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a b s t r a c t 

Traditional histology is the gold standard for tissue studies, but it is intrinsically reliant on two- 

dimensional (2D) images. Study of volumetric tissue samples such as whole hearts produces a stack of 

misaligned and distorted 2D images that need to be reconstructed to recover a congruent volume with 

the original sample’s shape. In this paper, we develop a mathematical framework called Transformation 

Diffusion (TD) for stack alignment refinement as a solution to the heat diffusion equation. This general 

framework does not require contour segmentation, is independent of the registration method used, and 

is trivially parallelizable. After the first stack sweep, we also replace registration operations by opera- 

tions in the space of transformations, several orders of magnitude faster and less memory-consuming. 

Implementing TD with operations in the space of transformations produces our Transformation Diffusion 

Reconstruction (TDR) algorithm, applicable to general transformations that are closed under inversion and 

composition. In particular, we provide formulas for translation and affine transformations. We also pro- 

pose an Approximated TDR (ATDR) algorithm that extends the same principles to tensor-product B-spline 

transformations. Using TDR and ATDR, we reconstruct a full mouse heart at pixel size 0.92 μm × 0.92 μm, 

cut 10 μm thick, spaced 20 μm (84G). Our algorithms employ only local information from transforma- 

tions between neighboring slices, but the TD framework allows theoretical analysis of the refinement as 

applying a global Gaussian low-pass filter to the unknown stack misalignments. We also show that re- 

construction without an external reference produces large shape artifacts in a cardiac specimen while 

still optimizing slice-to-slice alignment. To overcome this problem, we use a pre-cutting blockface imag- 

ing process previously developed by our group that takes advantage of Brewster’s angle and a polarizer 

to capture the outline of only the topmost layer of wax in the block containing embedded tissue for 

histological sectioning. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Traditional histology, the study of tissue microarchitecture, orig-

inated in the 17th c. with first applications of microscopy to

animal-derived samples by Marcello Malpighi. It has become the

gold standard for structural description of cells and tissue, serving

important functions in clinical diagnosis of pathologies. Traditional
Abbreviations: ATDR, Approximated Transformation Diffusion Reconstruction; 

FTCS, Forward-Time Central-Space; TD, Transformation Diffusion; TDR, Transforma- 

tion Diffusion Reconstruction. 
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istology produces two-dimensional (2D) images, resolving cellular

nd sub-cellular detail in slices that typically are several microme-

ers thick. A wide variety of chromatic stains, developed since the

8th c., enable cell labeling (e.g. Masson’s Trichrome or Picro Sirius

ed dyes label myocytes, collagen and endothelial cells). Although

ost clinical tissue samples are small, typically from biopsies, in-

erest in imaging whole organs has grown over the last decade,

n organs such as brain ( Amunts and Zilles, 2015; Annese, 2012 ),

eart ( Burton et al., 2006; Magee et al., 2015; Mansoori et al.,

007 ) or lung ( Rusu et al., 2015 ), for instance to inform computa-

ional models that aim to simulate brain function, cardiac contrac-

ion or respiration, to guide studies relating structure to function,
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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r to serve as a reference for lower resolution non-invasive imag-

ng modalities such as Magnetic Resonance Imaging ( Amunts et al.,

013; Plank et al., 2009; Rusu et al., 2015 ). 

One of the main limitations of traditional histology is the fact

hat the acquired 2D images cannot be directly stacked to recon-

truct a consistent 3D volume with the original sample shape due

o a series of tissue transformations. Cardiac tissue, for example,

wells by > 20% during the first half-hour of ex-vivo saline perfu-

ion ( Bub et al., 2010 ). Histological processing for wax-embedding

educes tissue volume by 48% compared to ex vivo MRI ( Burton

t al., 2014 ), and produces non-affine deformations. Cutting of

ax-embedded tissue inherently destroys the rigid alignment be-

ween 2D slices. In addition, histology stacks tend to contain large

mounts of data (e.g. a rat heart, sliced at 10 μm, produces roughly

0 0 0 slices, which, if imaged at a resolution of 0.46 μm × 0.46 μm,

equire ∼1 TB hard drive space ( Burton et al., 2006 )). The process

f recovering the sample’s original 3D shape, generally referred to

s 3D histology reconstruction or congruencing , has received a fair

mount of attention in the field since Wilhelm His’ studies of hu-

an embryos in 1880, with significant mathematical and comput-

ng improvements in the last decades. 

Reconstruction of histology sections typically starts with a

ough rigid pre-alignment, either registering slices to an exter-

al reference (histology-reference pre-alignment) or to each other

ithin the stack (intra-histology pre-alignment). Pre-alignment

roduces jagged slice-to-slice transitions, so it is followed by finer

istology registration (intra-histology refinement). Coarseness of

lignment and refinement is given by the degrees of freedom

f the transformation used by the registration method, e.g. rigid

 Ourselin et al., 2001; Rusu et al., 2015 ), affine ( Adler et al., 2014,

012; Xu et al., 2015 ), 1D piecewise linear ( Ju et al., 2006 ), elastic

pring triangular mesh ( Guest and Baldock, 1995; Saalfeld et al.,

012 ), Discrete Smooth Interpolation ( Machin and Sperber, 1996 ),

isplacement field ( Burton et al., 2006; Gaffling et al., 2015; Man-

oori et al., 2007; Schmitt et al., 2006; Wirtz et al., 2004 ), curva-

ure flow ( Cifor et al., 2011, 2009 ), symmetric normalization (SyN)

iffeomorphism ( Adler et al., 2012 ), diffeomorphic inverse consis-

ent algorithm ( Yushkevich et al., 2006 ), large deformation dif-

eomorphic metric mapping (LDDMM) ( Ceritoglu et al., 2010 ), or

ensor-product B-spline ( Arganda-Carreras et al., 2010; Feuerstein

t al., 2011; Gaffling et al., 2015; Magee et al., 2015; Müller et

l., 2014; Roberts et al., 2012; Schubert et al., 2016; Song et al.,

013 ). 

Algorithms that reconstruct the stack without an external ref-

rence of the pre-cut sample shape abound in the literature ( Cifor

t al., 2011; Fónyad et al., 2015; Gaffling et al., 2015; Guest and

aldock, 1995; Ju et al., 2006; Müller et al., 2014; Roberts et al.,

012; Saalfeld et al., 2012; Song et al., 2013; Wirtz et al., 2004;

u et al., 2015 ) and are featured in software applications such as

oloom (microDimensions GmbH), BioVis3D, or 3DView (3DHIS-

ECH Ltd.). Such reference-free approaches have long been known

o be susceptible to a series of geometric artifacts. These include:

the straightening of curvatures (reconstructing a cucumber from a

anana), false z-axis orientation (setting the tower of Pisa upright),

r the conversion of asymmetric shapes into symmetric ones (re-

onstructing the bill of a raven into the bill of a woodpecker)”

 Streicher et al., 1997 ). This set of geometric artifacts is informally

nown in the literature as the straight banana problem. In Section

.3.1 we formalize this concept as the “maximum alignment” so-

ution, and discuss its differences with the desired “true shape”

olution. Other reference-free artifacts are wobbly boundaries ( Ju

t al., 2006 ) and drift or z-shift effect caused by the accumulation

f correlated registration errors ( Casero et al., 2016; Feuerstein et

l., 2011; Yushkevich et al., 2006 ) (see example in Section 3.2.1 ).

onetheless, reference-free reconstruction may be of interest if an

xternal reference is simply not available, if faithful reconstruc-
ion of the shape is not crucial, or if maximum alignment coin-

ides with the true shape, as it is the case for small rectangular

r cylindrical samples with structures normal to the cutting plane.

his is not the case for large cardiac samples, though, as preserv-

ng epicardial and endocardial shapes and complex structures such

s locally-defined cleavage planes between myocardial layers, vas-

ulature and trabeculae is necessary for computational modeling.

herefore, to avoid those artifacts our workflow includes an exter-

al reference, although the reconstruction algorithms we propose

an be used with or without one. 

Examples of external references in the literature are tissue

arkers ( Ourselin et al., 2001; Streicher et al., 20 0 0 ), drill holes

 Streicher et al., 1997 ), template or atlas ( Ali and Cohen, 1998; He

t al., 1995; Ju et al., 2006; Timsari et al., 1999 ), structural proba-

ility map ( Müller et al., 2014 ), MRI ( Adler et al., 2014, 2012; Ceri-

oglu et al., 2010; Gibb et al., 2012; Gilbert et al., 2012; Malandain

t al., 2004; Mansoori et al., 2007; Ourselin et al., 2001; Rusu et

l., 2015; Schormann et al., 1995; Thompson and Toga, 1996 ), CT

 Atkinson, 2014 ), micro-CT ( Khimchenko et al., 2016 ) or 2D images

f the tissue surface at the cut side of the embedded tissue, a.k.a.

lockface images ( Bardinet et al., 2002; Gefen et al., 2003; Kim et

l., 1997; Mega et al., 1997; Ourselin et al., 2001; Schubert et al.,

016; Siedlecka et al., 2013a, 2013b; Toga et al., 1994 ). Taking a

ifferent approach, ( Xu et al., 2015 ) use bisected nuclei in liver

istology as natural fiducial markers to avoid geometric artifacts

ithout an external reference. This requires a sufficiently uniform

istribution of bisected nuclei, which is not guaranteed for cardiac

issue, in particular in areas where myocytes run orthogonal to the

utting plane. Also, nuclei visualization limits the number of dyes

hat can be used. Our external reference is a novel type of block-

ace image developed by our group ( Casero et al., 2016; Gruscheski

t al., 2015; Siedlecka et al., 2013a, 2013b ). Our method takes ad-

antage of light polarization when illuminating the wax top sur-

ace at Brewster’s angle to produce a sharp near-binary ‘negative’

mage of the regions where tissue protrudes. Unlike 3D images ob-

ained prior to histological processing, such as CT or MRI, block-

ace images are acquired directly at the microtome and do not

nvolve an ill-posed 2D → 3D alignment problem caused by differ-

nt slicing angle between histology and the 3D image, as well as

D tissue deformations out of the slice plane, as seen in previ-

us work by our group ( Gibb et al., 2012; Mansoori et al., 2007 ).

urthermore, the 2D → 2D alignment problem is trivially paralleliz-

ble. In common with the majority of the literature, we only use

he blockface images to pre-align the histology stack. Alternatively,

 Adler et al., 2014, 2012; Feuerstein et al., 2011; Mansoori et al.,

007 ) use the external reference during refinement. In this case,

he external reference can be seen as a regularization term that

lso introduces registration noise, caused by its lower resolution

nd imaging artifacts, and interferes with the delicate local trans-

ormations necessary to align small structures. Another alternative

s to first refine the histology stack and then register to an exter-

al MRI reference solving a 3D → 3D alignment problem ( Ceritoglu

t al., 2010; Malandain et al., 2004 ). For the blockface external ref-

rence, this approach would need to be adapted as a regularized

D → 2D alignment to take advantage of the blockface-histology

lice-by-slice correspondence, and is beyond the scope of this

ork. 

Apart from the type of registration method and the use of an

xternal reference, another main feature of reconstruction methods

s how they sweep the stack of N histology slices I 0 , . . . , I N−1 . The

revalent approaches in the literature are sequential algorithms

hat register one slice at a time towards one or more neighbors,

pplying the resulting transformation straight away. Any slice can

e used as the initial one, but to simplify the notation, let’s assume

hat the sweep starts at I 0 . Algorithms that register each slice I i 
o a unilateral radius- d neighborhood I i −d , . . . , I i −1 need only one
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sweep of the stack to converge because they are causal ( Arganda-

Carreras et al., 2010; Burton et al., 2006; Ourselin et al., 2001;

Roberts et al., 2012; Rusu et al., 2015; Schmitt et al., 2006; Schu-

bert et al., 2016; Song et al., 2013; Xu et al., 2015 ). The meth-

ods in Adler et al. (2014, 2012 ), Yushkevich et al. (2006 ) are also

causal sequential, but the neighbor I i −k that I i is registered to is

not necessarily I i −1 . Non-causal algorithms that align I i to a bilat-

eral neighborhood I i −d , . . . , I i −1 , I i +1 , . . . , I i + d ( Gaffling et al., 2015;

Guest and Baldock, 1995; Saalfeld et al., 2012; Wirtz et al., 2004 )

cannot converge in one sweep, because after I i is registered to

I i +1 , . . . , I i + d , those neighbors get transformed too. Instead, repeat

sweeps (forwards or back and forth) can be used to increasingly

smooth the stack, but this increases the computational cost, par-

ticularly if the algorithm depends on expensive registration oper-

ations. However, whether causal or non-causal, sequential meth-

ods are biased towards the choice of the reference slice, and cor-

related registration errors accumulate along the sweep, causing

drift ( Yushkevich et al., 2006 ). Smoothing accumulates along the

sweep too, as slice I i is registered to previously smoothed slices

I i −d , . . . , I i −1 . 

Parallel algorithms avoid bias, reduce drift and apply uniform

smoothing by computing all local neighborhood transformation

φi,i −d , . . . , φi,i −1 , φi,i +1 , . . . , φi,i + d , where φi, j is the transformation

from I i to I j , before applying any slice transformation φi . Parallel

algorithms that couple all φi, j , i = 0 , . . . , N − 1 , j = i − d , . . . , i + d

into a system of equations require one registration stack sweep

followed by solving the system. For instance, ( Guest and Baldock,

1995; Saalfeld et al., 2012 ) use an elastic spring Finite Element

Model for the system of equations. The whole stack system is con-

sidered intractable, so the reconstruction is solved as a non-causal

sequential sweep. Feuerstein et al. (2011) , Müller et al. (2014) pro-

pose a Markov Random Field model on B-spline control points

that can be solved for the whole stack with a Linear Programming

method ( Glocker et al., 2008 ), but it allows only a discrete set of

locations the control points can move to. Parallelization of the re-

finement involves parallelization of the Linear Program primal-dual

schema solver. 

As an alternative to solving a large system of equations, un-

coupled parallel methods update each slice independently, φi =
f ( φi,i −d , . . . , φi,i −1 , φi,i +1 , . . . , φi,i + d ) ( Ju et al., 2006 ). Thus, they are

non-causal. If one sweep does not achieve enough smoothing, the

algorithm can be applied iteratively, increasing its computational

cost. (Most sequential methods can also be run as uncoupled par-

allel algorithms with minimal modifications, trading their advan-

tages and drawbacks.) The algorithms we propose in this work are

uncoupled parallel, but we show that replacing registration opera-

tions by operations in transformation space, they have same com-

putational load as causal sequential algorithms. 

Another main feature of reconstruction methods is the neigh-

borhood, already mentioned above. Some authors propose radius-

1 neighborhoods, where each slice is only registered to adjacent

slices ( Arganda-Carreras et al., 2010; Gaffling et al., 2015; Roberts

et al., 2012; Song et al., 2013; Stille et al., 2013 ), whereas other

authors propose larger neighborhoods. Typically, larger neighbor-

hoods are used to increase smoothing in each sweep, thus reducing

the amount of sweeps ( Ju et al., 2006 ), or as a regularizer to avoid

overcorrection ( Saalfeld et al., 2012 ). However, Gaffling et al. (2015 )

showed that radius-1 neighborhoods can effectively avoid overcor-

rection, removing high frequency registration noise before affect-

ing the lower frequencies of the specimen’s shape. Yushkevich et

al. (2006 ) use a larger neighborhood to find a subsampling of the

stack where slices are better aligned. As their radius-1 sequen-

tial alignment effectively uses a shorter stack per slice, this would

accumulate fewer correlated errors, but this approach still pro-

duces substantial reconstruction artifacts that need to be corrected

with an external reference. Typical larger neighborhoods can be
mplemented as linear combinations of transformations between

airs of slices ( Ju et al., 2006; Rusu et al., 2015 ), or connecting

lastic springs between non-adjacent slices ( Guest and Baldock,

995; Saalfeld et al., 2012 ). Overall, this choice as well as param-

ters such as radius or weights remains heuristic. Our algorithms

n this work use a radius-1 neighborhood in the implementation,

ut we show its equivalence to a larger neighborhood in terms of

moothing. 

Most methods in the literature are based on image registration

etween pairs or images, but some alternatives have been pro-

osed. For instance, Machin and Sperber (1996 ) build a rectangu-

ar mesh with segmented contours, and sequentially smooth the

esh vertices with Discrete Smooth Interpolation. Cifor et al. (2011,

009 ) also stack segmented contours but smooth the curvature of

he resulting surface with a level set algorithm. Level sets can be

arallelized, but both approaches require reliable segmentation of

tackable contours for every structure to be aligned. 

In this paper we propose a mathematical framework for histol-

gy reconstruction called Transformation Diffusion (TD) that tack-

es several of the limitations of the methods we discuss above.

e model stack misalignment applying the heat diffusion equation

o slice transformations. TD is agnostic of the registration method

mployed, and only depends on the transformation it produces.

ur solution to the heat equation produces a simple update for-

ula with a radius-1 neighborhood that is trivially parallelizable.

e also propose replacing registrations by operations in transfor-

ation space that are several orders of magnitude faster. Effec-

ively, our method computes only ( N − 1 ) registrations in the first

tack sweep, and the cost of other sweeps is negligible. Combining

hese ideas, we propose a general algorithm called Transformation

iffusion Reconstruction (TDR) that is valid for transformations that

re closed under inversion and composition, and provide specific

ormulas for the cases of translation and affine transformations.

n addition, for tensor-product B-splines, which are not closed un-

er inversion and composition, we propose an Approximated Trans-

ormation Diffusion Reconstruction (ATDR) algorithm. This algorithm

pplies TDR to the spline’s control polygon, and uses constraints to

uarantee injectivity. ATDR computes 2( N − 1 ) registrations in the

rst stack sweep, and the cost of other sweeps is negligible. 

TD provides some insights into the reconstruction problem. We

iscuss a formal definition of the banana problem and the desired

rue shape reconstruction, the role of the external reference, the

quivalence of TDR/ATDR to a global Gaussian low-pass filter, and

he equivalence between neighborhood radius and number of stack

weeps. The algorithms only depend on two parameters, for which

e provide theoretical and numerical analyses: the diffusion step

and the number of stack sweeps M , a simple stopping criterion

hat determines the bandwidth of the implicit Gaussian filter. 

For comparison, two approaches have a close connection to

urs. Gaffling et al. (2015 ) pose the problem of histology smooth-

ng as intensity curvature minimization using Laplace’s partial dif-

erential equation (PDE) 

 = ∇ 

2 I ( r ) , (1)

here ∇ 

2 is the Laplacian along stack direction r . Discretization

f this equation produces a sequential algorithm with a radius-1

eighborhood where back and forth sweeps increasingly smooth

he stack. Using the relationship between spatial frequency and

igenvector decomposition of Jacobi iteration matrices, they no-

ably provide a theoretical model that explains how registration

oise is smoothed more than lower frequency anatomical struc-

ures in their algorithm. Their approach is non-causal sequen-

ial, suffering from the drawbacks discussed above. In addition,

he model leads to a Gauss–Seidel algorithm that updates I i us-

ng I i −1 , I i +1 without I i itself. This is solved with an ad hoc ap-

roximation, registering I i to I i −1 ◦ 1 φi −1 ,i +1 ; moreover, this defi-
2 
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ition of the mid-point of the transformation is inexact in gen-

ral ( Alexa, 2002 ). By comparison, our approach is also based on

he discretization of a similar PDE, but it leads to a parallel algo-

ithm where the space of operations is well-defined ( Alexa, 2002 ),

nd explains spatial frequency smoothing as filtering with a Gaus-

ian function. Yushkevich et al. (2006 ) propose pre-aligning the

istology to an external reference, and then replacing the costly

ntra-histology registration sweeps by much faster operations in

he space of transformations. However, they are limited to rigid

ransformations, and they smooth the transformations by applying

 Gaussian filter directly to their parameters. The latter is equiv-

lent to a linear combination of rigid parameters and produces

oor interpolations for rotations ( Alexa, 2002 ). Our approach also

eplaces registrations by operations in transformation space, but

e provide expressions that are exact for the spaces of transla-

ion and affine transformations, and an approximation for B-spline

ransformations. Relatedly, the field of multi-atlas segmentation

iterature offers a variety of transformation-space registration ap-

roaches ( Iglesias and Sabuncu, 2015 ). 

This paper is organized as follows. In Section 2.1 we describe

he wet lab processing of mouse hearts, and blockface and his-

ology imaging. In Section 2.2 , we briefly describe the image pre-

rocessing pipeline and the registration methods used in the ex-

eriments. In Section 2.3 , we formulate Transformation Diffusion

TD). In Section 2.4 we describe the Transformation Diffusion Re-

onstruction (TDR) algorithm, and derive formulas for translation

nd affine transformations. In Section 2.5 we describe the Approx-

mated TDR (ATDR) algorithm for tensor-product B-splines. Section

 validates experimentally the application of TDR and ATDR. First,

e validate TDR with a noisy sinusoidal example for translation

ransformations, and compare it to Gaffling’s Gauss–Seidel scheme.

econd, we validate TDR/ATDR with real data with the reconstruc-

ion of a mouse heart, with and without an external reference.

e also compare ATDR to a baseline algorithm that performs re-

eat registration sweeps, accumulating levels of B-spline transfor-

ations. We discuss our results in Section 4 . Appendix A provides

 theoretical and numerical analysis of diffusion step parameter α.

ppendix B shows the equivalence of the radius-1 neighborhood

f TD to a larger neighborhood. Appendix C provides the injectivity

onstraints for B-spline transformations in ATDR. The blockface and

istology images can be downloaded from ( Siedlecka et al., 2017 ).

he source code to run the experiments and generate the figures

n this paper is available from the Gerardus project. 1 The histology

econstructed with our method can be downloaded from ( Casero

t al. 2017 ). 

. Methods 

.1. Wet lab processing 

Mouse hearts were excised after Schedule 1 culling according

o the UK Home Office guidance on the Operation of Animals (Sci-

ntific Procedures) Act of 1986, washed swiftly in 37 °C normal

yrode solution (NaCl 140 mM; KCl 5.4 mM; MgCl 2 1 mM; HEPES

 mM; Glucose 10 mM; CaCl 2 1.8 mM; pH 7.4, 300 ± 10 mOsm) con-

aining heparin (10 u/ml) and then cannulated in cold Tyrode so-

ution with heparin in order to perfuse the coronary vasculature

rom the aorta. Afterwards, hearts were arrested using modified

yrode containing elevated potassium (20 mM), fixed by coronary

erfusion with 10 mL of the fast-acting Karnovsky’s fixative 2 (0.75%
1 https://github.com/vigente/gerardus/tree/papers/casero2015 _ 3d _ histology _ 

iffusion _ registration . 
2 Karnovsky’s fixative was used for MR imaging, unrelated to this work. This 

ardened the tissue and made it more brittle than if it had been prepared in a 

tandard manner for histology use. 

b  

i  

m  

l  

t  

m  
ormaldehyde, 0.75% glutaraldehyde mix) and stored overnight at

 °C. Hearts then were rinsed in cacodylate buffer (3 ×), dehydrated

y exposure to rising alcohol concentrations (8 h in 25%, followed

y 1.5 h in each of 50/70/80/90% alcohol, and 3 × 1.5 h in 100% al-

ohol), treated with xylene (3 × 1.5 h), infiltrated with wax (24 h

n 50% and 48 h in 100%) and embedded in form of wax blocks.

ax blocks were mounted on Leica SM2400 heavy-duty sledge-

ype microtome and whole hearts were serially sectioned at 10 μm

hickness. 

Using two The Imaging Source DMK 22BUC03 cameras, two

hotographs of the wax block surface were taken prior to each

ection ( Fig. 1 ), an approach developed by our group in the last

ears ( Casero et al., 2016; Gruscheski et al., 2015; Siedlecka et al.,

013a, 2013b ). The first photograph was taken at the Brewster an-

le for air/paraffin (55 ° to the surface normal). At this angle, the

urface-vertical component of unpolarised incident light is totally

ransmitted, while most of the surface-horizontal component is re-

ected. A collection filter, aligned with the horizontal component

lters out residual light refracted from lower tissue layers. Thus,

he 55 ° image treats wax as a mirror and displays a negative of

he topmost tissue layer, showing good delineation of tissue-wax

oundaries. The second photograph was taken top-down (0 ° to the

urface normal) as a reference to correct the perspective distortion

n the 55 ° image (see Section 2.2 ). 

After cutting, tissue sections were allowed to relax in a wa-

er bath (Leica Microsystems, HI 1210) at 39 °C for several min-

tes, and then carefully mounted on positively charged slides

SuperFrost, VWR), aiming for minimal distortion and avoid-

nce of tissue folds. Slides were air-dried overnight, followed

y de-waxing and Trichrome or Picro Sirius Red-staining on

lternate sections, using a Leica AutoStainer XL, ST5010. The

tained and coverslipped sections were imaged at high resolu-

ion (0.46 μm × 0.46 μm) with Hamamatsu Nanozoomer HT 2.0

nd/or Zeiss Axio Scan.Z1 scanners, producing images between

862 × 6643 (86 M) and 28,672 × 23,296 pixels (1.2G) depending

n tissue sample size. 

.2. Image preprocessing and registration methods used in the 

xperiments 

The algorithms we propose in this paper, TDR and ATDR, are

ndependent of the image preprocessing pipeline or registration

ethod details, other than the type of transformation. The for-

er are often specific to the image modality and protocol, but

e provide a brief summary in this section for reproducibility of

ur results. Blockface and histology images suffer from a range

f artifacts such as non-uniform illumination, blade marks in the

lockface (“scratches”), 55 ° perspective distortion (for Brewster an-

le images), or folds, tears, and variable staining of sections. Ad-

ustments to the equipment while developing the wet lab proto-

ol caused small blockface “jumps” due to changes in the light

athways, e.g. minute shifts of a lens, the camera, the microtome

nd/or zoom-in or zoom-out changes. In addition, the second half

f the heart was cut at a much later date, rotated 90 ° with respect

o the first half, causing a large “jump” in the stack. Such “jump”

rtifacts would not be expected in a production run, and were cor-

ected. The rest of artifacts were corrected as we would in a pro-

uction run, to make the images as similar as possible and enable

he use of computationally faster metrics such as mean squares.

e applied the following preprocessing steps before histology-to-

lockface registration ( Fig. 2 a): (1) Stack “jumps” were visually

dentified, and automatically corrected with a similarity transfor-

ation. (2) We corrected blade scratches highlighted by the po-

arized light in the perspective-corrected 55 ° image by estimating

he median angle α to the wax side and rotating the images to

ake the scratches horizontal/vertical for the first/second halves

https://github.com/vigente/gerardus/tree/papers/casero2015_3d_histology_diffusion_registration
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Fig. 1. Two blockface photographs of the same wax-embedded mouse heart. (a) Brewster angle (55 °) image with the collection filter aligned to capture surface-parallel 

polarized light, reflected by the topmost wax layer, revealing tissue outlines (centrally-located round mark is an air bubble in the wax). (b) Top-down (0 °) image, taken for 

distortion correction, lacks clear delineation of tissue-wax boundaries. 

Fig. 2. Diagram of blockface and histology preprocessing pipeline for: (a) low resolution histology-to-blockface pre-alignment; (b) histology-to-histology refinement, run 

separately for low and high resolution histology, where “Downsample × 24.6/ × 2” indicates × 24.6 downsampling to blockface pixel size for low resolution refinement, and 

×2 downsampling for high resolution refinement. See main text for details. 
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of the heart. We then scaled the intensity along each row/column

(i.e. scratch) so that its median value equaled the median wax in-

tensity. (3) We corrected the perspective of the 55 ° image with a

projective transformation ( Hartley and Zisserman, 2003 ) computed

from 82 pairs of hand-traced landmarks in 11 equidistantly spaced

slices of both stacks. (4) To correct the blockface illumination in-

homogeneity we drew an ellipse covering the heart area on the

largest slice; in every slice, the illumination within the ellipse was

interpolated from the intensity values outside the ellipse with a

2D polynomial function of degree 5, as this interpolant worked

well enough for our data. Dividing by the estimate resulted in

uniform illumination. (5) The histology images were × 24.6 down-

sampled in each axis to blockface pixel size for the low-resolution

reconstruction. (6) The histology and blockface images were con-

verted to grayscale, inverted to generate a negative of the im-

age, and masked to remove background noise. Blockface intensities

were linearly scaled to cover the whole dynamic range (0–255),

and then histology intensities were non-linearly scaled ( Ceritoglu

et al., 2010 ) to match the blockface image histogram. Matching

histograms improves the performance of registration based on in-

tensity differences. Similarly, we could have matched the blockface

histograms to the histology’s. 
Before histology-to-histology refinement, we applied the follow-

ng preprocessing steps ( Fig. 2 b): (1) Images were × 24.6 down-

ampled in each axis to blockface pixel size for the low-resolution

efinement, and ×2 downsampled for the high-resolution refine-

ent. (2) Similarly to step 6) above, each image was converted

o grayscale, inverted, and masked. Then, intensities were linearly

caled to cover the whole dynamic range (0–255) and non-linearly

caled ( Ceritoglu et al., 2010 ) to match an average histogram com-

uted from all slices. 

For the image registration steps in our reconstruction meth-

ds we used similarity (for intra-blockface) and rigid and cubic B-

pline (for histology-blockface and intra-histology) transformations.

or rigid registration we used a matched filter approach to find the

ranslation parameters ( Moigne et al., 2011 ). The optimal rotation

as found by brute force in increments of 1 ° between −45 ° and

5 °. As our diffusion framework is independent of the particular

egistration method, it was beyond the scope of this paper to con-

uct extensive comparisons of different methods. 

For similarity and cubic B-spline registration we used the

lastix software ( Klein et al., 2010; Shamonin et al., 2014 ), se-

ecting a mean squared difference metric, and adaptive stochas-

ic gradient descent optimization. For similarity registration we
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Fig. 3. (a) Banana problem (expanded from Malandain et al., 2004 with permission): (i) Original banana specimen. (ii) Microtome slicing. (iii) Initial stack of histology 

images, where misalignment can be seen as transformation noise. (iv) Noisy alignment to external reference. (v) Desired true shape histology or curved banana solution. (vi) 

Maximum alignment or straight banana solution, i.e. limit of refinement/smoothing of the stack. Black arrow indicates histology-blockface alignment. Blue arrows indicate 

intra-histology refinement. (b) Schematic representation of a set of unregistered histology slices. The solid curve represents the desired true shape histology solution. The 

dashed line represents the “maximum alignment” solution between all slices that intra-slice refinement algorithms (including our Transformation Diffusion method) tend to 

in the limit, analogous to the thermal equilibrium solution. Each f i is the transformation of slice i referred to maximum alignment, unknown in reconstruction problems. 

Although f i is represented as a simple horizontal translation, in general it is a non-affine transformation with multiple degrees of freedom. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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sed cubic interpolation and a single resolution. For low resolution

-spline registration, bilinear interpolation, fixed boundary control

oints, two-level Gaussian pyramid scheme, ×16 and ×1 down-

ampling for both the image and control polygon grid, and final

ontrol point spacing of 50 pixels. This provided good low resolu-

ion alignment while keeping registration times around 1–2 s for

ach pair of slices. For high resolution B-spline registration, we

hanged the Gaussian pyramid scheme to ×8 and ×4 downsam-

ling for the image and ×4 and ×1 for the control polygon, with

nal control point spacing of 35 pixels. This roughly corresponds

o the distance between myocytes separated by a cleavage plane,

hich is the finest level of microstructure we are interested to

lign. 

.3. Transformation diffusion (TD) 

This section presents the mathematical framework that is one

f the main contributions of this paper. TD iteratively takes at the

nput a set of geometric transformations (e.g. translation, affine)

etween pairs of adjacent slices. At every iteration, it diffuses these

lice-to-slice transformations to partly deform each slice towards

ts neighbors. TD is based on an iterative numerical solution to the

eat equation, and replaces slow registrations by much faster op-

rations in transformation space. 

.3.1. The reconstruction problem: maximum alignment solution vs. 

esired true shape solution 

The banana problem is well known in the reconstruction lit-

rature ( Fig. 3 a). Let I 0 , . . . , I N−1 be a stack of 2D histology slices,

re-aligned or not to an external reference, and f 0 , . . . , f N−1 , f i : R 

2 

 R 

2 the current transformation of each slice away from maxi-

um alignment ( Fig. 3 b). Let maximum alignment be a configura-

ion where the alignment between adjacent slices cannot be im-

roved. Formally, if all f i = 0 , then f i,i −1 = f i,i +1 = 0 , ∀ i , where f i, j 
s the transformation that registers slice i to slice j . The maximum

lignment solution varies with the type of transformation. For in-

tance, the maximum alignment solution for translation transfor-

ations is the straight banana in Fig. 3 a–vi. For similarity transfor-

ations, however, it is a cylindrical banana where all slices have

he same radius. The relation between the initial stack, the desired

olution and the maximum alignment solution is displayed in Fig.

 a. The solution depends on whether an external reference is used,

nd the amount of refinement/smoothing applied to the stack is
etermined by a combination of empirical stopping criteria, algo-

ithm parameters and/or regularizers. 

For example, Gaffling et al. (2015 ) smooth the stack M times,

topping when the update of the solution reaches an empirical

hreshold, or by visual assessment ( M = 10 sweeps for their mouse

rain experiment). Cifor et al. (2009 ) use an empirical number of

moothing steps, and control the amount of smoothing with the

ow speed constant b k ( M = 153 , b k = 0 . 05 in their experiments).

ifor et al. (2011) replace those stopping criteria by an empirical

in-max curvature flow scale parameter ( r = 1 and r = 2 in their

xperiments). Ju et al. (2006 ), Saalfeld et al. (2012 ) sweep the stack

nce. This is itself an implicit criterion ( M = 1 ), as more sweeps

ould produce further smoothing. The amount of smoothing in

he sweep is determined by empirical parameters. For Saalfeld et

l.’s (2012) elastic spring system, the parameters are the size of

he neighborhood and the value of spring constants (6 neighbors,

 = 0 . 1 in their experiments). This model tends to maximum align-

ent if the intra-slice spring constants k → 0 and the neighbor-

ood is the whole stack. The empirical parameters for Ju et al.

2006 ) are the number of neighbors and the weights γ i for the

inear combination of transformations (40 neighbors and binomial

i in their mouse brain experiment). Adler et al. (2014 ), Rusu et

l. (2015 ) use a regularization framework, minimizing a function

E in + μ E ext , where E in is a measure of intra-histology misalign-

ent, E ext is a measure of histology to external reference misalign-

ent, and λ, μ are empirical parameters that decide a compro-

ise between the straight banana ( E in ) and noisy banana ( E ext ) so-

utions. 

In this work we use M to regulate the amount of smoothing.

e provide a detailed discussion in Section 2.3.6 . 

.3.2. Heat equation formulation for translation refinement 

We pose the reconstruction problem in a heat diffusion frame-

ork. A discretized heat diffusion problem can be thought of as

 set of points I 0 , . . . , I N−1 along a metal bar and f 0 , . . . , f N−1 as

heir temperature difference with respect to thermal equilibrium

ather than their absolute temperature. As time increases, f i → 0,

nd the bar reaches thermal equilibrium. By gross analogy, in the

tack refinement problem ( Fig. 3 b) the transformations f i → 0 as

ime increases, and the stack reaches maximum alignment. An im-

ortant difference is that in a heat diffusion problem the initial

alues of f 0 , . . . , f N−1 are usually known, whereas in a stack refine-

ent problem they are unknown by definition. In the rest of this
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section we present the mathematical formulation of this idea with

a simple case of a 1-dimensional translation transformation f = φ,

where changes in temperature are analogous to translations. 

The heat equation ( Narasimhan, 1999 ) describes the change of

φ over time 0 ≤ t < ∞ and position 0 ≤ r ≤ L for a continuous

stack with an infinite number of infinitesimally close slices 

∂φ( r, t ) 

∂t 
= D ∇ 

2 φ( r, t ) , (2)

where ∇ = ∂ /∂ r, and constant scalar D is the diffusion coefficient.

If the initial condition φ( r , 0) is known, the general solution to the

heat equation can be obtained explicitly by convolution � 

φ( r, t ) = φ( r, 0 ) � G ( r, t ) , (3)

where G is the Gaussian kernel 

G ( r, t ) = 

1 

( 4 πDt ) 
1 / 2 

exp 

(
− r 2 

4 Dt 

)
. (4)

As t → ∞ , φ( r, t ) → φ̄, where φ̄ is the average function value,

equilibrium or maximum alignment. As the number of slices is

finite, we discretize the heat equation. For this, we use a stan-

dard approach. For the N − 2 inner slices, using the Forward-Time

Central-Space (FTCS) method ( Roache, 1972 ) produces 

φm +1 
i 

− φm 

i 

	t 
= D 

φm 

i +1 
− 2 φm 

i 
+ φm 

i −1 

	s 2 
, i = 1 , . . . , N − 2 , (5)

with m denoting the iteration number, 	s the spatial increment,

	t the time increment, and φm 

i 
= φ( i 	s, m 	t ) . For the two end

slices, i = 0 and i = N − 1 , we impose Neumann boundary condi-

tions as Gaffling et al. (2015) , as these do not fix their position,

which is convenient for reconstruction 

∇φ( 0 , t ) = 0 

∇φ( L, t ) = 0 

(6)

To match the O( 	s 2 ) truncation error in (5) , we discretize the

boundary conditions with centerd differences ( Pletcher et al., 2013 )

φm 

−1 = φm 

1 

φm 

N−2 = φm 

N 

(7)

where φ−1 , φN correspond to “ghost” slices outside the stack. Solv-

ing (5) for φm +1 
i 

with (7) produces an iterative update formula that

in the limit m → ∞ tends to the discretized version of the solution

in (3) . But note that this approach requires knowledge of the (dis-

cretized) initial condition φ0 
i 

. As by definition the slice deforma-

tions φ0 
i 

are unknown, we depart from the conventional solution

and reformulate (5) in terms of known quantities, namely transfor-

mations between adjacent slices. Let 

φm 

i, j = φm 

j − φm 

i (8)

be the translation difference between two neighboring locations at

the same iteration, and let 

φm,m +1 
i 

= φm +1 
i 

− φm 

i (9)

be the translation difference at the same location between two it-

erations. Now (5) and (7) can be rewritten and combined into the

update formula 

φm,m +1 
i 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 αφm 

0 , 1 , i = 0 

α
(
φm 

i,i +1 
+ φm 

i,i −1 

)
, i = 1 , . . . , N − 2 

2 αφm 

N −1 ,N −2 , i = N − 1 

(10)

Where the diffusion step α = D 	t/ 	s 2 . Note that this expres-

sion, unlike more commonly used iterative solutions to the dis-

cretized heat equation, does not require knowledge of φ0 
i 

, as it

only depends on local translations φm 

i, j 
between adjacent slices. In
10) , the transformation to apply to a slice is a linear combination

f the transformations that align it to its neighbors. As M → ∞ ,

he composition of the transformation updates tends to the inverse

f the slice’s unknown initial misalignment, ( φM−1 ,M 

i 
◦ . . . ◦ φ0 , 1 

i 
) →

−1 
i 

. 

From theory, it is known that FTCS is numerically stable if and

nly if 0 ≤ α ≤ 0.5 ( Pletcher et al., 2013 ). As an intuitive expla-

ation, with α = 0 . 5 each slice deforms half the distance to its

eighbors, so neighbors try to meet in the middle; with α > 0.5

he slices deform past each other, producing oscillations; with α
 0.5 neighbors deform towards each other, but fall short of the

iddle point. In principle, larger diffusion steps α required fewer

tack sweeps. However, in Appendix A we show that values of α
oo close to 0.5 do not dampen high frequency noise, and thus we

se α = 0 . 45 in the experiments below. 

To close this section, it is worth noting that, strictly speaking,

he above analysis only applies to translation transformations. In

he next sections, we assume that the formulation can be applied

o more general transformations too, and hope to extend the rele-

ant analysis in future work. 

.3.3. Generalization of update slice transformation step 

To apply the transformation update in ( 10 ) to real-world stack

econstruction, we need to generalize 1D translations φ and the

roduct and sum operators. We generalize the sum of translations

n (8) as a composition of n-D invertible transformations 

f m 

i, j = f m 

j ◦
(

f m 

i 

)−1 
. (11)

Furthermore, following Alexa (2002) we generalize the linear

ombination of two translations as α � ( f m 

i 
� f m 

j 
) , where �, �

re generalized scalar product and addition operators consistent

ith the transformation f (see Sections 2.4.1 and 2.4.2 for spe-

ific examples of the operators), since simple linear combination

f transformations α( f m 

i 
+ f m 

j 
) does not produce a valid interpola-

ion of transformations in general. Applying these generalizations

o (10) we obtain the update slice transformation step 

f m,m +1 
i 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α �

(
f m 

0 , 1 � f m 

0 , 1 

)
, i = 0 

α �

(
f m 

i,i +1 
� f m 

i,i −1 

)
, i = 1 , . . . , N − 2 

α �

(
f m 

N −1 ,N −2 � f m 

N −1 ,N −2 

)
, i = N − 1 

(12)

If �, � fulfill the distributive property, this expression simplifies

o 

f m,m +1 
i 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 α � f m 

0 , 1 , i = 0 

α �

(
f m 

i,i +1 
� f m 

i,i −1 

)
, i = 1 , . . . , N − 2 

2 α � f m 

N −1 ,N −2 , i = N − 1 

(13)

This step has an intuitive interpretation: the stack is refined by

artly deforming each slice towards its neighbors at each itera-

ion. However, in practice we operate with transformations rather

han actually transforming the slices, as we discuss in the next

ection. 

.3.4. Generalization of update neighbors transformations step 

replacement of registrations by operations in transformation space) 

In the previous section we did not explain how to compute

he neighbors transformations f m 

i,i −1 
, f m 

i,i +1 
used in (12) . Let’s as-

ume that in the first sweep m = 1 we have registered each slice

o its two neighbors. This gives us neighbor transformations of the

orm f 0 
i, j 

, j = i ± 1 . We then compute the slice updates with (12) ,

btaining f 0 , 1 
i 

and f 0 , 1 
j 

. Naïvely, we could now transform the im-

ges with f 0 , 1 
i 

and f 0 , 1 
j 

and register them again to compute the

eighbors transformations f 1 
i, j 

from scratch. This is similar to what
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Algorithm 1 Transformation Diffusion Reconstruction (TDR) for transformations 

with closed inverse and composition. 

1) Let m ← 0. 

Registration sweep: 

2) Register each slice I i , i = 0 , . . . , N − 1 onto its two adjacent neighbors 

to obtain f 0 
i,i −1 

, f 0 
i,i +1 

. For transformations where f i, j = ( f j,i ) 
−1 can be 

directly computed, only N − 1 registrations are necessary; alternatively, 

2( N − 1 ) are needed. 

Transformation space sweeps: 

3) For m = 1 to M − 1 sweeps 

a. Update slice transformation applying (12) 

f m,m +1 
i 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α � ( f m 
i,i −1 

� f m 
i,i +1 

) , 1 ≤ i ≤ N − 2 

α � ( f m 0 , 1 � f m 0 , 1 ) , i = 0 

α � ( f m N −1 ,N −2 � f m N −1 ,N −2 ) , i = N − 1 

(18) 

b. Update neighbors transformations applying (15) 

f m +1 
i,i −1 

= f m,m +1 
i −1 

◦ f m 
i,i −1 

◦ ( f m,m +1 
i 

) 
−1 

, 1 ≤ i ≤ N − 1 

f m +1 
i,i +1 

= f m,m +1 
i +1 

◦ f m 
i,i +1 

◦ ( f m,m +1 
i 

) 
−1 

, 0 ≤ i ≤ N − 2 
(19) 

Output composition: 

4) Correct slices with accumulated transformations , applying (16) 
ˆ I i = ( f m −1 ,m 

i 
◦ . . . ◦ f 0 , 1 

i 
) ◦ I i , i = 0 , . . . , N − 1 . (20) 
ulti-sweep methods in the literature do, and is a very slow pro-

ess, because registrations are computationally expensive. 

Instead, we can simply update the transformation we had, f 1 
i, j 

=
f 0 , 1 

j 
◦ f 0 

i, j 
◦ ( f 0 , 1 

i 
) −1 . That is, we can operate in the space of trans-

ormations instead of transforming, interpolating and registering

mages. As we show in Section 3.2.2 , this is several orders of mag-

itude faster. In the general case, let f m 

i, j 
be the solution to the reg-

stration from slice i to slice j at iteration m . Let the slice updates

omputed with (12) be f m,m +1 
i 

and f m,m +1 
j 

. The neighbor transfor-

ation can be updated directly in transformation space as 

f m +1 
i, j 

= f m,m +1 
j 

◦ f m 

i, j ◦
(

f m,m +1 
i 

)−1 
(14) 

Substituting j = i − 1 and j = i + 1 in (14) for the two adjacent

eighbors, the update neighbors transformations expression for each

lice becomes 

f m +1 
i,i −1 

= f m,m +1 
i −1 

◦ f m 

i,i −1 
◦
(

f m,m +1 
i 

)−1 
, 1 ≤ i ≤ N − 1 

f m +1 
i,i +1 

= f m,m +1 
i +1 

◦ f m 

i,i +1 
◦
(

f m,m +1 
i 

)−1 
, 0 ≤ i ≤ N − 2 

(15) 

Apart from the necessary existence of the inverse, it is desirable

hat the transformation is closed under inversion and composition.

his way, the three transformations in each line of (15) collapse

nto a single transformation (e.g. the inverse of an affine transfor-

ation is an affine transformation, and the composition of three

ffine transformations is another affine transformation). Otherwise,

eeping a list of transformations to apply to each slice becomes

umbersome, and applying them becomes slower as the number

f transformations grows. We propose a workaround for this prob-

em in the particular case of B-splines in Section 2.5 . 

Finally, we note that recomputing registrations may be neces-

ary nonetheless, e.g. if we suspect that they contain errors, typi-

ally with larger deformations or artifacts, or a previous registra-

ion got stuck in a local minimum. Those cases are due to limita-

ions of the registration algorithm, not the TD formulation, and are

eyond the scope of this paper. 

.3.5. Composition of slice transformations 

The refinement algorithm proceeds by iterating the slice trans-

ormation updates ( Section 2.3.3 ) and neighbors transformations

pdates ( Section 2.3.4 ). After M iterations some stop criterion is

et, the refinement algorithm stops, all slice transformation up-

ates are composed, and the total transformation is applied to each

lice I i to obtain the refined slice I M 

i 

 

M 

i = 

(
f M−1 ,M 

i 
◦ . . . ◦ f 0 , 1 

i 

)
◦ I i , i = 0 , . . . , N − 1 , (16)

As M → ∞ , the composition of the transformation updates

ends to the inverse of the slice’s unknown initial misalignment,

( f M−1 ,M 

i 
◦ . . . ◦ f 0 , 1 

i 
) → f −1 

i 
. The brackets in (16) emphasize that

ransformations should be composed and then applied to the slice,

o avoid cumulative sampling and interpolation errors. 

.3.6. Stopping criterion 

We propose using the number of stack sweeps M as the stop-

ing criterion that regulates the amount of smoothing applied by

ntra-histology refinement. The stopping criterion, in the context

f the banana problem ( Fig. 3 ), determines how far away from the

oisy banana the refinement moves towards the straight banana.

ur model provides a quantitative and theoretical justification.

q. (4) shows that our diffusion model is equivalent to smooth-

ng the unknown misalignments f i by a Gaussian kernel. The

ull Width at Half Maximum (FWHM) of the kernel is FWH M Z =
 

√ 

Dt ln 2 . Substituting the definition of α and the time discretiza-

ion t = M	t , the spatial width of the kernel can be written in the

ame units as the slice thickness as FWHM = 2	s 
√ 

αM ln 2 . By
Z 
he properties of the Fourier Transform, the frequency represen-

ation of the Gaussian kernel is another Gaussian with bandwidth

WHM BW 

= 

1 

	s 

√ 

ln 2 

Mα
. (17) 

That is, the cut-off spatial frequency for alignment noise is pro-

ortional to 
√ 

1 /M . In addition, 	s is a constant determined by

he microtome thickness setting, and α can be set a priori as dis-

ussed in Appendix A . Thus, empirically estimating a value for M

lso estimates the FWHM that removes alignment noise without

vercorrecting, and can be applied to other stacks that have been

cquired following a similar protocol. Furthermore, if we change

he slice thickness 	s or the diffusion step α, a value for M can be

irectly recalculated from the FWHM. 

To estimate M in our experiments, we trace pairs of corre-

ponding landmarks (histology-blockface and histology-histology) 

nd compute the landmark error as the distance between them. As

e show in the heart reconstruction experiment of Section 3.2 , M

s not a sensitive parameter, and a wide range of values produces

imilar reconstruction results. 

Alternatively, we considered using the magnitude of the solu-

ion update as in Gaffling et al. (2015 ). But (1) this also requires

nding an empirical threshold for the update threshold, similarly

o how we find the empirical value of M ; (2) it has no theoretical

upport from the model; and (3) it involves defining a meaningful

orm for the update of the rigid transformations, combining rota-

ions with translations. 

.4. Transformation diffusion reconstruction (TDR) 

Combining the update steps above ( Section 2.3.3 to 2.3.5 ),

e propose the following Transformation Diffusion Reconstruction

TDR) algorithm ( Algorithm 1 ) based on TD. 

Algorithm 1 requires that the transformation is closed under

nversion and composition. One of its most important features

s that it takes advantage of the following equivalence, derived

rom Section 2.3.4 : One registration sweep = One sweep of neighbour

ransformation updates . Consequently, the computationally expen-

ive process of slice-to-slice registration is only applied at the start

“Registration sweep”), with the loop at step 3) operating only in
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transformation space, a much faster operation (see Section 3.2.2 ).

This keeps computational times low even when operating on large

whole-organ histology datasets. In the following sections we derive

expressions for operations � and � when applying specific trans-

formations, namely translation and affine. 

2.4.1. Translation transformation 

Although affine transformations include translations, formulat-

ing translation TDR separately leads to vector operations, whereas

the affine formulation relies on slower matrix operations. Let a 2D

translation transformation be written as 

f trans ( x, y ) = 

[
x 
y 

]
+ δ = 

[
x 
y 

]
+ 

[
δx 

δy 

]
, (21)

where in the notation of Algorithm 1 , f i = δi . As with the 1D

translation in Section 1 , we specify � and � are the usual scalar-

vector product and vector-vector addition 

α � ( f i � f j ) = α( δi + δ j ) (22)

The registration sweep requires only N − 1 registrations,

as f i, j = ( f j,i ) 
−1 = − f j,i . Using (22) the update slice transform

(18) simplifies for translations to 

δm,m +1 
i 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α
(
δm 

i,i −1 
+ δm 

i,i +1 

)
, 1 ≤ i ≤ N − 2 

2 αδm 

0 , 1 i = 0 

2 αδm 

N −1 ,N −2 i = N − 1 

. (23)

Using f i ◦ f j = δi + δ j , the update neighbors transformation

(19) becomes 

δm +1 
i,i −1 

= δm,m +1 
i −1 

+ δm 

i,i −1 
− δm,m +1 

i 
, 1 ≤ i ≤ N − 1 

δm +1 
i,i +1 

= δm,m +1 
i +1 

+ δm 

i,i +1 
− δm,m +1 

i 
, 0 ≤ i ≤ N − 2 

(24)

and the function composition (16) is computed as 

δm 

i = δm −1 ,m 

i 
+ . . . + δ0 , 1 

i 
, i = 0 , . . . , N − 1 . (25)

2.4.2. Affine transformation 

Let a 2D affine transformation (of which translation, rigid and

similarity transformations are particular cases) be written in ma-

trix form for homogeneous coordinates as [
f aff ( x ) 

1 

]
= F 

[
x 
1 

]
= 

[
A δ
0 1 

][
x 
1 

]
, (26)

where in the notation of Algorithm 1 , f i = F i . There is not a single

way to define the operators � and �, as the linear combination of

rotations cannot be optimized simultaneously for torque minimiza-

tion, constant angular velocity, and commutativity ( Bloom et al.,

2004 ). One solution proposed by Alexa (2002) , that we use in this

paper, is to define linear combinations of affine transformations in

their Lie space using the matrix exponential (exp) and matrix log-

arithm (log) 

α � ( F i � F j ) = exp ( α( log F i + log F j ) ) , (27)

assuming that F has a real matrix logarithm. Alexa (2002 ) proposed

that there are no negative eigenvalues if and only if A contains no

reflections. However, Zacur et al. (2014 ) have shown that a rotation

plus an anisometric scaling in fact produces a transformation with

a negative eigenvalue, and thus the matrix logarithm is not real.

Nonetheless, Alexa’s interpolation is still valid for transformations

that are not large, such as the ones in typical histological recon-

struction applications such as ours. As with translations, the regis-

tration sweep between pairs of neighbors involves only N − 1 oper-

ations, as the inverse exists for non-degenerate affine transforma-

tions, is closed and easily computed, f i, j = ( f j,i ) 
−1 ⇔ F i, j = ( F j,i ) 

−1 .
he Update slice transformation step (18) becomes 

 

m,m +1 
i 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

exp 

(
α
(
log F m 

i,i −1 
+ log F m 

i,i +1 

))
, 1 ≤ i ≤ N − 2 (

F m 

0 , 1 

)2 α
, i = 0 (

F m 

N −1 ,N −2 

)2 α
, i = N − 1 

, (28)

sing matrix multiplication, the Update neighbours transformations

tep (19) becomes 

 

m +1 
i,i −1 

= F m,m +1 
i −1 

F m 

i,i −1 

(
F m,m +1 

i 

)−1 
, 1 ≤ i ≤ N − 1 

F m +1 
i,i +1 

= F m,m +1 
i +1 

F m 

i,i +1 

(
F m,m +1 

i 

)−1 
, 0 ≤ i ≤ N − 2 

(29)

nd composition (20) becomes 

 

m 

i = F m −1 ,m 

i 
. . . F 0 , 1 

i 
, i = 0 , . . . , N − 1 (30)

.5. Approximated transformation diffusion reconstruction (ATDR) 

Histology stacks typically suffer from non-affine transforma-

ions. B-splines ( Schoenberg, 1946 ) are one of the most popular

on-affine transformations for image registration due to their com-

act support, sparse representation, availability and speed of com-

utation. In particular, they have been extensively used for his-

ology reconstruction, as noted in the Introduction. However, they

annot be used in Algorithm 1 because: (i) the inverse of a B-spline

oes not always exist; (ii) when the inverse exists, it is not gener-

lly a B-spline and has no explicit parametric form; (iii) composi-

ion of two B-splines does not produce a B-spline. 

To overcome these obstacles, in this section we provide a mod-

fication of TDR, called Approximated TDR (ATDR), which can be

pplied to B-splines in tensor-product form. The basic idea be-

ind ATDR is to apply TDR to the translations of the control points

f the spline. Let a 2D B-spline in tensor-product form ( Rueckert

t al., 2006 ) be 

f B −spline ( x, y ) = 

K ∑ 

k =0 

L ∑ 

l=0 

( c kl + 	c kl ) N k,p ( x ) N l,q ( y ) , (31)

here ( c kl + 	c kl ) ∈ R 

2 are coefficients or control points and

 ·, p ( x ), the B-spline of order p , is a polynomial of order p − 1 , with

 

p−1 continuity, for example, p = 4 for cubic splines. The c kl com-

onents give the coordinates of the ( K + 1 , L + 1 ) points in the

ontrol polygon grid, and 	c kl the translation of the grid points. 

For ATDR we propose treating 	c kl as a trans-

ation transformation, and applying the same opera-

ors defined above for translations δ to vectors 	c =
 	c 00 	c 01 . . . 	c 0 L 	c 10 . . . 	c 1 L . . . 	c KL ] 

� . (We use the

oldface notation to differentiate a coefficient 	c kl from the

oefficient vector 	c i, j of the B-spline that maps slice i

nto j ). That is, we linearly approximate the cubic B-spline

y its control polygon. Consequently we approximate the

nverse as f −1 
B −spline 

| c+	c ≈ f B −spline | c−	c , and composition as

f B −spline | c+	c i 
◦ f B −spline | c+	c j 

≈ f B −spline | c+	c i +	c j 
. 

This approximation has the advantage that the same TDR ap-

aratus for translations can be reused with three modifications.

irst, in the registration sweep block, both registrations f m 

i, j 
and f m 

j,i 

eed to be computed for each pair of neighbors, totaling 2( N − 1 )

egistrations. Second, the diffusion process for translations requires

i, j = −δ j,i to converge. To achieve this goal, before applying diffu-

ion we adjust the coefficients as 

�c 
′ 
i , j 

= 

�c i , j −�c j, i 
2 

c 
′ 
j, i 

= 

−�c i , j + �c j, i 
2 

(32)

And third, as the diffusion of B-spline control points can pro-

uce fold-overs in the spline, we use Choi and Lee’s (20 0 0 ) suf-

cient injectivity conditions ( Appendix C ). It is worth noting that
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TDR will converge to a unique solution that corresponds to max-

mum alignment of the control polygons, not maximum align-

ent of the slice images. Nonetheless, our experiments in Section

.2 suggest that despite this approximation ATDR produces excel-

ent refinement results. Moreover, if one run of ATDR refinement

ere insufficient for a given data set, the algorithm could be run

epeatedly. We summarize these modifications in Algorithm 2 . 

ATDR features two acceleration factors compared to a naïve

aseline algorithm that repeatedly runs registration sweeps. First,

eplacing registration operations by operations on coefficient vec-

ors is several orders of magnitude faster. Second, in the baseline

lgorithm each registration sweep produces a new B-spline con-

atenated to previous transformations. Concatenation of B-splines

nables very flexible transformations, but it also makes registration

perations increasingly slower as the number of B-spline levels

row (the slowdown is linear in the number of levels). By contrast,

TDR collapses the composition of M levels of B-splines into a sin-

le B-spline. These two accelerations features come at the price of

he approximations described above. In Section 3.2 , we show ex-

erimentally that ATDR is suitable for histology reconstruction de-

pite those approximations, and in fact can provide more smooth-

ng than the baseline algorithm if required. 

. Experiments 

.1. Synthetic example for 1D translation diffusion 

To illustrate the method, we use a synthetic example for 1D

ranslation, illustrated in Fig. 4 . First, the vertical position y of

00 slices was generated as y i = sin ( 2 π i/N ) + 2 . 4 ε, where ɛ is ran-

om noise uniformly distributed in [ −0 . 5 , 0 . 5 ] , simulating regis-

ration noise from histology to an external reference like block-

ace ( Fig. 4 a), i.e. the noisy banana. The sinusoidal component

ˆ  i = sin ( 2 π i/N ) is the ground truth (true shape) that we ideally

ant to reconstruct. For simplicity, we then assumed that intra-

istology registration is perfect, and computed f 0 
i, j 

= y j − y i , with-
lgorithm 2 Approximated Transformation Diffusion Reconstruction (ATDR) for B- 

pline transformations in tensor-product form. 

1) Let m ← 1. 

Registration sweep with coefficient adjustment: 

2) Register each slice I i , i = 0 , . . . , N − 1 onto its two adjacent neighbors 

to obtain �c m 
i ,i −1 

, �c m 
i , i +1 

. This requires 2( N − 1 ) registrations. 

3) Compute adjusted coefficients �c ′ m 
i ,i −1 

, �c ′ m 
i ,i +1 

with ( 32 ) 

�c ′ i , j = 

�c i , j −�c j, i 
2 

�c ′ j, i = 

−�c i , j + �c j, i 
2 

(33) 

Transformation space sweeps: 

4) For m = 2 to M sweeps 

a. Update slice transformation applying (23) 

�c ′ m,m +1 
i 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α( �c ′ m 
i , i −1 

+ �c ′ m 
i , i +1 

) , 1 ≤ i ≤ N − 2 

2 α�c ′ m 
0 , 1 i = 0 

2 α�c ′ m 
N −1 , N −2 i = N − 1 

. (34) 

b. Find coefficients �c i ,kl ′ m + 1 that fulfill neither injectivity condition 

(C.1) nor (C.2) 

c. Restrict update �c ′ m,m +1 
i ,kl 

of each offending coefficient �c ′ m +1 
i ,kl 

to 

enforce (C.2) 

d. Update neighbors transformations applying ( 24 ) 

�c ′ m +1 
i , i −1 

= �c ′ m,m +1 
i −1 

+ �c ′ m 
i , i −1 

− �c ′ m,m +1 
i 

, 1 ≤ i ≤ N − 1 

�c ′ m +1 
i , i +1 

= �c ′ m,m +1 
i +1 

+ �c ′ m 
i , i +1 

− �c ′ m,m +1 
i 

, 0 ≤ i ≤ N − 2 
(35) 

Output composition: 

5) Correct slices with accumulated transformations, applying (25) 
ˆ I i = ( f m −1 ,m 

i 
+ . . . + f 0 , 1 

i 
) ◦ I i , i = 0 , . . . , N − 1 . (36) 

t  

6

 

p  

s  

n  

t  

s  

S  

T  

p  

p  

(  

i  

s  

a  

a  

c

3

 

S  

h  

a  

t  

i  

c

 

l  
ut a noise term. (In a real problem, we would not know any y i ,

nd the initial transforms f 0 
i, j 

would therefore be the result of reg-

stering each slice to its neighbors). Then, we applied only diffusion

perations in transformation space to reconstruct the stack. After

 iterations ( Fig. 4 b), the registration partly reduced the registra-

ion noise. After 42 iterations ( Fig. 4 c), the reconstruction method

chieved the closest result to the true shape (curved banana). Af-

er 10 0 0 iterations ( Fig. 4 d), all registration noise was removed,

ut the reconstruction had substantially diverged from the true

hape. After 70 0 0 iterations ( Fig. 4 e), the slices converged to max-

mum alignment, and all information about the true shape was

ost (straight banana). The evolution of the error between the true

hape and the reconstructed stack is shown in Fig. 4 f. The er-

or initially decreases, as registration noise is removed, here with

n optimum at 42 iterations, and then increases, as the informa-

ion about the true shape of the stack starts to be lost. In Fig. 4 f

e also show the error from Gaffling et al.’s (2015 ) Gauss Seidel

ack and forth approach applied to the same noisy example. After

0 0 0 stack sweeps, Gaffling’s approach has converged to roughly

he same maximum alignment solution as TDR. Gaffling’s method

eaches optimal reconstruction sooner, after 25 stack sweeps. This

s to be expected, as sequential methods apply the smoothing per

lice rather than per stack sweep, so they effectively accumulate

ore smoothing. Conversely, we would expect that they degrade

he true shape solution in fewer sweeps too. As shown in Fig. 4 f,

he reconstruction error worsens by 10% after 14 extra sweeps in

DR, and only 6 in Gaffling’s method. Thus, stopping criteria for

he latter would require finer tuning. Gafflin’s method achieves

 slightly better optimum, though, with minimum square error

MSE) 5 . 16 · 10 −3 vs. 7 . 42 · 10 −3 for TDR. 

For the second synthetic experiment, we add a small drift

omponent –i.e. correlated error– to the random error, y i =
in ( 2 π i/N ) + 2 . 4 ε + 10 −2 i − 0 . 5 ( Fig. 5 a). As expected, drift de-

rades Gaffling’s sequential method more than TDR, which is par-

llel ( Fig. 5 b). The minimum MSE values are similar, 2 . 56 · 10 −2 

TDR) and 2 . 80 · 10 −2 (Gaffling). TDR is again less sensitive to the

uning of stop criterion parameters, as the error degrades 10% after

3 extra sweeps vs. 24 extra sweeps for Gaffling’s method. 

These synthetic examples are useful to illustrate the banana

roblem of Section 2.3.1 . In particular, how refinement sweeps

hift the solution from noisy banana to true shape to straight ba-

ana. The optimal number of iterations M can be empirically de-

ermined by measuring landmark distances between the recon-

truction and an external reference or ground truth. As shown in

ection 2.3.6 , M determines the bandwith of the smoothing kernel.

hus, an optimal M can be estimated in one stack and then ap-

lied to similar data. In the synthetic examples above (that present

ure frequency components), overshooting the optimal M by 33%

no drift component experiment) to 143% (drift component exper-

ment) degrades the solution only by 10%, which suggests that the

olution is not very sensitive to the choice of M (note that the M

xis is logarithmic). In the next section, reconstruction of real data

lso shows that a wide range of values of M produce similar re-

onstruction results. 

.2. Heart reconstruction 

We performed reconstruction experiments on the stack of Picro

irius Red slices (10 μm thickness, spaced 20 μm) covering a mouse

eart ( Siedlecka et al. (2017) , see Section 2.1 for wet lab details),

fter removing severely damaged ones for a total of 239 slices. Ini-

ial results of these experiments for half the heart were reported

n Casero et al. (2016 ). The histology reconstructed in this section

an be downloaded from Casero et al. (2017) . 

As it is common in registration problems, we applied a two-

evel reconstruction approach (low resolution followed by high res-
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Fig. 4. Transformation Diffusion Reconstruction (TDR) applied to a 1D translation synthetic example. First five panels represent the diffusion of a stack of slices (solid line) 

compared to true shape or ground truth (dotted line). Last panel presents the error between the ground truth and the reconstruction. From top left to bottom right: (a) 

Initial misaligned stack. (b) After 5 diffusion iterations misalignment is reduced. (c) After 42 diffusion iterations best reconstruction is achieved. (d) After 10 0 0 diffusion 

iterations the reconstruction has deviated significantly from the true shape. (e) After 70 0 0 diffusion iterations, reconstruction converges to maximum alignment of slices, 

but far from their true shape. (f) Difference between reconstruction and true shape, measured as mean square error = ‖ y 0 − ˆ y 0 , . . . , y N−1 − ˆ y N−1 ‖ /N for 70 0 0 stack sweeps 

of our TDR method (solid line) and Gaffling et al.’s (2015 ) Gauss Seidel approach (dashed line). The minima corresponding to the best reconstructions are obtained after 42 

(TDR) and 25 (Gaffling) diffusion iterations, and are 7 . 42 · 10 −3 and 5 . 16 · 10 −3 , respectively. The best reconstruction error worsens by 10% after 14 (TDR) and 6 (Gaffling) 

stack sweeps. 
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t  
olution), with the preprocessing and registration algorithms de-

tailed in Section 2.2 . Low resolution reconstruction: Histology

slices were downsampled by a factor of × 24.6 down to blockface

pixel size, and pre-aligned to the blockface using rigid registration,

followed by rigid TDR refinement and B-spline ATDR refinement.

High resolution reconstruction: The low resolution reconstruction

was applied to high resolution histology downsampled by a factor

of × 2, followed by high resolution B-spline ATDR refinement. This
ownsampling still shows the outline of individual cells, and thus

ontains all microstructure information, but reduces the registra-

ion sweep time by a factor of 4. We set α = 0 . 45 ( Appendix A )

nd studied reconstruction results for a range of diffusion sweeps

 . 

Validation of histology reconstruction is challenging. Similar-

ty measures are misleading for registration validation, and dis-

ance errors should be used instead ( Rohlfing, 2012 ). Blockface im-
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Fig. 5. Previous synthetic example with small drift component added to the random error. (a) Initial misaligned stack (solid line) and true shape ground truth (dotted line). 

(b) Difference between reconstruction and true shape, measured as mean square error = ‖ y 0 − ˆ y 0 , . . . , y N−1 − ˆ y N−1 ‖ /N for 70 0 0 stack sweeps of our TDR method (solid line) 

and Gaffling et al.’s (2015 ) Gauss Seidel approach (dashed line). The minima corresponding to the best reconstructions are obtained after 44 (TDR) and 15 (Gaffling) diffusion 

iterations, and are 2 . 56 · 10 −2 and 2 . 80 · 10 −2 , respectively. The best reconstruction error worsens by 10% after 63 (TDR) and 24 (Gaffling) stack sweeps. 
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ges have poorer resolution than histology even when the latter is

ownsampled to the same pixel size ( Fig. 7 ) —other external ref-

rences have limitations too, as discussed in the Introduction. In

ractice, for blockface it is possible to hand trace landmark cor-

espondences that are adequate for low resolution validation, but

here is not enough detail in the images for high resolution refine-

ent. Thus, for low resolution reconstruction we use both land-

ark errors and qualitative visual assessment, and for high resolu-

ion refinement, only qualitative visual assessment. 

We compute two adversarial types of landmark errors for quan-

itative validation, (1) blockface-histology to quantify the deviation

rom the true shape and (2) histology-histology between pairs of

djacent slices to quantify stack smoothing. They are adversarial

ccording to the maximum alignment discussion in Section 2.3.1 ,

s optimization of blockface-histology errors produces the noisy

anana solution, whereas optimization of histology-histology er-

ors tends to the straight banana solution. We calculate the me-

ian and 95th percentile landmark error curves, as they reflect the

ffect of refinement on typical and larger landmark errors, while

voiding outliers. 

For quantitative evaluation we created a set of 411 pairs of

lockface-histology landmarks (7 to 23 pairs of landmarks per slice

n 28 slices covering the stack) and a set of 1494 pairs of intra-

istology landmarks (8 to 76 pairs of landmarks per pair of adja-

ent slices for 40 pairs). Landmarks were primarily placed in the

enter of the cross-section of small vessels, edges of larger ves-

els, and the pointed cusps and valleys of trabeculae and cleav-

ge planes. Blockface-histology landmark errors were computed as

 i j = ‖ p i j − q i j ‖ , where p ij , q ij are the j -th landmark in the i -th his-

ology and blockface slices, respectively. Histology-histology errors

ere computed as ε i j = ‖ p i j − p i +1 , j ‖ , . 

.2.1. Low resolution reconstruction without external blockface 

eference 

Yushkevich et al. (2006 ) showed in mouse brain that sequen-

ial registration of histology slices without an external reference

roduces a smooth reconstruction but suffers from large-scale ge-

metric artifacts caused by drift. They qualitatively compared his-

ology virtual slices to an MRI external reference. Casero et al.

2016 ) showed a similar quantitative result for mouse heart us-

ng landmark distance errors. This section complements ( Casero

t al., 2016 ) qualitatively, showing virtual slices of histology com-
ared to virtual slices of the blockface external reference ( Fig. 6 ).

or this first experiment, we started the sequential alignment from

 central histology slice, I 121 , and propagated it towards the top

nd bottom slices, by rigid registration of I i to I i +1 , i = 120 , . . . , 1 ,

nd I i to I i −1 , i = 122 , . . . , 239 . (Starting from the middle reduces

he amount of accumulated error compared to starting from an

nd slice.) Drift artifacts appear in the short axis virtual slice as

obbles in the cardiac wall and a skewed cardiac shape. Refine-

ent (or regularization) of this pre-alignment would smooth the

econstruction, but cannot remove drift artifacts and recreate the

issing true shape information, as discussed in Section 2.3.1 , by

ushkevich et al. (2006 ) and shown experimentally in Casero et al.

2016 ). 

.2.2. Low resolution reconstruction with external blockface reference 

In the second experiment, we performed a blockface-aided re-

onstruction replacing the previous sequential histology-histology

re-alignment by a rigid downsampled histology-blockface pre-

lignment. This was followed by intra-histology refinement in two

tages: low resolution rigid TDR and low resolution B-spline ATDR.

Low resolution rigid TDR refinement is analyzed in Fig. 7 . For

he blockface-histology error, the median curve gently increases

ith the number of sweeps m , whereas the 95th percentile curve

as a global minimum at m = 150 sweeps. At the same time, me-

ian histology-histology error decreases smoothly with the num-

er of stack sweeps. The 95th curve initially oscillates, as diffusion

mooths out larger misalignments. Visual inspection of the virtual

lices in Fig. 7 suggests that M = 150 produces a satisfactory re-

ult. To illustrate under and overcorrection we also display virtual

lices for m = 3 (a local minimum) and m = 50 0 0 (showing ver-

ical straightening of the right ventricle). As our method replaces

egistration operations by affine matrix operations form m > 1, the

omputational cost of refinement with M = 150 sweeps is negligi-

le. This also allows producing virtual slices for several values of

 for visual inspection. Both plots combined show a large range

 m = 10 to m = 400 ) with small quantitative differences, suggest-

ng that the final result is not sensitive to the choice of stopping

riterion M within a wide range of values. Overcorrection is more

ifficult than undercorrection, as transformation updates become

maller with the number of sweeps (note that the m axis is loga-

ithmic). 
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Fig. 6. Sequential rigid pre-alignment of histology without blockface (right). Alignment starts from central slice and propagates towards the top and bottom slices, separately. 

Virtual slices show middle long axis (XZ plane) and short axis (YZ plane) cuts. Corresponding blockface virtual slices (left) are provided as visual reference, but were not 

used for the reconstruction. Black arrows point to drift artifacts. In addition, the short axis of the histology is skewed. The discontinuity in the blockface virtual slices near 

Z = 3 mm is caused by a few missing slices, and the dark blob corresponds to a bubble in the wax block. 
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Low resolution B-spline refinement, applied after the rigid re-

finement, is shown in Fig. 8 , comparing ATDR to a naïve baseline

smoothing algorithm that only applies registration sweeps. We ran

the baseline algorithm only up to m = 27 registration sweeps, as

beyond that level the concatenation of B-splines made the reg-

istration sweeps too slow. We use the results in Fig. 8 to assess

whether ATDR produces an adequate refinement. The median and

95th percentile curves for blockface-histology error are similar for

ATDR (black) and the baseline algorithm (red), suggesting that both

approaches similarly preserve the true shape of the specimen. The

histology-histology curves and visual results have negligible change

between m = 10 and m = 80 . Thus, the refinement is not very sen-

sitive to the choice of stopping criterion M within that range. The

curves also suggest better smoothing by the baseline algorithm,

as expected. However, after the first registration sweep, ATDR is

five to seven orders of magnitude faster than the baseline algo-

rithm (times provided below). Thus, in practice, it is possible to

run more sweeps with ATDR in a fraction of the time, and without

being limited by the number of B-spline levels. The 95th percentile

curve, on the other hand, is significantly better for the baseline al-

gorithm. However, visual inspection of virtual slices does not show

noticeable differences. Moreover, virtual slices in Fig. 8 not only

show that ATDR smooths adequately, but it can even overcorrect,

e.g. with m = 500 if required for testing. 

We now provide run time and memory requirements for low

resolution refinement. A rigid registration sweep for the downsam-

pled histology stack with 239 slices required 238 registrations, tak-

ing ∼ 1.6 · 10 4 s on a workstation with 8 Intel Xeon 3.70 GHz cores.

(Note that this is very slow, ∼4.5 h, but we aimed to have a very

robust rigid method that we can measure improvements against.

TDR itself is independent of the speed and other implementa-

tion details of the registration algorithm). The equivalent neigh-

bor transformation update from TDR ( Algorithm 1 ) operated with

(3, 3)-matrices. Each of the 238 updates took ∼ 1.0 s to compute

2 matrix logarithms, 1 matrix exponential, 5 matrix multiplica-

tions and 2 matrix inversions. A B-spline registration sweep for
 a  
he low resolution stack involved 476 registrations, taking ∼ 9.8

10 2 s for m = 1 and increasing linearly with m to ∼ 2.5 · 10 5 s

or m = 27 . The equivalent neighbor transformation update oper-

ted with 238 vectors, each of length 1150. Each update in trans-

ormation space took ∼ 4 . 5 · 10 −3 s to compute 11 vector additions

nd 5 multiplications by a scalar. That is, neighbor transforma-

ion updates were 4 (rigid) to 5 or 7 (B-spline) orders of magni-

ude faster than equivalent registration sweeps. In terms of mem-

ry use, each registration to two neighbors stored three 971 × 1099

ixels images, plus two similar transformed images, using around

.3 M. An equivalent neighbor transformation update stored 4 (3,

)-matrices, using 288 bytes (rigid), or 4 vectors of length 1150,

sing 31 K (B-spline). That is, neighbor transformation updates

sed between 2 (B-spline) and 4 (rigid) orders of magnitude less

emory. 

.2.3. High resolution refinement 

For the third experiment, we applied the low resolution trans-

ormations computed above to the original histology downsampled

nly by a factor of 2. These are very high resolution images that

how microstructure detail of individual cell shape and cleavage

lanes. After applying the low resolution transformations, we ob-

ained a stack of 239 RGB slices with size 9341 × 12,552 pixels that

ould take a total of 84G in memory. Preprocessing of the histol-

gy converts the three RGB channels to one, and the size reduces

o 28G. This volume of data made it necessary to run our algo-

ithms loading and saving individual slices from the hard drive as

equired, rather than loading the whole stack in memory, as it is

ossible for low resolution reconstruction. 

Landmark validation is not feasible at high resolution, as dis-

ussed above. For visual qualitative evaluation we refined the his-

ology with m = 1, 3, 5, 7, 10, 20, 30, 40, 50, 100, 500, 1000, and

0,0 0 0 ATDS diffusion sweeps in transformation space after the

egistration sweep. After the initial 5.8 h registration sweep, at ∼
0 s per diffusion sweep, producing refined stacks for testing took

nother 10 s (1 diffusion sweep) to 1 day 3 h (10,0 0 0 diffusion
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Fig. 7. Rigid intra-histology refinement of mouse heart after histology-blockface pre-alignment. Blockface-histology and histology-histology landmark error for rigid refine- 

ment (median and 95th percentile) followed by long axis (XZ plane) and short axis (YZ plane) virtual slices to illustrate different number of stack sweeps. Blockface virtual 

slices provided as reference for anatomical true shape. Landmark error figures use a logarithmic scale for number of stack sweeps. Virtual slices’ axes in mm. Results be- 

tween m = 10 and m = 400 are quantitatively and qualitatively similar to the virtual slices displayed for m = 150 . Under and overcorrection are illustrated with m = 3 and 

m = 50 0 0 , respectively. 
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Fig. 8. Low resolution B-spline intra-histology refinement of mouse heart after rigid TDR intra-histology refinement with M = 150 stack diffusion sweeps. Comparison of a 

baseline approach where stack sweeps use registrations only (red error curve) vs. our ATDR approach that uses a single B-spline level and replaces registrations by diffusion 

operations in transformation space (black error curve). Blockface-histology and histology-histology landmark error (median and 95th percentile) followed by long axis (XZ 

plane) and short axis (YZ plane) virtual slices to illustrate different number of stack diffusion sweeps m . Landmark error figures use a logarithmic scale for m . Blockface 

virtual slices provided as reference for anatomical true shape. Virtual slices’ axes in mm. Results between m = 15 and m = 80 are quantitatively and qualitatively similar. 

Overcorrection is illustrated with m = 500 , both in the straightening of the Right Ventricle’s bend and the verticalization of cleavage planes in the Left Ventricle’s inferior 

wall (black arrows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. High resolution B-spline ATDS intra-histology refinement of mouse heart af- 

ter low resolution reconstruction with M = 150 rigid TDR stack diffusion sweeps 

and M = 80 B-spline ATDR sweeps. Virtual slices show middle long axis (XZ plane) 

and short axis (YZ plane) cuts for several number of diffusion sweeps m . Results 

between m = 5 and m = 100 are qualitatively similar. Undercorrection is illustrated 

with application of low resolution reconstruction without any further refinement 

(equivalent to m = 0 ). Correct refinement is illustrated with m = 10 . Slight overcor- 

rection is illustrated with m = 10 , 0 0 0 , both by a small shift of the Right Ventricle’s 

endocardium and angle change of cleavage planes in the septum (black arrows). 

We also point to some areas where tissue damage caused by Karnovsky’s fixation 

did not allow reconstruction of the microstructure (red arrows). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 
weeps). Note that after the registration sweep, B-splines for the

hole stack can be stored and operated with in computer mem-

ry, avoiding slow file input/output operations (sizes provided be-

ow). The results are shown in Fig. 9 . We produced virtual slices

or the central long axis and short axis of each stack, by load-

ng one slice at a time and keeping in memory only the row and

olumn that belong in the virtual slices. Producing virtual slices

ook ∼15 min per stack. Changes in the microstructure were subtle

nough, but they were revealed by scrolling back and forth through

he virtual slices. For m = 1 and m = 3 diffusions the microstruc-

ure was undercorrected and spatial noise was apparent. Between

 = 5 to m = 100 , slice-to-slice transitions in the microstructure

ooked smooth and changes were very subtle, which gives a wide

ange of valid values for the stopping criterion M . Above m = 500 ,

hanges in cleavage plane angles and displacement of endocardial

nd epicardial walls were small but noticeable. 

High resolution refinement of the 239 slices used 476 B-splines.

ach B-spline is parametrized by 195,480 coefficients, taking 1.6 M

n memory. By comparison, a preprocessed histology image takes

17 M in memory. The B-spline registration sweep took ∼ 2.1 ·
0 4 s, whereas equivalent neighbor transformation updates took ∼
0 s per sweep. Thus, B-spline sweeps in transformation space re-

uire 73 times less memory and are 3 orders of magnitude faster

han the fastest registration sweep (1st level of B-splines). 

Visual assessment of the virtual slices for stopping criterion

 = 10 shows smooth slice-to-slice transitions in the image, show-

ng microstructure such as cleavage planes in great detail. Cleav-

ge planes meeting at sharp angles and the pointy tip of the Left

entricle suggest that, although smoothing has removed high fre-

uency registration noise, it has not necessarily removed high fre-

uency anatomical features. A verticalization distortion is notice-

ble at the top slice of the Right Ventricle’s epicardium. As the

ery top slices of the stack are missing due to damaged tissue, we

ypothesize that the Neumann boundary condition has promoted

he epicardial wall to be parallel to the Z-axis in the top slice, al-

hough this artifact is not apparent in the rest of the top slice or in

he bottom slice. The virtual slices also show a few areas where the

icrostructure is not reconstructed (red arrows in Fig. 9 ). These are

rtifacts caused by tissue tears due to the tissue becoming brittle

rom the use of Karnovsky’s fixative for work unrelated to this pa-

er, that do not occur in this form in regular histology processing.

issue tears represent a transformation discontinuity that cannot

e corrected with the usual smooth transformations, and are be-

ond the scope of this work. 

. Discussion 

We have proposed a new approach that produces smooth

nd anatomically sound high-resolution 3D reconstructions of tis-

ue from serial 2D histology data without compromising overall

hape, thanks to the combination of a blockface reference and a

athematical framework called Transformation Diffusion (TD). We

resent the reconstruction of a full mouse heart, 239 RGB slices

ith slice size 9341 × 12,552 pixels, pixel size 0.92 μm × 0.92 μm,

ut 10 μm thick, spaced 20 μm (84G). Our approach is independent

f the registration methods used, as it only depends on the prop-

rties of the resulting transformations. 

The TD framework leads to simple and intuitive refinement

lgorithms that are similar to previous radius-1 heuristics, that

e call Transformation Diffusion Reconstruction (TDR) for trans-

ation/affine transformations and Approximated TDR (ATDR) for

ensor-product B-spline transformations with guaranteed injectiv-

ty. They are trivially parallelizable, have no bias as they have no

tarting slice, and by contrast to sequential methods, errors do not

ccumulate along stack sweeps. We have shown a mathematically

ound way of replacing registration operations by operations in

version of this article.) 
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transformation space that are several orders of magnitude faster

and less memory-demanding. Thus, our uncoupled parallel algo-

rithms in practice run as fast as a sequential causal algorithm. We

have shown that our radius-1 algorithms produce smoothing that

is equivalent to larger neighborhoods. We have also provided the-

oretical and numerical analysis for the algorithms’ two parameters.

The diffusion step α determines the implicit smoothing kernel. To

reduce the number of stack sweeps, α can be set to the largest

value that avoids high-frequency noise (we show α = 0 . 45 to be

adequate). However, because stack sweeps in transformation space

are so fast, setting lower values for α would have a small perfor-

mance impact. We have shown that TD is equivalent to Gaussian

smoothing of the deformations where the number of stack sweeps

M determines the Gaussian bandwidth as FWH M BW 

∝ 1 / 
√ 

αM for

translations, and FWHM BW 

has the same units as the inverse of the

slice thickness. Our experiments suggest that M provides a non-

sensitive stopping criterion that can be estimated empirically us-

ing landmark errors and visual assessment for translations, affine

and B-spline transformations. Future work will complement these

empirical results with a theoretical study of the meaning of this

Gaussian filtering in the Lie space of affine transformations and B-

spline control point translations. 

ATDR approximates cubic B-splines by their control polygon,

collapse several levels of B-splines into one, and constraint con-

trol point displacement to ensure injectivity. Despite these approx-

imations, ATDR produces similar refinement quality as multiple B-

spline registration sweeps, as we show in our heart reconstruction

experiments. Future work will study extending TDR to other types

of non-affine transformations. Interesting candidates are linear B-

splines, as their control polygon coincides with the spline, and dis-

placement and velocity fields ( Vercauteren et al., 2007 ), as the vec-

tors could be diffused with translation TDR. 

The TD framework provides insight into the classical banana

problem as a spectrum of solutions between the noisy stack and

“maximum alignment” or the straight banana solution. Namely,

the Gaussian filter equivalence provides an intuitive explanation to

why the method removes high frequency registration noise before

smoothing lower frequency anatomical features. 

We use Neumann boundary conditions as Gaffling et al.

(2015) for the top and bottom slices of the stack. They allow free

movement of those slices, but they would tend to make the tan-

gent of the reconstruction along the Z-axis horizontal. This does

not seem to affect the heart reconstruction in general, except

seemingly at the top slice of the right ventricle’s epicardium, and

it is slightly present in the synthetic experiments. Thus, alterna-

tive boundary conditions are another interesting topic for further

research. 

Let a neighborhood with a linear combinations of transforma-

tions be φm,m +1 
i 

= 

∑ d 
k = −d γk φ

m 

i + k . Our slice update in ( 10 ) can be

seen as a linear combination of transformations with neighbor-

hood γ±1 = α. As advanced in the Introduction, some authors have

proposed using larger neighborhoods. Linear combination neigh-

borhoods use e.g. binomially distributed weights γk = 

(
2 d 

k + d 

)
/ 2 2 d 

( Ju et al., 2006 ) or Gaussian weights γk = exp ( −k 2 / 4 ) ( Rusu et

al., 2015 ). These larger neighborhoods produce more smoothing,

but in Appendix B we show that d radius-1 sweeps of ( 10 ) pro-

duce the same smoothing as one radius- d sweep. The radius- d

neighborhood requires d( N − 1 ) per stack sweep, though, whereas

d stack sweeps with our radius-1 neighborhood in practice cost

the same as ( N − 1 ) registrations. Hence, TDR is d times faster

than if we used a radius- d neighborhood. This is significant, as

our heart experiments require typical values of 10 ≤ d ≤ 150

( Section 3.2 ). 

A study of other neighborhood characteristics is beyond the

scope of this work. However, we provide some observations for fu-
ure work. Larger neighborhoods may seem more robust against

egistration errors. However, the further two slices are located

rom each other, the less similar they look, and the more likely

t is for the registration to be meaningless or fail. For example,

 large neighborhood could try to register two sets of cleavage

lanes at different angles, trabeculae with different topology, the

ross-section of an artery to the two branches it bifurcates into,

r an atrial slice to a slice where only part of the right ventricle is

isible. Thus, they can introduce a systematic source of registration

oise and artifacts. 

TDR and ATDR can be applied equally to reconstructions initial-

zed with or without an external reference such as blockface. But

he results from our experiment in Section 3.2.1 , in agreement with

revious reports ( Streicher et al., 20 0 0; Yushkevich et al., 2006 ),

trongly suggest that reconstruction methods that omit an exter-

al reference are prone to produce large geometric artifacts. More-

ver, the validation of those methods may be misguided by intra-

istology error measures, as it is possible to reduce the slice-to-

lice error without reducing large geometric artifacts. This prob-

em may not affect all tissue samples equally. For example, small

ectangular blocks with symmetric microstructure may be more re-

ilient to reconstruction artifacts. For larger samples like ours, as

ell as samples with asymmetric structures that are not normal to

he cutting plane, large errors should be expected. 

In the synthetic experiments of Section 3.1 we compared our

DR approach to the Gauss–Seidel method of Gaffling et al. (2015 ).

he results suggest that our approach is less sensitive to the

hoice of the stopping parameter, and that Gauss–Seidel achieves

 slightly better reconstruction if there is no correlated noise, and

DR if there is. In practice, our approach is much faster, because

f the replacement of registrations by operations in transformation

pace, although future work could study whether a similar trick

ould be applied to Gaffling’s method. Gaffling’s registration of I i 
o I i −1 ◦ 1 

2 φi −1 ,i +1 also introduces an additional source of error that

e did not take into account in our synthetic experiments, and

ould worsen their results in real data. 

In the mouse heart experiments ( Section 3.2 ), our brute-force

atched filter rigid registration approach is relatively slow ( ∼67.2 s

er slice compared to 2.1 s for B-spline registration of the low res-

lution histology), but extremely robust, as it provides a global op-

imum and is optimal in a signal-to-noise ratio (SNR) sense. In-

eed, all histology slices obtained a good initial alignment to the

lockface, despite the presence of tissue tears, fold-overs, non-

ffine deformations, and bubble artifacts in the histology images,

nd smears, scratches, or reduced contrast in the blockface images.

he matched filter rigid registration method has a simple Matlab

mplementation, whereas the B-spline method benefits from many

TK features that improve speed, such as the ITK C +++ multi-

hread implementation, gradient descent, multi-level registration,

inary masks to ignore most of the image, or subsampling of the

rror metric. Future work will look into adapting these and other

peed improvements such as phase correlation with fast rotation

stimation ( Reddy and Chatterji, 1996 ) without losing robustness. 

While this paper provides interesting theoretical and imple-

entation ideas, there are several directions for further develop-

ent and application to histology reconstructions. For instance, we

ave followed the assumption from the literature that anatomi-

al structures vary slowly with respect to slice thickness ( Guest

nd Baldock, 1995; Ju et al., 2006; Saalfeld et al., 2012; Wirtz

t al., 2004 ), but it is debatable whether this is true at local

istological discontinuities, such as vessel bifurcations or starting

oints of structurally distinct features (trabeculae, papillary mus-

les, septum-free wall intersection). The results from our high reso-

ution experiment ( Section 3.2.3 ) suggest so, but due to the lack of

 true gold standard, we may be smoothing out some microstruc-

ure detail without noticing. This would open an interesting line
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Fig. 10. TDR/ATDR smoothing kernel � for several number of repeated convolutions or stack diffusion sweeps m . Kernel’s spatial (top row) and frequency (bottom row) 

responses. This kernel is not explicitly used in the algorithm, but is an implicit feature of the TD framework. “Relative slice index” is the slice index with respect to the slice 

the kernel is centered at. Kernels were computed for α = 0 . 5 (blue line), α = 0 . 49 (green line) and α = 0 . 45 (red line). For α = 0 . 5 the kernel features a high-pass component 

that does not attenuate with increasing m . For α < 0.5, � → G ( r, t ), as m → ∞ . The high-pass component attenuates faster for smaller α. For α = 0 . 45 amplitude is < 8% 

for m = 10 , and < 1% for m = 20 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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f future work, where treating the diffusion coefficient D as a

ensor, using Fourier’s diffusion equation ( Narasimhan, 1999 ) in-

tead of the heat equation could lead to novel anisotropic diffusion

chemes. Furthermore, analysis of the characteristic of registra-

ion noise and sample structures frequencies could find an optimal

umber of stack sweeps M without having to analyze landmark er-

ors. We discussed in Section 2.4.2 that Alexa’s (2002 ) affine inter-

olation scheme is known to fail in some cases, so studying alter-

atives could improve the range of application of the algorithms.

inally, applying our algorithms to tissue with microstructure that

iffers from cardiac (such as brain or lung) would be an attractive

ndeavor. 
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ppendices 

. Diffusion step α

In this appendix we provide a theoretical analysis for the choice

f the value of parameter α, the diffusion step in TDR and ATDR.

irst, we solve for φm +1 
i 

in ( 5 ) 

m +1 
i 

= αφm 

i +1 + ( 1 − 2 α) φm 

i + αφm 

i −1 . (A.1) 

This common solution to the heat equation is not useful for re-

onstruction because the φi are unknown, but it is useful for the

nalysis of α. Let φ = [ φ0 , . . . , φN−1 ] , for simplicity omitting the

ghost” slices created by the Neumann boundary conditions. Then,
m +1 can be computed by discrete convolution � as 

φm +1 = φm � ψ 

 = 

[
α, ( 1 − 2 α) , α

]
. 

(A.2) 

By linearity, this is equivalent to filtering the initial solution

ith a kernel formed by repeated convolution 

m +1 = φ0 � 

⎛ 

⎝ ψ � . . . � ψ ︸ ︷︷ ︸ 
m +1 

⎞ 

⎠ = φ0 � � (A.3) 

Note that this is an implicit feature of the TD framework. The

ernel � cannot be applied to the stack as φ0 is unknown. As the

umber of slices and repeated convolutions increase, by the Cen-

ral Limit Theorem ( Yarlagadda, 2010 ), � → G ( r, t ), where G ( r, t )

s the Gaussian kernel in ( 3 ), a low-pass filter that smooths the

tack. From ( 17 ), the kernel’s bandwidth is FWHM ∝ 

√ 

1 /α. Hence,

he larger the value of α, the fewer stack sweeps required, and

he optimal value of the diffusion step appears to be α = 0 . 5 How-

ver, for a small number of iterations and α ≈ 0.5, � also presents

 high-pass component that preserves high frequency registra-

ion noise. As shown in Fig. 10 , for α = 0 . 5 the kernel’s high fre-

uency component does not attenuate with increasing m , and thus

igh frequency registration noise would be preserved (although the

andwidth of preserved noise would decrease too). For α = 0 . 49

he high-frequency attenuates and is negligible for m = 80 . How-

ver, its amplitude is ≈ 60% − 20% in the range m = 10 to 40, which

s common for our reconstructions. By contrast, lowering the diffu-

ion step to α = 0 . 45 is a good trade-off, that increases the number

f stack sweeps only by 11% but makes the high-frequency compo-

ent’s amplitude < 8% − 1% even for m = 10 to 20. 

. Radius-1 neighborhood vs. radius- d neighborhood 

Let a radius- d neighborhood [ I i −d , . . . , I i + d ] be the set of slices

hat influence the update of slice I i . As advanced in the intro-

uction, different methods in the literature propose using radius-1

http://dx.doi.org/10.13039/501100000268
http://dx.doi.org/10.13039/501100001030
http://dx.doi.org/10.13039/501100000274
http://dx.doi.org/10.13039/501100000274
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100004963
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neighborhoods or larger radius- d neighborhoods for reconstruction.

In this section, we show that M sweeps with the translation TD

radius-1 neighborhood produce the same result as one sweep with

a radius- M neighborhood. Let’s consider two consecutive slice up-

dates from ( 10 ) 

φm,m +1 
i 

= α
(
φm 

i,i +1 + φm 

i,i −1 

)
, (B.1)

φm +1 ,m +2 
i 

= α
(
φm +1 

i,i +1 
+ φm +1 

i,i −1 

)
. (B.2)

To simplify the exposition, we omit the end slices. (B.1) and

(B.2) smooth each slice with a radius-1 neighborhood, I i −1 , I i +1 . Ex-

panding (B.2) with the neighbor transformation update ( 24 ), we

obtain 

φm +1 ,m +2 
i 

= α
(
φm 

i,i +1 + φm 

i,i −1 

)
+ α

(
φm,m +1 

i +1 
+ φm,m +1 

i −1 
− 2 φm,m +1 

i 

)
. 

(B.3)

Adding φm,m +1 
i 

to both sides of the equation, and noting that by

transitivity a two sweeps update is φm,m +2 
i 

= φm,m +1 
i 

+ φm +1 ,m +2 
i 

, 

φm,m +2 
i 

= α
(
φm 

i,i +1 + φm 

i,i −1 

)
+ α

(
φm,m +1 

i +1 
+ φm,m +1 

i −1 

)
+ ( 1 − 2 α) φm,m +1 

i 
. (B.4)

Using (B.1) to expand φm,m +1 
i +1 

and φm,m +1 
i −1 

, and using φm 

i, j 
=

−φm 

j,i 

φm,m +2 
i 

= α( 2 − 3 α) φm 

i,i +1 + α( 2 − 3 α) φm 

i,i −1 

+ α2 φm 

i +1 ,i +2 + α2 φm 

i −1 ,i −2 . (B.5)

By the transitive property, φm 

i ±1 ,i ±2 
= φm 

i,i ±2 
− φm 

i,i ±1 
. Substituting

into (B.5) 

φm,m +2 
i 

= α2 φm 

i,i +2 + 2 α( 1 − 2 α) φm 

i,i +1 

+ 2 α( 1 − 2 α) φm 

i,i −1 + α2 φm 

i,i −2 . (B.6)

That is, the two radius-1 sweeps in (B.1) and (B.2) produce the

same result as the single radius-2 sweep in (B.5). By induction,

M radius-1 sweeps produce the same refinement as one radius- M

sweep (if the corresponding weights are computed). This result re-

quires transitivity, which will be only approximate with real data. 

C. B-spline injectivity conditions 

Let 	c kl = ( 	c kl,x , 	c kl,y ) . Choi and Lee’s (20 0 0 ) sufficient con-

ditions for injectivity of the B-spline defined in ( 31 ) are 

	c kl ,x < 1 / K 2 and 	c kl ,y < 1 / K 2 , (C.1)

( 	c kl ,x ) 
2 + ( 	c kl ,y ) 

2 < ( 1 / A 2 ) 
2 
, (C.2)

where K 2 ≈ 2.046392675 and A 2 = 

√ 

( 3 / 2 ) 2 + ( K 2 − 3 / 2 ) 2 . Fulfill-

ing either condition guarantees local injectivity of the B-spline.

These conditions are known to be conservative, and thus act as

regularizers that strongly limit B-spline deformations. On the other

hand, they can be directly applied to the control points, whereas

more recent work that proposes looser bounds ( Chun and Fessler,

2009 ) applies to the edges of the control polygon and thus, are not

trivial to apply to the ATDR algorithm. 

To guarantee injectivity, after each diffusion iteration we flag

control points that fulfill neither condition. We then normalize the

displacement of problematic control points to enforce condition

(C.2) as 	c kl / ( | 	c kl | ( A 2 − ε ) ) , where ɛ is a small constant. We set

ε = 0 . 01 as suggested by Choi and Lee (20 0 0) . 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.media.2017.03.004 . 
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