553).

Total number of different
imputed two-field
resolution alleles

% individuals with imputed
with a high certainty
(posterior probability >0.95)

HLA-A* 32 90.89%
HLA-C* 22 94.06%
HLA-B* 56 88.40%
HLA-DRB1* 34 67.42%
HLA-DQA1* 8 98.60%
HLA-DQB1* 16 95.26%
HLA-DPA1* 6 96.42%
HLA-DPB1* 21 72.48%
3. Results

3.1. Demographics and population genetics of study cohort

High quality genotyping data including 2536 SNPs from the HLA
region were available for 5553 individuals following data process-
ing and quality control. These were all healthy adult British volun-
teers of self-reported Caucasian ancestry living in Oxfordshire UK
and recruited to OBB. They comprised 2469 males and 3084
females with a mean age of 41.7 ± 5.8 (males 41.9 ± 5.6, females
41.5 ± 6). To assess the self-reported ancestry of the participants
and avoid any population-specific allelic variation in our analysis
we first performed PCA analysis comparing SNPs genotyped in
both the OBB samples and 11 diverse global populations from
the HapMap project (1397 individuals) [37]. This demonstrated
clear clustering of all the OBB individuals with CEU individuals of
Northern and Western European ancestry (Fig. 1A). This was also
seen when we restricted the PCA to SNPs in the MHC region
(Fig. 1B). This showed that all the OBB individuals continued to
overlap with the CEU population (Fig. 1B). PCA plots using 150 ran-
domly selected individuals from OBB to allow comparison of
equivalent sample sizes are shown in Supplementary Fig. 1.

3.2. HLA imputation

Classical HLA alleles were imputed for 8 loci (HLA-A, HLA-B,
HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-
DPB1) using SNP2HLA for 5553 OBB individuals of Caucasian
ancestry. A total of 62 one-field and 110 two-field HLA class I alle-
les (32 HLA-A, 56 HLA-B, 22 HLA-C) were imputed for this popula-
tion cohort, plus 47 one-field and 85 two-field class II alleles (34
HLA-DRB1, 8 HLA-DQA1, 16 HLA-DQB1, 6 HLA-DPA1 and 21 HLA-
DPB1) (Table 1) (Supplementary Table 1A and 1B). The distribution
of allele frequencies is illustrated in Fig. 2.

One of the largest published datasets of high resolution HLA
types is from the US donor registry, comprising 6.59 million sub-
jects of which 1.24 million are of European Caucasian ancestry
[7]. We proceeded to compare the observed imputed allele fre-
quencies in our British Caucasian population from OBB with the
US donor data generated from individuals of European Caucasian
ancestry. HLA-A, -C, -B and -DRB1 loci data were available for com-
parison from the US cohort. The observed allele frequencies for
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Fig. 2. HLA allele frequencies observed in 5553 British Caucasian individuals from Oxfordshire participating in Oxford Biobank. Classical class I and class II allele frequencies
shown for 11,106 chromosomes based on imputation. HLA alleles with a frequency of 1% or greater are shown. The full list of alleles identified is shown in Supplementary
Table 1A.
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Fig. 3. Comparison of imputed HLA allele frequencies between populations. Allele frequencies for classical HLA alleles in British Caucasian individuals from OBB (5553
people) plotted vs available laboratory-typed allele frequencies in individuals of Caucasian ancestry in US donor registry (1,242,890 people) [7]. A high degree of correlation
was seen (for alleles with MAF >1%, r2 0.99 for HLA-A, 0.98 for HLA-B, 0.98 for HLA-C and 0.96 for HLA-DRB1).
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these 4 loci were highly comparable (Fig. 3 and Supplementary
Table 1A). Among alleles with MAF >1%, the observed correlation
r2 was 0.99 for HLA-A, 0.98 for HLA-B, 0.98 for HLA -C and 0.96
for HLA-DRB1. Consistent with this, for class I alleles the overall
rank order in terms of allele frequency between the populations
was very similar, although for HLA-B the highest frequency allele
in the UK OBB population was HLA-B*08:01 rather than HLA-
B*07:02 in the US population (Supplementary Table 1A). For class
II alleles, rank order was broadly consistent but greater variation
was seen (Supplementary Table 1A).

We next assessed the confidence of imputation based on poste-
rior probabilities for imputed variants. Overall, for alleles with a
MAF >5% we found that alleles were imputed with a posterior
probability of >0.95 accuracy in over 90% of the individuals.
However, we found significant variation between loci, with highest
confidence based on this parameter for class I alleles, with
HLA-DRB1 and HLA-DPB1 alleles imputed with lower confidence
(Table 1) (Supplementary Table 1A).

We also used SNP2HLA to impute amino acid residue substitu-
tions as a consequence of polymorphic SNP loci for this British
Caucasian population. Of the combined total of 2393 amino acids
across the 8 HLA proteins (refseq counts: HLA-A_365aa, -C_366aa,
-B_362aa, -DRB1_266, -DQA1_255aa, -DQB1_261aa, -DPA1_260
and -DPB1_258aa) a total of 393 polymorphic amino acid posi-
tions were imputed, of which 214 (54.5%) were biallelic and
179 (45.5%) were multi-allelic (Table 2). From these 393 positions
a total of 1108 alternate amino acid residues were observed in
this population, with highest numbers of alternate amino acid
residues seen for HLA-B and HLA-DRB1 (Table 2 and Supplemen-
tary Table 2).



Table 2
Imputed amino acid polymorphisms for 8 HLA loci in OBB British Caucasian population (n = 5544). The numbers refer to the amino acid positions identified as polymorphic within
the protein sequence.

Total number of polymorphic
positions

Total number amino acid substitutions
imputed at those positions

Number of bi-allelic
positions

Number of multi-allelic
positions

HLA-A* 78 208 35 43
HLA-C* 64 129 48 16
HLA-B* 74 237 50 24
HLA-DRB1* 51 255 13 38
HLA-DQA1* 36 59 28 8
HLA-DQB1* 53 159 15 38
HLA-DPA1* 15 15 15 0
HLA-DPB1* 22 46 10 12

Total 393 1108 214 179
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3.3. Validation

To validate the imputed HLA alleles, 70 OBB individuals (140
chromosomes) were directly HLA typed by the SSP method [27]
in an ISO15189:2012 and European Federation for Immunogenet-
ics accredited H&I laboratory. For sequence-specific amplification
we used forward and reverse allele specific primers in multiple
PCR reactions to allow discrimination of cis from trans alleles
across each genomic region, and thus definitively assign HLA types
to both homozygous and heterozygous individuals. HLA types for
the 5 loci HLA-A, -C, -B, -DRB1 and -DQB1 were included in the
SSP typing as the minimum required for solid organ and stem cell
transplantation in the UK.

Intermediate scale resolution clinical HLA typing is more
detailed than the imputed two-field alleles we had established
from SNP genotyping, which give a more precise two-field desig-
nation but with lower certainty. This is reflected in the greater
number of potential allele subtypes grouped together by the clin-
ical typing method (see Section 2.4 and Supplementary Table 3A).
The clinical types were compressed into equivalent two-field and
one-field resolution HLA types. Among the 70 individuals we
found a very high degree of concordance between imputed and
SSP typing. The 5 loci typed across the 140 chromosomes repre-
sent a total of 700 chromosomal segments. For alleles imputed
at two-field resolution only 1% were discordant with SSP typing,
whilst for the one-field HLA typing 0.3% were discordant (Supple-
mentary Table 3B). Relating this back to the 70 individuals, this
represented 6 out of 140 chromosomes discordant at the two-
field resolution (4%). Only one individual was discordant for more
than one locus (two loci: HLA-A and HLA-C) and cross-referencing
this against the inferred extended haplotypes showed both dis-
cordant HLA alleles fell on the same predicted extended HLA
haplotype.
3.4. Six- and eight-locus resolution HLA haplotypes

We proceeded to investigate the occurrence of HLA haplotypes
in this British Caucasian population. Haplotypes were constructed
for six- (HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1 and HLA-DQB1)
and eight-locus (including HLA-DPA1 and HLA–DPB1) regions using
PHASE from the SNP2HLA imputed alleles and involving 11,088
chromosomes (Supplementary Tables 4A and 4B). The most fre-
quent haplotypes are shown (Fig. 4). We found high concordance
for six-locus haplotype frequencies with US donors of European
Caucasian ancestry (correlation r2 0.98) (Fig. 4). As expected, the
most common observed six-locus haplotype was the 8.1 (COX)
ancestral haplotype HLA-A*01:01-C*07:01-B*08:01-DRB1*03:01-
DQA1*05:01-DQB1*02:01 which we observed in 7.5% of chromo-
somes (Fig. 4). Overall, 55 individuals were homozygous for
six-locus haplotypes including 28 individuals for AH 8.1 (COX),
5 for AH 44.1 (AWELLS), 5 for AH7.1 (PGF), 3 for AH 44.2(MANN),
1 for AH 60.1(MT14B) and 1 for AH 60.3(EMJ) (Supplementary
Table 4A). As others have found [7,8,31,32] the construction of
the six-locus haplotypes proved computationally very intensive,
primarily due to uncertainties in phase caused by recombination
hotspots (see Section 3.5 below). This was especially the case for
the 8 locus haplotypes that had an additional recombination
hotspot between HLA-DQB1and HLA-DPA1 (Fig. 5A). For this reason,
although the population level haplotype frequencies were largely
similar between our data and the US donor registry, at the
individual level the proportion of individuals with a high degree
of certainty were low and the number of predicted haplotypes
consequently very large. This would be especially the case for rare
haplotypes. For the 2488 different six-locus haplotypes we defined,
only 52.4% of individuals were assigned with >95% certainty while
for eight-locus haplotypes this dropped to 24.3%. It is important to
note that all methods of computationally imputing extended hap-
lotypes across this region will have the same problem, although
the low degree of certainty for individual level data is rarely
discussed.
3.5. Haplotype blocks

The MHC region shows complex LD [38,39] with polymorphic
frozen haplotype blocks proposed [40]. Multiple recombination
hot spots have been defined [41,42] together with high resolution
LD maps [43]. Non-uniform patterns of LD include regions such as
between HLA-B and HLA-C or HLA-DRB1 and HLA-DQA1 where high
LD and low recombination are seen. Due to the uncertainties inher-
ent in constructing extended haplotype across the whole region, as
discussed in Section 3.4 above, we investigated the utility of hap-
lotype block structure to reduce computational complexity and
time and increase certainty, which is particularly pertinent for
eight-locus haplotype generation, as discussed above. We esti-
mated recombination rates between classical HLA class I and class
II genes in our data set (Fig. 5A). Taken with publicly available
recombination data, we then defined and constructed haplotypes
for three regions of high LD (spanning HLA-C_B, HLA-
DRB1_DQA1_DQB1 and HLA-DPA1_DPB1) within which we con-
structed 220, 94 and 39 high confidence haplotypes respectively
using PHASE (98.8, 99.8 and 99.5% of individuals assigned with
>95% certainty) (Fig. 5B) (Supplementary Table 4C). This was a
significant improvement on the low certainty attained when taking
the whole region together. To further characterize the differences
in LD pattern between the ancestral and the extended haplotypes
we also calculated pairwise LD between alleles involved
in the most common observed eight-locus haplotypes for our
OBB population (Fig. 5A).



Fig. 4. Six- and eight-locus HLA haplotypes in OBB population. The frequencies of the most common observed HLA haplotypes are shown at (A) six-locus (haplotype
frequency cutoff of 0.5%) and (B) eight-locus resolution (haplotype frequency cutoff of 0.25%). (C) Comparison of haplotype frequencies in British Caucasian individuals from
OBB plotted vs individuals of Caucasian ancestry in US donor registry [7].
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Fig. 5. Linkage disequilibrium and extended HLA haplotypes. (A) Pairwise LD (R2) between alleles for common 8 loci extended haplotypes observed in OBB population are
shown in relation to genomic location (schematic representation) in the MHC region. Below this recombination rate shown for OBB individuals (n = 5544) (grey shaded
blocks) calculated using PHASE with log median recombination rescaled to the background recombination rage of 1 plotted on the y axis; and data from the recombination
generated by deCODE [54] showing calculated rates of recombination (sex-averaged) using 10-kb windows. (B) Allele frequencies for haplotype blocks spanning low
recombination regions with data for HLA-C/HLA-B alleles, HLA-DRB1/-DQA1/-DQB1 alleles and HLA-DPA1/DPB1 shown where observed haplotypes >1% frequency.
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4. Discussion

We have presented data that define the HLA allelic landscape for
a healthy British Caucasian population in a geographically discrete
area of southern England. This provides a resource for future popu-
lation genetic studies, complementing those available for other
cohorts which typically arise from donor registries or patient
groups [7,9,20,32]. Our study population involves a bioresource
for which knowledge of HLA alleles is of direct utility, with the abil-
ity to recall by genotype or phenotype enabling, for example, func-
tional studies of individuals with specific alleles. The successful
application of HLA imputation to the large numbers of individuals
typically recruited to such bioresources is of significant practical
relevance as national scale bioresources are being assembled such
as the UK NIHR BioResource (www.bioresource.nihr.ac.uk) and
prospective longitudinal cohorts with linked disease incidence/
phenotyping such as the Precision Medicine Initiative Cohort Pro-
gram in the United States (www.nih.gov/precision-medicine-initia-
tive-cohort-program) and UK BioBank (www.ukbiobank.ac.uk). We
find that SNP2HLA generated high confidence imputation at one-
and two-field resolution which was validated by SSP-based direct
HLA typing for 5 loci. Imputation of HLA alleles and amino acid
polymorphisms using SNP2HLA has been successfully implemented
for genetic studies of associations in a range of traits [44–48].

A further question arises as to whether HLA haplotypes span-
ning classical alleles can be generated from such data. Our study
shows that this is difficult to achieve for individual level data given
current computations tools largely due to the complexity as a
result of recombination hotspots. We did find a high level of corre-
lation to that seen in the US donor population [7], however, there
was a relatively low certainty attached to individual level data,
especially for the rarer haplotypes and for eight-locus HLA haplo-
type imputation. This reflects both the limitations of current tools
as well as the complexity of regional haplotype structure. As one
approach to address this, we have presented an analysis of patterns
of linkage and recombination across the MHC for HLA haplotypes
in our British Caucasian population and the potential utility of
defining haplotypes within specific haplotype blocks for individu-
als when using imputed HLA data. Achieving high confidence
imputation for more limited haplotype blocks may be a realistic
compromise in work where accurate calling is needed for disease
association and mapping studies.

Clinical typing by methods such as SSP are still considered the
gold-standard for transplantation due to their definitive and accu-
rate phasing of the individual polymorphisms of key SNPs across
the region. However these methods are very time consuming and
not practical for large cohorts of individuals. One new emerging
technology that can be applied to achieve HLA typing is next gen-
eration sequencing (NGS) [12,49,50]. Such technologies enabling
single molecule sequencing in high throughput are becoming more
widely available for HLA typing with more accurate computational
tools [51] and implementation in clinical HLA laboratories [52,53].
However, accurate phasing is reliant on generating large enough
fragment sizes which is currently limiting. In addition, although
prices are becoming more competitive, to sequence cohorts of indi-
viduals is still prohibitively expensive. Imputation, as presented
here, although not meant to replace typing methods for the clinical
environment, represents a robust complementary approach appli-
cable to the research community for very little additional cost that
can maximize the value of existing high density SNP array data
currently available on many cohorts around the world.
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