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Abstract
There is a strong relationship between fluid intelligence and working memory capacity (WMC). Yet, the cognitive mechanisms
underlying this relationship remain elusive. The capacity hypothesis states that this relationship is due to limitations in the amount
of information that can be stored and held active in working memory. Previous research aimed at testing the capacity hypothesis
assumed that it implies stronger relationships of intelligence test performance with WMC for test items with higher capacity
demands. The present article addresses this assumption through simulations of three theoretical models implementing the
capacity hypothesis while systematically varying different psychometric variables. The results show that almost any relation
between the capacity demands of items and their correlation with WMC can be obtained. Therefore, the assumption made by
previous studies does not hold: The capacity hypothesis does not imply stronger correlations of WMC and intelligence test items
with higher capacity demands. Items varying in capacity demands cannot be used to test the causality of WMC (or any other
latent variable) for fluid intelligence.
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Introduction

Individual differences in fluid intelligence – the ability to
“reason and solve problems involving new information”
(Carpenter et al., 1990 p.404) – are strongly correlated with
measures of working memory capacity (WMC; Conway &
Kovacs, 2013; Kyllonen & Christal, 1990; Oberauer et al.,
2005). Still, the cognitive mechanisms underlying this rela-
tionship remain elusive. One prominent account is that indi-
vidual differences in WMC causally affect performance in
fluid intelligence measures. This so-called capacity hypothesis
assumes that an individual’s ability to maintain a limited
amount of information active in working memory at least
partly determines their performance in fluid intelligence mea-
sures (Carpenter et al., 1990; Colom et al., 2008; Unsworth
et al., 2014).

The capacity hypothesis originates from an analysis by
Carpenter et al. (1990) of cognitive processes associated with

performance in Raven matrices tests (Raven & Raven, 2003).
Their conceptual analysis yielded two aspects distinguishing
high- from low-performing individuals on this fluid intelli-
gence measure: (a) the ability to induce more abstract rela-
tions, and (b) the ability to manage larger sets of goals/rules
in workingmemory.Whereas the first aspect is not necessarily
linked to WMC, the second aspect directly maps onto WMC
as a person’s ability to hold in mind a limited amount of
information. Accordingly, WMC was assumed to be critical
in limiting a person’s performance in Raven matrices tests.

To determine the cognitive demands of individual Raven
test items, Carpenter et al. (1990) classified which rules, and
how many rule tokens, an item required for a correct solution.
They found that with increasing number of rule tokens re-
quired for solving an item (i.e., the capacity demands of an
item) its mean error rate increased. This relationship of theo-
retical capacity demands and observed item difficulty (i.e.,
error rates) was replicated in later studies (e.g., Burgoyne
et al., 2019; Little et al., 2014; Wiley et al., 2011).

On the basis of these results, previous studies claimed that
the capacity hypothesis can be tested by comparing the corre-
lation of WMC with intelligence test items of varying diffi-
culty or capacity demands (Burgoyne et al., 2019; Little et al.,
2014; Salthouse, 1993; Unsworth & Engle, 2005;Wiley et al.,
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2011). The underlying assumption in these studies was that
more difficult items, or items with higher capacity demands,
more strongly rely on WMC, and therefore should show
higher correlations with measures of WMC. In detail, these
studies estimated the correlation of item performance in
Ravenmatrices (Raven&Raven, 2003) withWMCmeasures,
such as complex span (Daneman& Carpenter, 1980) or visual
arrays tasks (Luck & Vogel, 1997), to test whether this corre-
lation increases with higher item difficulty or capacity de-
mands. All but one study (Little et al., 2014) found no increase
in correlations with WMC measures for more difficult Raven
items, or for items with higher capacity demands. These re-
sults were then interpreted as evidence against a causal role of
WMC for intelligence, indicating that other processes such as
attention control (Burgoyne et al., 2019; Wiley et al., 2011)
may be more important for intelligence differences.

A methodological critique of these types of analyses
(Smoleń&Chuderski, 2015) argued that “although intuitively
attractive” the underlying idea is “fundamentally flawed.”
Specifically, Smoleń and Chuderski (2015) proposed that
the pattern of correlations across items varying in difficulty
(operationalized by mean error rates) necessarily follows a
quadratic function that is tied to the amount of floor and ceil-
ing effects for the different items. Both analytical derivations
and empirical results of their study showed that, depending on
the size of the correlation between two variables and the
amount of floor or ceiling effects for specific items, correla-
tions can increase, be almost stable, or decrease across items
varying in their mean error rate. On this basis, Smoleń and
Chuderski (2015) concluded that results from such analyses
cannot be informative regarding the capacity hypothesis.
These results are, however, limited to floor or ceiling effects
in mean error rates, and thus do not directly reflect changes in
capacity demand. Here we present a conceptual analysis of the
capacity hypothesis focusing more directly on capacity de-
mands and its implications for WMC-intelligence correla-
tions, which nonetheless arrives at the same conclusion.

A theoretical model of the capacity hypothesis

What does the capacity hypothesis actually imply for the re-
lationship of WMC with intelligence test items of varying
capacity demands? The capacity hypothesis states that
WMC causally underlies individual differences in the perfor-
mance of intelligence test items (see Fig. 1 for a simplified
illustration of this theoretical idea). To investigate the impli-
cations of this model for the relationship between WMC and
performance on different intelligence test items, item charac-
teristics (e.g., capacity demands) of the intelligence test items
can be varied systematically in a simulation to then assess how
the relationship of performance on test items with WMC
changes as a function of the item characteristics.

The critical item characteristic in this scenario is arguably the
capacity demand (e.g., the number of rule tokens) of an intelli-
gence test item. The simplest and most generic way of spelling
out the capacity hypothesis is to assume that if, and only if, the
capacity of a person matches or surpasses the capacity demand
of an item, the person should be able to solve the item. For
example, an intelligence test item requiring the storage and
use of three different rule tokens should only be solved by
individuals with a WMC for at least three tokens. Such a deter-
ministic threshold model is arguably unrealistic due to the in-
herent noisiness of mental processes. To accommodate noise,
we implement a soft-threshold model, such that the probability
of solving an item increases steeply as the difference between a
person’s capacity and the item’s capacity demand goes from
negative to positive. This relationship of available capacity and
an item’s capacity demand conceptually corresponds to the
relationship between ability θ and item difficulty or location β
in item-response theory (IRT; Birnbaum, 1968; Rasch, 1993).
As illustrated by the item-response functions in Fig. 2, the
probability of solving an item increases as a function of the
difference between ability θ and item difficulty β.1 If we inter-
pret item difficulty β – as defined by IRT – as the capacity
demand of an item, and the ability θ as a person’s capacity, this
mirrors the relationship outlined above. Our model additionally
incorporates the possibility that other variables besides WMC
affect a person’s chance of solving an item. This could be, for

Fig. 1 Path diagram of a theoretical model illustrating the capacity
hypothesis. Working memory capacity (WMC) causally determines the
latent ability (θ) that underlies performance in different intelligence test
items (RAPM1, RAPM2, RAPM3, RAPM4..., RAPMi). In addition, other
constructs (X) that are independent of WMC may also be related to the
ability θ. Circles are used to illustrate latent, not directly observable con-
structs. Rectangles are used to illustrate manifest behavioral performance,
such as the accuracy of a response in an intelligence test item

1 Please note that although item difficulty or location β is interpreted as item
difficulty for item-response functions used in IRT, it is not to be confused with
item difficulty p as defined by classical test theory. Other than in CTT, β does
not represent the proportion of people that were able to solve an item.
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instance, the person’s current alertness or motivation, or their
ability to infer an abstract rule (Carpenter et al., 1990). We
summarily represent such variables as X, and therefore model
the person’s ability θ as the sum of WMC and X (see also the
theoretical model illustrated in Fig. 1).

Additionally, the strength of the relationship between the abil-
ity θ and item difficulty β can be moderated by item discrimina-
tionα (illustrated by the slope in Fig. 2). If item discrimination is
high (see left side of Fig. 2), changes in ability (e.g., from θ = 2.5
to θ = 3.5) have large effects on the probability to solve an item.
In contrast, if item discrimination is low (see right side of Fig. 2),
the same change in ability has a smaller effect on the probability
to solve an item. The discrimination parameter can be thought of
as the degree of noisiness of the soft-threshold function. Finally,
the lowest possible probability to solve an item can be imple-
mented via the guessing parameter γ. Formally, the probability
for solving an item in such a three-parameter logistic soft thresh-
old model is defined as:

P θð Þ ¼ γ þ 1−γð Þ eα θ−βð Þ

1þ eα θ−βð Þ

Our implementation of the capacity hypothesis described
above is very generic, making no assumption about WMC
other than conceptualizing it as a continuous variable that
linearly affects the ability θ underlying intelligence test
performance. Some contemporary theories conceptualize
WMC more specifically either as the number of discrete slots
a person can use to store information in (Cowan et al., 2012;
Luck & Vogel, 2013) or as a continuous resource that can be
distributed across the to-be-stored representations (Ma et al.,
2014). To reflect these conceptualizations of WMC, we spec-
ified two additional models that change the generic model in
some respects. We assess whether these models change what

the capacity hypothesis implies for the relationship of WMC
and intelligence test items with varying capacity demands. All
three models are specified formally in Fig. 3 and described in
more detail in the Methods section.

The present simulation study

Authors of several previous studies assumed that the capacity
hypothesis, stating that WMC causally underlies individual dif-
ferences in intelligence test performance, implies increasing
correlations for items with higher capacity demands and mea-
sures of WMC. The present simulation study (see Fig. 3) im-
plemented three different theoretical models to investigate in
how far this prediction can be derived from the capacity hy-
pothesis. This is essential to evaluate the results of previous
studies and their interpretation regarding the relationship be-
tween WMC and intelligence. If the assumption motivating
previous studies is true, a model implementing the capacity
hypothesis should produce systematically higher correlations
withWMC for itemswith higher capacity demands. In contrast,
if this assumption is false, then a multitude of different correla-
tion patterns across items with varying capacity demands could
arise that are all in line with the capacity hypothesis.

Methods

The R script implementing the three theoretical models, run-
ning the simulations, and generating the result plots as well as
all visualizations included in this work is available at: osf.io/
rt2j8.

Fig. 2 Illustration of two item-response functions (IRFs) for two items
with varying difficulty β, discrimination α and guessing probability γ.
The IRF on the left corresponds to an easy item with high discrimination.
The IRF on the right corresponds to a difficult item with low discrimina-
tion and a guessing probability of 1/8. Although high item discrimination

is better able to differentiate between people high and low in ability
around its location (i.e., item difficulty), both floor and ceiling effects –
as illustrated on the left side – can occur for items with high
discrimination
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Procedure of the simulation study

The overall procedure of each simulation run with formal
details of the three theoretical models is illustrated in Fig. 3.
Each simulation run consisted of four basic steps:

1. Randomly drawing WMC for N = 100, 250, or 500 sub-
jects from a Gaussian distribution. The mean and standard
deviation of this Gaussian distribution were randomly
drawn from uniform distributions (μWMC∼U 1; 4:5½ �;
σWMC∼U 0:25; 1:5½ � ) across each simulation run.

2. Determining the latent ability θ underlying intelligence
test performance as composite of WMC and an indepen-
dent cognitive function X according to one of the three
theoretical models (a detailed description follows in the
section Theoretical models used for simulating perfor-
mance on intelligence test items). The standard deviation
of Xwas varied to obtain different levels of correlations of
WMC with the latent ability θ underlying intelligence test
performance.

3. Determining the probability of solving an item for each
subject via soft threshold functions conceptually similar to
item-response functions (IRFs) from IRT. In these func-
tions, the location parameter β was either specified as the
capacity demand of an item as outlined in the Introduction
(for the Generic and the Slot models), or as the complexity
of an item, increasing from early to late items (for the
Resource model). In addition, item discrimination was
varied across four conditions: being equal, random, in-
creasing, or decreasing across items with different capac-
ity demands. Specifically, either one (for the equal condi-
tion) or four values (for the three remaining conditions)
for item discrimination were randomly drawn
(α∼U 0:5; 4½ � ) and assigned to the four levels of capacity
demand according to the condition. The guessing proba-
bility γ was held constant at 1/8 as Raven items force
participants to choose the correct solution from eight
options.

4. Using the probability of solving an item computed via the
different models to simulate for each subject whether they
solved the item (Y=1) or not (Y=0). To align the present
simulation with the most recent publication that aimed at

testing the capacity hypothesis with Raven items
(Burgoyne et al., 2019), we simulated data for the 17
intelligence test items for which capacity demands were
reported as the number of rule tokens they required.

We assess the implications of the simulated models for
correlations of item performance with WMC across items
varying in their capacity demands in two ways: First, we com-
puted the point-biserial correlation of item performance Ywith
WMC for each item; second, we computed the Pearson cor-
relation of item performance Y aggregated across items with
equal capacity demands with WMC. We then assessed how
these correlations changed across items with varying capacity
demands. In total, we ran 1,000 simulation runs for each com-
bination of the three different sample sizes (N = 100, 250, and
500) as well as the four conditions of item discrimination α
(i.e., equal, random, increasing, or decreasing across capacity
demands). This resulted in 12,000 simulations for each theo-
retical model.

Theoretical models used for simulating performance
on intelligence test items

To simulate performance on the intelligence test items as a
function of WMC, we realized three theoretical models: (I)
A Generic capacity model, conceptualizing WMC as a con-
tinuous variable that linearly translates into the ability θ. (II) A
Slot model in which WMC is a discrete number of slots, each
of which can hold one unit of information (e.g., one rule to-
ken). (III) A Resource model assuming WMC to be a contin-
uous resource that can be equally distributed across represen-
tations needed for solving a task (e.g., across rule tokens). In
addition, each of these models included an independent vari-
able X to represent all additional determinants of intelligence
test performance beyond WMC.

For the Generic capacity model (see left column of Fig. 3),
the ability θ underlying intelligence test performance was cal-
culated as the sum of WMC and Xgen. Individual values for
Xgen were drawn from a normal distribution with mean zero
and standard deviation σXgen. The standard deviation σXgen

was varied across simulation runs to generate different levels
of correlation between WMC and the ability θ: The larger
σXgen is relative to the standard deviation of WMC (σWMC),
the smaller the correlation of WMC and θ. The probability of
solving an item was obtained via a three-parameter logistic
soft threshold function. For this function, the location param-
eter β was defined as the number of rule tokens an item re-
quired (β = 1, 2, 3, or 4) according to the analysis of Raven
items by Carpenter et al. (1990). As explained in the introduc-
tion, the location β of this function can reasonably represent
the capacity demand of an item in this model of the capacity
hypothesis. In addition, item discrimination α could be equal,
random, increasing, or decreasing across item difficulties. The

�Fig. 3 Illustration of the procedure for the simulation study. First,
working memory capacity (WMC) is drawn from a normal distribution.
Second, the ability underlying intelligence performance is calculated as
the compound of WMC and an independent cognitive function X as
specified by three different theoretical models (left: Generic, middle:
Slot, right: Resource). Third, the probability of solving an item is calcu-
lated with a soft threshold model. Fourth, the performance on 17 intelli-
gence test items (I) for each subject (P) is simulated. For the results, the
correlation between item performance andWMC is calculated and plotted
across capacity demands to assess the implications of the capacity
hypothesis
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guessing probability γ was held constant at 1/8 for all simula-
tion runs as Raven items force participants to choose the cor-
rect solution from eight options. Using these parameter set-
tings and the ability θ calculated from WMC and Xgen, the
probability for solving each of the 17 items was calculated.
Finally, the probability for each subject and item was used to
simulate which Raven items a subject was able to solve by
drawing from a Bernoulli distribution.

For the Slot model (see middle of Fig. 3), the ability θwas
calculated as the maximum number of slots available for a
person (Smax) minus the number of slots lost due to atten-
tional lapses (Slost; for a similar implementation see Adam
et al., 2015). The maximum number of slots for each person
was determined as the continuous WMC rounded up to the
next integer. The number of slots lost due to attentional
lapses was drawn from a Binomial distribution with Smax

draws and the probability for an attentional lapse Xlapse.
Individual values for Xlapse were drawn from a normal dis-
tribution truncated at zero and one, with mean and standard
deviation varying across simulation runs. Again, the stan-
dard deviation of Xlapse was varied to achieve different
levels of correlation between WMC and the ability θ. As
in the Generic model, the probability of solving an item
was obtained via a three-parameter soft threshold function.
The location β of this function was again specified as the
number of rule tokens required by an item, and item dis-
crimination α being equal, random, increasing, or decreas-
ing across items with varying capacity demands. Like in the
generic capacity model, the probability for solving an item
obtained via this soft threshold function was used to simu-
late the performance on each of the 17 intelligence test items
via a Bernoulli distribution.

For the Resource model (see right side of Fig. 3), a con-
tinuous WMC resource was divided equally among the rule
tokens required by an item, so that with higher capacity
demand, less of the resource was assigned to each rule to-
ken. The ability to successfully apply each rule token θ was
the sum of the resource assigned to that token and an inde-
pendent cognitive function Xres. Conceptually, Xres can be
understood as an additional ability to apply or use a rule.
Unlike for the other two models, the ability θ was not di-
rectly transformed into the probability of solving an item,
but instead it determined the probability of successfully
maintaining and applying each rule token (prule). To obtain
this probability, we again used a three-parameter soft
threshold function. The location β of this function repre-
sented the difficulty of encoding and applying an individual
rule independent of the capacity demands. We assumed β to
increase linearly from the first to the last item. This was
done to reflect that the kind of rules get more complex,
and figural representation more abstract, from early to late
Raven items (Carpenter et al., 1990). Specifically, the first
item required few resources (β = 0.4) per rule, whereas the

last item required substantial resources (β = 0.8) per rule.
Item discrimination α was varied the same way as in the
Generic and Slot models, but guessing probability was set
to zero, as this function does not represent the probability of
solving an item, but of successfully applying a single rule
token. To calculate the probability of solving an item, prule
was multiplied by itself as often as there were rule tokens for
the item, reflecting the fact that all rule tokens need to suc-
ceed to successfully solve an item. To account for the guess-
ing probability, the probability for solving an item was
scaled to be in the range between 1/8 to 1. As in the previous
models, the resulting probability of solving an item was
used to randomly draw from a Bernoulli distribution to sim-
ulate the performance on 17 intelligence test items with
varying capacity demands.

Together, these three models cover different theoretical
conceptualization of WMC. In combination, they assess
whether conceptualizing item difficulty β as the number of
rule tokens an item requires (Generic and Slot model), or the
capacity demand of applying individual rules (Resource mod-
el) changes the implications of the capacity hypothesis.
Moreover, they test whether implementing different concep-
tualizations ofWMC, as well as of variable X that additionally
influences intelligence, affects the correlation of item perfor-
mance with WMC across varying capacity demands.

Evaluation of simulation results

We z-transformed the point-biserial correlations of item per-
formance with WMC and aggregated them across items re-
quiring the same number of rules. We then back-transformed
these aggregated correlations to correlation coefficients and
plotted them across the capacity demands (i.e., the number
of rule tokens) of an intelligence test item. Pearson-
correlations did not need to be aggregated as they were com-
puted for the aggregated performance on intelligence items
with equal capacity demands, so we directly plotted them as
a function of the capacity demands. For the Generic and Slot
models, this procedure is equal to plotting the correlations
across the location parameter β as implemented in the soft
threshold functions. For the Resource model, rule difficulty
β varied independently of the capacity demands of an item;
the capacity demand has its effect through dividing WMC by
the number of rules.

The main question is whether correlations of item perfor-
mance with WMC consistently increased with the capacity
demands of items, as some authors have assumed would be
predicted by the capacity hypothesis. We answer this question
based on the systematic trends visible in the plots. As the
precision of these trends can be arbitrarily increased through
running more simulations, inference statistics are neither war-
ranted nor needed for evaluating these trends.
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Results

Figure 4 illustrates the pattern of aggregated point-biserial
correlations of item performance with WMC across items
varying in capacity demands (N = 500, 0.4 < rWMC,θ < 0.7).2

Although all three theoretical models (shown in the different
rows) assumed that item performance depends on the relation
between a person’s capacity and an item’s capacity demand,
the pattern of correlations of item performance with WMC
does not consistenly increase for items with higher capacity
demands. On the contrary, the results indicate that the corre-
lations can decrease, increase, or remain fairly constant across
items varying in their capacity demands.

Specifically, the pattern of correlations across items vary-
ing in capacity demands depended on the mean level ofWMC
in the simulated samples and the theoretical model used to
simulate the capacity hypothesis. The Generic and Slot

models provide similar results: The pattern of correlations
across items with varying capacity demands changes with
the mean level of WMC in the simulated samples. In low
WMC samples (illustrated by the black dots and lines), corre-
lations ofWMCwith item performance decrease with increas-
ing capacity demands, whereas in high WMC samples (illus-
trated by the light gray dots and lines), correlations increase
with increasing capacity demands. In the Resource model,
correlations of WMC with item performance generally tended
to decrease with increasing capacity demands. This pattern
was mitigated in highWMC samples, trending towards a qua-
dratic pattern. However, correlations for items with the highest
capacity demands never surpassed correlations for items with
medium capacity demands.

It appears that the mean level of WMC in a sample relative
to the capacity demand of an item determines the pattern of
correlations. To bring out this general trend more clearly, we
plotted the correlation of item performance with WMC as a
function of the difference between average WMC in the sam-
ple and the capacity demand of an item. Figure 5 clearly illus-
trates that the correlation of item performance with WMC is
maximal when the average WMC in the sample matches the
capacity demand of an item (i.e. μWMC - Nrules = 0) indepen-
dent of its absolute capacity demand (illustrated by the differ-
ent colums). Critically, this is also true for the Resource model
(middle row) in which rule difficulty βwas independent of the

Fig. 4 Pattern of point-biserial correlations averaged across the capacity
demands of an item for the simulations with sample size N = 500 and the
correlation of WMC and the ability θ underlying intelligence test

performance in a medium range (0.4 < r < 0.7). The rows separate results
from the three different theoretical models, the columns separate results
for different patterns of item discrimination across item difficulty

2 Results plots for smaller sample sizes (N = 100, 250) and different levels of
rWMC,θ , as well as results for the Pearson correlations can be found online: osf.
io/rt2j8. Specifically, plots for all sample sizes can be found in the “Figures”
folder. In general, the result patterns were highly consistent regarding the
ordinal pattern of correlations for point-biserial and Pearson correlations (av-
erage consistency across the 1,000 simulations for the different models and
conditions: .91 < r < .98). In addition, correlation estimates were higher overall
for Pearson correlations: the average Pearson correlation across the 1,000
simulation runs for the different models and conditions was .33 < r < .41,
compared to .23 < r < .29 for point-biserial correlations.
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capacity demand of an item. In addition, the line shading in
this plot illustrates that the correlation of item performance
with WMC increases the stronger WMC is correlated with
the ability θ underlying intelligence test performance.3

Finally, we compared our results to the results of Smoleń and
Chuderski (2015) indicating that the correlation of item perfor-
mance with WMC follows a quadratic pattern due to floor and
ceiling effects. We plotted the correlations as a function of the
proportion of simulated subjects that were able to solve an item
(i.e., the item difficulty p in classical test theory). Figure 6 shows
that for all three conceptual models of the capacity hypothesis
(shown in the different rows) the results of our simulations rep-
licated the result of Smoleń and Chuderski (2015): Correlations
follow a quadratic pattern across varying item difficulty p.
However, in addition to floor or ceiling effects determining the
quadratic pattern of correlations, for items with low capacity
demands (columns on the left in Fig. 6) correlations decreased
before reaching floor (i.e., guessing probability = 1/8). This
shows that it is not solely the restriction of variance by floor
and ceiling that determines the quadratic pattern of correlations.

In sum, the results from this simulation show that assuming
any of three different theoretical models in line with the capacity
hypothesis does not imply that correlations with WMC increase
with the capacity demands of intelligence test items. Instead, the
degree to which meanWMC in the sample matches the capacity

demands of an item determines the correlation of item perfor-
mance with WMC. In addition, the correlation of item perfor-
mance withWMC increases as the correlation of WMCwith the
ability θ underlying intelligence test performance in the sample
increases. Taken together, these effects result in increasing, de-
creasing, or constant patterns of correlations with WMC across
items with varying capacity demands. Therefore, contrary to the
assumptions underlying previous studies, the capacity hypothesis
does not imply that correlations between items with higher ca-
pacity demands and WMC should be larger than between items
with low capacity demands and WMC.

Discussion

The aim of the presented simulation study was to assess what
the capacity hypothesis implies for the pattern of correlation of
items varying in their capacity demands with WMC. We im-
plemented three different theoretical models of the capacity
hypothesis and simulated data to assess what these models im-
ply for the pattern of correlations between WMC and item
performance across varying capacity demands. Unlike what
authors of previous studies assumed (Burgoyne et al., 2019;
Little et al., 2014; Salthouse, 1993; Unsworth & Engle, 2005;
Wiley et al., 2011), increases in the capacity demands of an
item did not imply an increase in correlation between item
performance and WMC. Instead, the results of the present sim-
ulation study show that the correlation of item performance

Fig. 5 Correlation of item performance with WMC plotted depending on
the difference of mean working memory capacity (WMC) and the capac-
ity demands of an item. The vertical dotted red line indicates a perfect
match between mean WMC in the sample and capacity demands of an

item (i.e., μWMC - Nrules = 0), and the shaded lines represents the average
pattern of correlations for different levels of correlations between WMC
and the ability θ underlying intelligence test performance fitted with a
locally weighted least squares regression

3 This correlation depended on the ratio between variability in WMC and the
variability in X.
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with WMC depends on two variables: The proportion of vari-
ance that WMC contributes to the ability θ underlying intelli-
gence test performance, and the degree to which an item’s
capacity demand matches the sample’s mean WMC.

We acknowledge that our three models do not exhaust all
possible implementations of the capacity hypothesis. Yet, they
are sufficient to demonstrate that there are several reasonable
implementations of the capacity hypothesis that do not imply
larger correlations of WMC with item performance as capac-
i ty demands increase . Even if there were other
implementations of the capacity hypothesis that do imply con-
sistently increasing correlations, this prediction would still not
follow from the capacity hypothesis per se, but only from one
particular version of it. In sum, the conclusions from our con-
ceptual analysis of the capacity hypothesis converges with the
statistical critique of (Smoleń&Chuderski, 2015): The pattern
of correlation of item performance with WMC across items
varying in their capacity demands bear no information regard-
ing the causality of WMC for intelligence differences.

Do previous results and the presented simulation
confirm the capacity hypothesis?

It would be premature to conclude from the presented simula-
tion that results of previous studies confirmed the capacity

hypothesis. Rather, the results of previous studies are consistent
with the capacity hypothesis, and hence do not falsify it. In fact,
the capacity hypothesis does not appear to make specific pre-
dictions regarding the pattern of correlations across items vary-
ing in difficulty andWMC. Therefore, the conclusion drawn by
previous studies of this pattern (Burgoyne et al., 2019;
Unsworth & Engle, 2005; Wiley et al., 2011), that not WMC
but other cognitive processes such as attention control are more
relevant for intelligence differences is not warranted.4

The present simulation results are not limited to WMC as
one candidate cognitive function underlying intelligence dif-
ferences. The results hold for any cognitive function, such as
attention control or speed of information processing, assumed
to determine the latent ability θ underlying performance dif-
ferences on intelligence test items. Therefore, the analysis of
correlation patterns across intelligence test items of varying
capacity demands with any indicator of a hypothetical cause
of intelligence will not be informative regarding its causality.

4 Other empirical studies analyzing correlations between measures of WMC,
attentional control, and intelligence provide inconsistent results on this re-
search question. Specifically, some studies indicated an important role of at-
tentional control (Draheim et al., 2021), whereas other studies indicated only
small contributions from attentional control (Frischkorn et al., 2019; Rey-
Mermet et al., 2019). For a broad review on this topic see von Bastian et al.
(2020).

Fig. 6 Point-biserial correlations of item performance and working
memory capacity (WMC) plotted against the proportion of subjects that
were able to solve an item. The shaded dots represent the single correla-
tions estimated for each item, the blue line indicates the general pattern

estimated via locally weighted least squares regression models. In addi-
tion, the different columns separate items with varying capacity demands,
and the three rows illustrate results for the three different theoretical
models
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Instead more elaborate and theoretically grounded measures
for specific cognitive processes (Frischkorn & Schubert,
2018) or experimental studies that use manipulations that ide-
ally target a single cognitive process (Rao & Baddeley, 2013;
Schubert et al., 2018) are needed to investigate which cogni-
tive processes causally underlie intelligence differences.
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