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Abstract: Advancement in the miniaturization of high-density power sources, electronic circuits,
and communication technologies enabled the construction of miniaturized electronic devices,
implanted directly in the heart. These include pacing devices to prevent low heart rates or terminate
heart rhythm abnormalities (‘arrhythmias’), long-term rhythm monitoring devices for arrhythmia
detection in unexplained syncope cases, and heart failure (HF) hemodynamic monitoring devices,
enabling the real-time monitoring of cardiac pressures to detect and alert for early fluid overload.
These devices were shown to prevent HF hospitalizations and improve HF patients’ life quality.
Pacing devices include permanent pacemakers (PPM) that maintain normal heart rates, defibrillators
that are capable of fast detection and the termination of life-threatening arrhythmias, and cardiac
re-synchronization devices that improve cardiac function and the survival of HF patients. Traditionally,
these devices are implanted via the venous system (‘endovascular’) using conductors (‘endovascular
leads/electrodes’) that connect the subcutaneous device battery to the appropriate cardiac chamber.
These leads are a potential source of multiple problems, including lead-failure and systemic infection
resulting from the lifelong exposure of these leads to bacteria within the venous system. One of the
important cardiac innovations in the last decade was the development of a leadless PPM functioning
without venous leads, thus circumventing most endovascular PPM-related problems. Leadless PPM’s
consist of a single device, including a miniaturized power source, electronic chips, and fixating
mechanism, directly implanted into the cardiac muscle. Only rare device-related problems and almost
no systemic infections occur with these devices. Current leadless PPM’s sense and pace only the
ventricle. However, a novel leadless device that is capable of sensing both atrium and ventricle
was recently FDA approved and miniaturized devices that are designed to synchronize right and
left ventricles, using novel intra-body inner-device communication technologies, are under final
experiments. This review will cover these novel implantable miniaturized cardiac devices and the basic
algorithms and technologies that underlie their development. Advancement in the miniaturization
of high-density power sources, electronic circuits, and communication technologies enabled the
construction of miniaturized electronic devices, implanted directly in the heart. These include
pacing devices to prevent low heart rates or terminate heart rhythm abnormalities (‘arrhythmias’),
long-term rhythm monitoring devices for arrhythmia detection in unexplained syncope cases,
and heart failure (HF) hemodynamic monitoring devices, enabling the real-time monitoring of
cardiac pressures to detect and alert early fluid overload. These devices were shown to prevent
HF hospitalizations and improve HF patients’ life quality. Pacing devices include permanent
pacemakers (PPM) that maintain normal heart rates, defibrillators that are capable of fast detection
and termination of life-threatening arrhythmias, and cardiac re-synchronization devices that improve
cardiac function and survival of HF patients. Traditionally, these devices are implanted via the
venous system (‘endovascular’) using conductors (‘endovascular leads/electrodes’) that connect the
subcutaneous device battery to the appropriate cardiac chamber. These leads are a potential source
of multiple problems, including lead-failure and systemic infection that result from the lifelong
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exposure of these leads to bacteria within the venous system. The development of a leadless PPM
functioning without venous leads was one of the important cardiac innovations in the last decade,
thus circumventing most endovascular PPM-related problems. Leadless PPM’s consist of a single
device, including a miniaturized power source, electronic chips, and fixating mechanism, implanted
directly into the cardiac muscle. Only rare device-related problems and almost no systemic infections
occur with these devices. Current leadless PPM’s sense and pace only the ventricle. However, a novel
leadless device that is capable of sensing both atrium and ventricle was recently FDA approved
and miniaturized devices designed to synchronize right and left ventricles, using novel intra-body
inner-device communication technologies, are under final experiments. This review will cover these
novel implantable miniaturized cardiac devices and the basic algorithms and technologies that
underlie their development.

Keywords: implantable; cardiac; electrical; micro-device

1. Introduction

Advancement in the miniaturization of high-density power sources, electronic circuits,
and communication technologies enabled the construction of miniaturized electronic devices, implanted
directly in the heart. These include pacing devices to prevent low heart rates or terminate rapid heart
rhythm abnormalities (‘tachyarrhythmias’), long-term rhythm monitoring devices for arrhythmia
detection in unexplained syncope cases, and heart failure (HF) hemodynamic monitoring devices,
enabling the real-time monitoring of cardiac pressures to detect and alert for early fluid overload.
These devices were shown to prevent HF hospitalizations and improve HF patients’ life quality.
Pacing devices include permanent pacemakers (PPM) that maintain normal heart rates, defibrillators
that are capable of fast detection and the termination of life-threatening arrhythmias, and cardiac
resynchronization devices that may improve cardiac function and survival in appropriately selected
HF patients. Traditionally, these devices are implanted via the venous system (‘endovascular’),
while using conductors (‘endovascular leads/electrodes’) that connect the subcutaneous device battery
to the appropriate cardiac chamber. These leads are a potential source of multiple problems, including
lead-failure and systemic infection that result from the lifelong exposure to bacteria within the venous
system. One of the important cardiac innovations in the last decade was the development of a leadless
PPM functioning without venous leads, thus circumventing most endovascular PPM-related problems.
Leadless PPMs consist of a single device, including a miniaturized power source, electronic chips,
and fixating mechanism, implanted directly into the cardiac muscle. Only rare device-related
problems and almost no systemic infections occur with these devices. Current leadless PPMs sense
and pace only the ventricle. However, a novel leadless device capable of sensing both atrium and
ventricle was recently FDA approved and miniaturized devices that were designed to synchronize
right and left ventricles, using novel intra-body inner-device communication technologies, are under
final experiments. This review will cover these novel implantable miniaturized cardiac devices and
the basic algorithms and technologies underlying their development.

2. Conventional Pacing Devices

Cardiac implantable electronic devices (CIED) have become a pivot treatment for various cardiac
patients, including: (a) permanent pacemakers (PPM) aimed for pacing the heart at programmed rates,
for patients with symptomatic low heart rates (‘bradycardia’). (b) Implantable cardiac defibrillators
(ICD), which can detect and terminate life-threatening fast ventricular arrhythmias via anti-tachycardia
pacing or high-energy shocks (‘direct current cardioversion/defibrillation’). These ICDs were shown
to improve the survival of HF patients with impaired cardiac function, who are at increased risk
for sudden arrhythmic death. ICD is also recommended for patients surviving prior arrhythmic



Micromachines 2020, 11, 902 3 of 21

cardiac death, considered to be high risk for recurrent ventricular arrhythmias [1–5]. (c) Cardiac
resynchronization therapy devices (CRT) for HF patients who have both severely reduced cardiac
function and an impaired electrical conduction, which resulted in asynchronous cardiac contraction.
Current CRT device function is based on achieving synchronous contraction of both right and left
ventricles, which results in improved global mechanical performance of the heart. CRTs were shown to
attenuate HF symptoms and they may improve survival in HF patients [6,7]. All of the above devices
consist of a battery, programmable electrical chips (consisting of electrical timing circuits and output
drivers), and conductors (also named ‘leads’ or ‘electrodes’). The devices are usually implanted below
the skin (‘subcutaneously’) in the chest area, and a set of leads are advanced from the device pocket,
via the central venous system, into various parts of the heart (Figure 1). Conventional PPM leads are
composed of a metal conductor (‘coil’) enclosed by insulation layer, which minimizes the current leak
and electromagnetic interference from the outside world (Figure 2). In contrast with old unipolar
leads, where the lead tip serves as the cathode and the device battery as anode, most modern leads are
bipolar leads, where the lead tip serves as cathode and a proximal “ring” serves as the anode. The lead
conductors are arranged in coaxial or coradial designs (Figure 2) [8,9]. Coaxial leads have an inner
conductor that extends down the length of the lead to the tip electrode, the cathode, arranged in a coil
configuration with a central lumen to allow for the passage of a stylet at implantation. This coil is
covered by a cylindrical length of inner insulation, which, in turn, is wrapped by another coil conductor
that also runs down the lead to the ring electrode, the anode. A second outer insulation layer protects
the ring conductor from the outside environment (Figure 2B). In coradial leads, a single coil extends
down the length of the lead and it consists of two parallel, alternating conductor strands, one of which
connects to the cathode and the other to the anode. Each conductor strand is individually coated
with an inner insulation layer and the single two-component coil is surrounded by another outer
insulation layer (Figure 2). Although coaxial design leads have been the standard for many years,
the resulting bulk and stiffness of this four-layer design encouraged the development of the coradial
design, which is less bulky (~1.7 mm) and more flexible. The outer insulation in both designs is made
of polyurethane or silicone. Polyurethane is a synthetic segmented polymer with high tensile strength
and resistance to mechanical abrasion. Thus, a thin layer of insulation can be used in order to cover the
lead conductors, enabling low diameter leads. However, polyurethane leads are stiff and not fully
biostable, being subject to in vivo biological degradation, due to environmental stress cracking and
metal ion oxidation, resulting in insulation defects. Silicone, in contrast, is more flexible and biostable
over extended periods. Its main disadvantage relates to its lower tensile strength, thus rendering it
susceptible to abrasion and tears. Therefore, a thicker insulation layer must be used to maintain lead
reliability, which increases lead bulk [10,11].

MP-35N, an alloy of nickel, cobalt, chromium, and molybdenum, is the basic material that is used
for most modern conductors. The main advantage of MP-35N is its high strength and resistance to
corrosion [8]. Its main disadvantage is its high electrical resistance, but this has been overcome with the
development of composite-wire conductors that incorporate low-resistance metals, such as silver (thus
named silver cored alloy wires) [8]. In most pacing leads, these materials are generally incorporated
into a drawn filled tube composite-wire conductor strand consisting of a thick strong body of MP-35N
filled with a central core of softer low-resistance silver metal, often encased in a further outer shell of
platinum alloy. An alternative conductor design is the drawn brazed strand design, consisting of few
strands of high-resistance MP-35N material tightly molded over a central silver strand. Thus, the inner
low-resistance metal is forced between and around the strong outer strands. The functional purpose
of these designs is to create conductors that are both resistant to corrosion and have low electrical
resistance (Figure 2).
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Figure 1. Schematic endovascular permanent pacemaker (PPM) system consisting of battery and 
programmable electrical chip assembly (together named ‘pacemaker’). (A) Special conductors 
(‘leads/electrodes’) implanted via a major central vein (endovascular approach) connect these 
pacemakers with the heart chambers (in this example, an atrial lead implanted within right atrium, 
ventricular lead implanted into right ventricle, and another lead implanted via the coronary sinus, 
enabling pacing of left ventricle). (B) Atrial and ventricular electrodes are fixed to the appropriate 
chambers by passive or active fixation mechanisms via tines or screws, respectively. (C) Pacemaker 
electrical chip assembly composed of large-scale integration circuits containing multiple 
complementary metallic oxide semiconductor (CMOS) chips integrated with resistors and capacitors. 

Figure 1. Schematic endovascular permanent pacemaker (PPM) system consisting of battery and
programmable electrical chip assembly (together named ‘pacemaker’). (A) Special conductors
(‘leads/electrodes’) implanted via a major central vein (endovascular approach) connect these
pacemakers with the heart chambers (in this example, an atrial lead implanted within right atrium,
ventricular lead implanted into right ventricle, and another lead implanted via the coronary sinus,
enabling pacing of left ventricle). (B) Atrial and ventricular electrodes are fixed to the appropriate
chambers by passive or active fixation mechanisms via tines or screws, respectively. (C) Pacemaker
electrical chip assembly composed of large-scale integration circuits containing multiple complementary
metallic oxide semiconductor (CMOS) chips integrated with resistors and capacitors.
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insulate each strand from the other, despite being intertwined. The single two-component coil is 
surrounded by another outer insulation layer. A magnified scheme of the inner and outer insulation 
layers of a typical coaxial lead are shown (B). The conductors themselves are usually made of silver 
core alloy wires, consisting of a central core of relatively soft, low-resistance silver surrounded by a 
thick strong high-resistance MP-35N outer shell in the drawn filled tube design (C), or by few strands 
of high-resistance MP-35N shells in the drawn brazed strand design (D). 

Importantly, all of these devices are defined as endovascular devices, due to the uniform need 
to use long leads throughout the venous system. These leads are fixed to the appropriate chamber by 
small tines (passive leads), or via a screw into the heart muscle (Figure 1). The main caveat of all 
above devices results from having long metallic leads within the venous system for many years. This 
may cause various complications throughout the life-time of the device [12]. These include early 
complications during device endovascular implant procedure, such as perforation of the cardiac 
chamber by the fixation mechanism [13–16] or lung injury (‘pneumothorax’) [17–20] caused by 
puncture of the lungs while trying to access the central vein. Late complications include lead failure 
due to insulation defects or fracture (see insulation properties discussed above), early and late lead 
dislodgements (before or after six weeks post implant, respectively) necessitating re-operation for 
lead revision [20–25], and a potentially lethal systemic infection (‘endocarditis’) that is caused by 
bacteria adhering to these endovascular metal electrodes potentially spreading infectious emboli 
from the heart to all body organs [26–31]. Indeed, device endocarditis is one of the major 
complications associated with conventional endovascular CIEDs, and it is the main reasons for 
minimizing their use when not obligatory [12,30,31]. The development of leadless PPMs, as an option 
to circumvent most of the above endovascular-related complications, was a major breakthrough 
regarding CIED. The current functional leadless PPM and long-term arrhythmia monitoring devices, 
as well as recent innovations regarding novel defibrillation and leadless CRT devices, will be 
discussed in the following paragraphs. 

Figure 2. Pacemaker leads and their inner conductor design. Pacemaker leads conductors are typically
of a coaxial or coradial designs, surrounded by insulations layers (A,B). Coaxial design conductors have
an inner conductor that extends down the length of the lead to the tip with another outer coil conductor
that also runs down the lead to the ring electrode, the anode. Coradial conductors are composed of a
single coil conductor which extends down the length of the lead and consists of two parallel, alternating
conductor strands, one of which connects to the cathode and the other to the anode. Each conductor
strand is individually coated with an inner insulation layer, which serves to insulate each strand from
the other, despite being intertwined. The single two-component coil is surrounded by another outer
insulation layer. A magnified scheme of the inner and outer insulation layers of a typical coaxial lead
are shown (B). The conductors themselves are usually made of silver core alloy wires, consisting of
a central core of relatively soft, low-resistance silver surrounded by a thick strong high-resistance
MP-35N outer shell in the drawn filled tube design (C), or by few strands of high-resistance MP-35N
shells in the drawn brazed strand design (D).

Importantly, all of these devices are defined as endovascular devices, due to the uniform need to
use long leads throughout the venous system. These leads are fixed to the appropriate chamber by small
tines (passive leads), or via a screw into the heart muscle (Figure 1). The main caveat of all above devices
results from having long metallic leads within the venous system for many years. This may cause
various complications throughout the life-time of the device [12]. These include early complications
during device endovascular implant procedure, such as perforation of the cardiac chamber by the
fixation mechanism [13–16] or lung injury (‘pneumothorax’) [17–20] caused by puncture of the lungs
while trying to access the central vein. Late complications include lead failure due to insulation defects
or fracture (see insulation properties discussed above), early and late lead dislodgements (before
or after six weeks post implant, respectively) necessitating re-operation for lead revision [20–25],
and a potentially lethal systemic infection (‘endocarditis’) that is caused by bacteria adhering to
these endovascular metal electrodes potentially spreading infectious emboli from the heart to all
body organs [26–31]. Indeed, device endocarditis is one of the major complications associated with
conventional endovascular CIEDs, and it is the main reasons for minimizing their use when not
obligatory [12,30,31]. The development of leadless PPMs, as an option to circumvent most of the above
endovascular-related complications, was a major breakthrough regarding CIED. The current functional
leadless PPM and long-term arrhythmia monitoring devices, as well as recent innovations regarding
novel defibrillation and leadless CRT devices, will be discussed in the following paragraphs.
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3. Leadless PPM

The development of leadless PPM became reality due to advances in electrical engineering, material
design, and computer science. Most notably, advances in large-scale integration circuitry have resulted
in highly compact electric circuit design with low-power consumption, which enabled the construction
of implantable miniaturized leadless PPMs. This modern circuit design, already used in most modern
conventional PPM, is based on complementary metallic oxide semiconductor (CMOS) technology that
is extremely compact and operates at low energy cost (Figure 1, bottom). Leadless PPM consist of
a pulse generator that is attached to the device electrical circuits, a sensing/pacing micro-electrode,
which is an inherent part of the device and not a separate long conductor, as in conventional PPM, and a
fixation mechanism. All of these device contents are hermetically enclosed and contained within a
single miniaturized device (25–40 mm length, volume of 0.8–1 cm3 weighting ~2 g), which is implanted
as one piece directly into the appropriate cardiac chamber (Figure 3). Notably, the volume of these
devices is ~one-tenth of that of a conventional single chamber PPM resulting in ~93% reduction in the
amount of non-biological material within the body. Moreover, with time, these small leadless devices
may become encapsulated within the cardiac wall, so that no metal is exposed to the bloodstream.
Initially, two leadless PPM were on the market (Nanostim, Saint Jude Medical, Little Canada, MIN,
USA [32,33]; Micra, Medtronic, Minneapolis, MIN, USA [34,35]).
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Figure 3. Novel miniature leadless pacemaker device (left) implanted directly into the right ventricle
via a special delivery system (middle, right). There are no endovascular leads that are associated with
this device. In this example, Micra leadless PPM is shown (Reproduced with permission of Medtronic,
Inc.).

The leadless PPMs differ in size, fixation mechanism, communication, rate response mechanism,
and power source. Micra is smaller as compared with Nanostim (0.8 cm3 vs. 1 cm3). Micra’s fixation
is based on nitinol tines at its distal end, which are pushed into to myocardium, while Nanostim’s
fixation is based on an active helix that is screwed into the cardiac muscle. The communication
with remote programmer ‘telemetry’ is based on radiofrequency signals for Micra versus conductive
communication through skin electrodes for Nanostim [34]. Both of the devices have rate-response
features, i.e a specific algorithm and technology designed to detect patient movements and increase
the pacing rate accordingly, mimicking the physiological heart rate increase during exercise. Micra’s
rate-response is based on a three-axis accelerometer, allowing for rate-responsiveness to change in
magnitude during activities as climbing stairs (where there are mainly vertical and less horizontal
movement changes as compared with running), while Nanostim’s rate-response activity is based on
blood temperature sensor, sensing increased temperature during patient activity (Table 1). A lithium
silver oxide/carbon monofluoride battery powers Micra, and high-density lithium carbon monofluoride
battery powers Nanostim. These light-weight batteries provide high current densities that support
onboard pacing without voltage dips, which were previously reported with other batteries [36]. Both of
the devices use a special delivery system based on a tethering mechanism to maintain connection
between the delivery catheter and the device during positioning maneuvers until a final location is
established, where the device is deployed and disengaged from the delivery catheter.
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Table 1. Comparison between the two clinical leadless permanent pacemakers (PPM) systems.

Parameter Micra (Medtronic, Inc., USA) Nanostim (Saint Jude Medical, USA)

Volume 0.8 cm3 1 cm3

Size 25.9 mm × 6.7 mm 42 mm × 5.99 mm

Weight 1.75 g 2 g

Fixation Passive nitinol tines Active helix screw

Battery lithium silver oxide/carbon
monofluoride lithium carbon monofluoride

Estimated battery longevity 10 years 14.7 years

Rate response mechanism 3-D accelerometer Blood temperature sensing

Communication with remote
programmer-‘telemetry’ Radio-frequency signals Conductive communication through

skin electrodes

Apart of the technological advances that are described above, a crucial step in leadless PPM
development was achieved by reducing their energy requirements, which enabled the use of a
miniaturized power source. These lower energy requirements result from: (1) construction of efficient
low-power electrical circuits; (2) absence of long high-impedance leads, saving energy needed for
current conduction along the long conventional leads; (3) automatic capture management algorithm
(measuring pacing output threshold to achieve myocardial capture), processed on an hourly basis to
ensure minimal but safe pacing outputs; and, (4) optimized battery longevity by setting the nominal
pulse width duration to chronaxie (0.24 ms) [37]. The presence of high density batteries along with the
reduced energy requirements of these devices enable an estimated longevity of 10 and 14.7 years for
Micra and Nanostim, respectively; assuming 1.5 V/0.24 ms pacing output set to a lower pacing rate
of 60 beats per minute with a pacing impedance of 500 ohm and 100% pacing. The device longevity
difference between these devices results from Micra’s smaller battery and its radiofrequency-based
telemetry, requiring greater current drain as compared with Nanostim’s conductive telemetry [34].
Importantly, a prerequisite for development of miniaturized leadless PPM derives from the basic fact
that cardiac pacing as a whole requires a little amount of current. On the contrary, cardiac defibrillation
depends on high-voltage shocking coils, which prevents the development of miniaturized ICD.

The implantation of leadless PPMs was shown to be successful in the vast majority of cases (~95%)
and free from serious complications [32–36]. The one year results of the LEADLESS trial (utilizing
Nanostim) revealed that: (1) device performance, including pacing threshold, impedance, and sensing
remained stable, without over/under-sensing issues; (2) no complications were associated with the
device beyond the index implantation procedure; specifically there were no device embolization seen,
confirming an adequate and reliable fixating mechanism; (3) no premature battery depletions; and,
(4) adequate rate response noticed in those cases in which it was activated [38]. Similar results were
found for Micra [39].

Despite this early success of leadless PPM, the clinical use of Nanostim was halted by the end
of 2017 due to two safety issues: (1) premature battery depletion that was initially attributed to
“lithium clusters” bridging the cathode and anode, causing electrical short-circuiting. A high percent
of device malfunction attributed to early battery depletion was reported in a single center study [40].
Notably, few of the malfunctioning devices in that study were retrieved, revealing reduced electrolytes
within the lithium carbon monofluoride battery, which resulted in a high internal battery resistance.
This impacts the current available to power the device electronics and it results in a loss of device
functionality [40]; and, (2) detachment of the docking button, which is a 3.6 mm component connected
to the end of the device, designed to allow for device retrieval by connecting the device with the
retrieval catheter [41]. As of today, a new Nanostim version, overcoming the above issues, is under
final developmental stages and should soon be available.
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The main limitation of leadless PPM results from the fact that they could pace and sense the right
ventricle (RV) only without Atrio-Ventricular (AV) synchronous pacing, which is considered to be
beneficial in most patients. Thus, their use is restricted to symptomatic bradycardia patients without
the need for atrial sensing or pacing as patients with slow chronic atrial fibrillation, some patients with
alternating fast atrial fibrillation and sinus bradycardia where no significant atrial pacing is needed,
and elderly sedentary patients with multiple co-morbidities in whom ventricular pacing is sufficient.
A second limitation results from device encapsulation into the myocardial tissue, occurring as soon
as one year post-implantation, as described in a few autopsy studies [42,43]. This may result in
difficulty in retrieving these devices after that period, although successful device extractions have
still been reported even after one year post implantation [44]. This same limitation might be a
great advantage of these devices, as it may explain the fact that there are almost no infections that
are associated with these devices [45,46]. This is probably related to their miniaturized volume,
continuous movement with the heart (preventing bacteria from adhering), and their incorporation
within the cardiac wall, whereby there is no longer exposure of a metallic material to the bloodstream.
Due to their inherent leadless nature, circumventing most lead-related problems with almost absence
of device-associated systemic infections, the need for retrieval of these devices was shown to be ~80%
lower than conventional PPMs [39,47]. On the whole, there is no doubt that these leadless PPMs are
associated with less complications in general and, specifically, with less systemic infections.

Recently, effort was made to expand current leadless PPM use by developing a novel atrial sensing
algorithm for enabling AV synchronous pacing, which is the “physiological” optimal pacing method
for most patients suffering from low heart rates. This algorithm is based on a complex analysis of
Micra’s accelerometer signals, distinguishing intracardiac signals that are related to atrial contractions
from those related to ventricular movement [48]. This novel algorithm is based on complex analysis of
mechanical-based signals while using advanced filtering and rate-smoothing algorithms, by which the
timing of atrial contraction is decoded, translating this mechanical information to the assumed timing
of the electrical atrial P wave. Thereafter, the timing of ventricular pacing occurs after a programmable
duration period, mimicking the physiological electrical activity that is initiated by the sinus node within
the right atrium conducting to the ventricles via the conduction system with a physiological delay
within the atrioventricular node (AVN). This AVN delay is crucial in enabling enough time for complete
blood transfer from the atria into the ventricles before these start to contract (since, during ventricular
contraction, the atrioventricular valves close and do not allow further transfer of blood from the atria).
By this algorithm, leadless ventricular PPM could extend their function from ventricular pacing and
sensing only (VVI) system to a ventricular pacing with both an atrial and ventricular sensing (VDD)
system. Such a VDD system could sense atrial contraction and coordinate ventricular pacing within a
programmable AV delay period, in order to enable physiologic AV synchronous pacing. As of today,
few feasibility trials were conducted to test this algorithm, revealing 87% successful AV synchronous
pacing [48]. An updated version of a VDD Micra has just recently been released for clinical practice.

4. Modular Subcutaneous ICD and Leadless PPM

Basically, PPMs are used to treat slow heart rhythms, while fast potentially life-threatening
ventricular arrhythmias, which could result in sudden death if untreated, are terminated by electrical
shocks or anti-tachycardia pacing (ATP). Current implantable cardiac defibrillators (ICD) are utilized
for the rapid detection of fast ventricular arrhythmias and their termination by automatic DC shocks
or ATP. Conventional ICDs are composed of a high-energy battery, trans-venous leads containing
coils (capacitors), which are charged to high voltage, enabling the delivery of high-energy DC shocks
through the leads into the heart muscle when needed. Similar to PPMs, these devices are prone to all
endovascular-related complications. As noted earlier, cardiac defibrillation depends on high-voltage
shocking coils, which limits (for the time being) the development of miniaturized ICDs due to these
high-energy requirements that are beyond the capability of current miniaturized batteries. Nevertheless,
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a significant reduction of ICD volume occurred over the years that was mainly due to a reduction in its
capacitor size.

A subcutaneous ICD (S-ICD) was developed in order to circumvent endovascular-related
complications (EMBLEM-MRI; Boston Scientific, Marlborough, MA, USA; Figure 4). This device
uses long subcutaneous lead with a shocking coil that is placed above the heart area, which enables
a high-voltage DC shock to affect the heart rhythm (similar to an external defibrillator shock) [49].
However, these devices have no pacing capability, since both the device itself and its lead are
located subcutaneously, without contact with the cardiac muscle. Accordingly, a novel modular
device, which utilizes both S-ICD and a miniaturized leadless PPM (EMPOWER™ leadless cardiac
pacemaker), was developed to enable both cardiac pacing and defibrillation, via inter-device
conductive radio-frequency near-field communication (investigational device, Boston Scientific) [50,51].
The modular device can also terminate fast arrhythmia via ATP, given by the leadless PPM in
response to S-ICD ‘request’, due to its pacing capability. The intra-body radio-frequency inter-device
communication is based on low voltage 25 KHz alternating current pulses, sent in proprietary pattern
from the S-ICD shocking coil (functioning as a transmitting electrode) to the S-ICD battery (functioning
as a receiving electrode), which creates a communication vector between them using the body tissue as a
conductor. A dipole electrode within the leadless PPM, which is positioned in the right ventricle within
the path of the communication vector, can sense these signals [51,52]. Although such communication is
dependent on the distance between the transmitting and receiving electrodes, body tissue (‘conductor’)
impedance, and the orientation angle of the leadless PPM dipole electrode relative to the communication
vector, initial studies have shown such intra-body communication to be safe and effective [51,52].
Notably, subcutaneous ICD performance was found to be noninferior to transvenous ICD in a recent
large multicenter study [53].
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Figure 4. (A) Modular cardiac defibrillator and leadless pacemaker prototype. (B,C) Schematic
depiction (B) and fluoroscopy image (C) of this human modular system, composed of subcutaneous
ICD (EMBLEM MRI) with its long subcutaneous lead and shocking coil, and a miniaturized leadless
PPM (EMPOWER™) positioned within right ventricle at some orientation angle to the radio-frequency
communication vector (red–) (All photographs taken by Boston Scientific).

5. Multi-Component Leadless Cardiac Resynchronization Pacing System

The synchronization of right and left ventricular (LV) function was shown to improve cardiac
function, prevent hospitalizations, and prolong survival in a selected subpopulation of HF patients with
an electrical conduction disease, having asynchronized ventricular contraction. Conventional cardiac
resynchronization therapy (CRT) devices are based on multiple transvenous leads, implanted within
the right atrium, right ventricle, and a cardiac venous branch of the coronary sinus, which, due to its
proximity to the LV, enables LV pacing. These leads pace the ventricles simultaneously, resulting in a
synchronized improved cardiac contraction. Multi-component leadless PPM implanted directly within
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both RV and LV, enabling their synchronous pacing, are under development [54]. One of these first
attempts is the WISE-CRT system utilizing novel ultrasound-based leadless cardiac stimulation [55].
This system is based on a previously implanted conventional ICD devices with their endovascular
RV leads along with a new miniaturized receiver/pacing lead directly implanted into the LV, and a
subcutaneous pulse generator (comprised of a battery and a transmitter) implanted just above the
LV lead. Cardiac resynchronization is achieved by the subcutaneous pulse generator that detects
RV pacing signals and nearly simultaneously generates and transmits ultrasonic acoustic energy
signals to the receiver/pacing LV electrode that converts these signals to electrical pacing pulses [55].
A re-designed similar SELECT-LV system was developed due to serious implant procedure-related
complications, mainly cardiac perforations, which enabled safe implantation with adequate cardiac
resynchronization and improved cardiac function [56]. This system still has multiple caveats, including:
(1) the need for an endovascular ICD lead; (2) dependence on acoustic window, necessitating alignment
of the LV electrode and the subcutaneous transmitter that is not always feasible; (3) long-term use
of ultrasound energy which may have unintended adverse effects on myocardial tissue and might
be exposed to external interference; and, (4) potential emboli of the LV electrode resulting in stroke.
An international registry evaluating the efficacy and safety of the WISE-CRT pacing system was just
recently published [57]. The registry included 90 patients who either failed or could not undergo a
conventional trans-venous CRT implant, due to no venous access or anatomic constrains. The registry
revealed high implant success rate (94%), but with a very high six-month complication rate (24%),
including: two patients with acute cardiac perforation, two patients with acute lung injury, four deaths
of whom three were considered procedure-related, one stroke, three patients with infection, and four
patients with arterial bleeding [57].

Recently, a totally leadless CRT system was developed, which was based on three independent
leadless PPM’s implanted directly into the right atrium, right ventricle, and left ventricle [58]. Each of
those leadless PPM’s consists of a pacing and a communication nodule, which have been implemented
with a microcontroller and field-programmable gate array board. Each PPM electrode is used for
both transmitting and for receiving signals, acting as communication interface electrode. The device’s
synchronous activation is based on a novel ultra-low power Conduction Intra-Cardiac Communication
(CIC) method. This novel communication method allows for multidirectional communication between
the system independent devices without disturbing the biologic intra-cardiac electrical signals used
for physiologic cardiac pulse conduction, while using minimal energy consumption that is suitable
for long-term continuous action supported by a miniaturized device battery. Notably, conventional
radio-frequency communication (traditionally used for transient communication between implanted
deices and remote programmers-‘telemetry’) has high power absorption within the human body,
which results in high-energy consumption. Radio-frequency communication is not suitable for
continuous long-term intra-body device communication due to this high-energy consumption and
susceptibility to external electromagnetic interference.

The novel CIC method is based on several very-high-frequency small alternating current pulses
that were transmitted and received by the devices, whereby communication data are encoded in the time
shifts between pulses. The alternating current communication signal propagates almost at the speed of
light and allows for the transition of several bits of data per pulse. Using very high frequency signals
has major advantages, which are prerequisite for long-term intra-body communication: (1) low signal
absorption and attenuation within cardiac tissue, resulting in highly efficient energy communication;
(2) does not interfere with intrinsic cardiac electrical activity used to both conduct biological electrical
pulses throughout the cardiomyocytes and depolarize the cardiomyocytes’ membrane to enable cardiac
contraction (known as ‘excitation-contraction coupling’), thus preventing inappropriate pacing with
its potentially deleterious consequences; and, (3) low risk for external electromagnetic interference.
A communication frequency of 1 MHz was found to be optimal, causing no cardiac intrinsic electrical
interference and achieving a minimal (0.3 µW) power requirement. Notably, each device pacing action
is triggered by a CIC message sent from another device containing sender and receiver address (which
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cardiac device chamber sends/receives data). As the CIC message travels through the heart, the received
signal undergoes some attenuation and it is also affected by noise. Accordingly, the communication
nodule within each device amplifies and filters the incoming signal in order to obtain the reconstructed
messages, which can then trigger a pacing stimulus. The above experimental system was shown to
successfully resynchronize cardiac function in porcine hearts and only recently tried in humans [58–60].
Interestingly, recent successful implantation of a leadless CRT system [61], as well as a combined
implantation of leadless CRT system along with S-ICD system [62], were recently reported in two
patients, revealing the feasibility of a combined implant of these two separate systems without electrical
interference [62].

Importantly, one should be aware of the embolic risk that is associated with any metal device
implanted within the LV or left atrium (LA) (see below, HF monitoring devices). This may result from
the detachment of the LV/LA device itself or from thrombus formation on these metal-based devices,
which, due to the vigorous cardiac contractions and high pressure blood stream, may embolize into
the aorta, causing stroke or systemic embolism. A continuous lifetime anticoagulation treatment is
necessary to prevent a thrombus formation on these LV devices, although such treatment may lead to
bleeding complications and, at times, needs to be stopped (before surgery or other invasive procedures).
Trying to prevent the embolic detachment of LV device itself is a challenge, since it requires a firm
screw or other fixation mechanism to firmly attach to the LV wall. However, this firm attachment
may cause too much pressure on the LV wall, resulting in cardiac perforation, which is the second
complication that is associated with these devices. Indeed, the main challenge at present is to find
the appropriate fixation mechanism to ensure enough strength to prevent dislodgment, but without
the risk of cardiac wall perforation. Notably, device emboli to lower extremities and a cerebral stoke
occurred among 2/35 patients that were implanted with the SELECT-LV system [56]. Additionally,
in a British registry of 68 HF patients who failed conventional CRT devices and were implanted with
endocardial LV leads, 6% suffered a stroke over a 20 month follow-up period [63].

Noteworthy, a few novel ‘physiologic’ pacing paradigms were recently developed, as an alternative
to conventional CRT pacing. These include His bundle and left bundle branch (LBBB) pacing, in which
a conventional PPM device is connected to a special lead positioned in the vicinity of the His bundle or
LBBB one, respectively [64–72]. This is in contrast with the classic pacing paradigm, in which the pacing
lead is positioned close to the RV apex (Figure 5). The idea behind both of these novel pacing modalities
is the ability to capture and utilize the physiologic conduction system. This system is composed of
specialized bundles (His, left, and right bundle branches, and the distal spreading Purkinje fibers)
that are capable of fast and reliable electrical pulse delivery to all cardiomyocytes, underlying normal
synchronous electrical pulse propagation within the heart (Figure 5). By pacing the physiological
conductive system, one could potentially achieve an ideal synchronization of both RV and LV. This new
pacing paradigm is in contrast to the classic pacing paradigm, where RV pacing lead is usually located
at the RV apex, which is outside the physiological conduction system. Accordingly, classic RV lead
pacing results in an asynchronous contraction of the RV and LV, which necessitates the use of another
LV pacing electrode, whereby the activation of both simultaneously may restore the synchronization
of RV and LV (the concept underlying CRT). However, the use of the novel His and LBBB pacing
paradigms, utilizing the physiological conduction system to achieve perfect synchronization of all
cardiomyocytes within both RV and LV, obviate the need for multiple leads within both RV and LV for
synchronization. Initial experience with both of these pacing systems reveal promising results [66–72].
Nevertheless, to the best of our knowledge, miniaturized devices that are specifically designed for His
or LBBB pacing are not currently available.
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Figure 5. Novel ‘physiologic’ His pacing. (A) The physiologic conduction system, enabling
synchronized propagation of the electrical impulse generated by the physiologic “pacemaker” called
the sinoatrial node. This conduction system is composed of the His bundle, right and left bundle
branches which are located along either side of the inter-ventricular septum, spreading into millions of
tiny conductive Purkinje fibers, enabling a synchronized impulse propagation throughout the cardiac
cells to result in a synchronized and efficient cardiac mechanical contraction. (B) Comparing the distal
location of a conventional right ventricle (RV) lead (—) to a novel His pacing lead (__). Pacing via
conventional RV lead which is positioned close to RV apex (outside the conduction system) causes a
desynchronized conduction, while His pacing utilizes the physiological conduction system to ideally
synchronize all cardiac cells.

6. Implantable Long-Term Electrocardiographic Monitoring Device

The development of a miniaturized implantable loop recorder (ILR) for long-term monitoring
of arrhythmias made a revolution in the evaluation of patients suffering from recurrent fainting
(‘syncope’) episodes [73,74], strokes (related to atrial flutter and fibrillation) [75–79] as well as risk
stratification of various arrhythmogenic syndromes [80–82]. For years, the clinical evaluation of these
patients included multiple 24 h ECG recordings (‘Holter’) to search for possible arrhythmias that might
underlie syncope or stroke. The finding of specific arrhythmias would mandate a specific treatment
to prevent further episodes. The 24 h Holters had a low yield for detecting arrhythmias, which are
usually infrequent and of paroxysmal nature. The development of ILR enabled a continuous long-term
(up to three years) recording and automatic identification of arrhythmias, which results in a dramatic
increase in its diagnostic yield. ILRs are composed of a miniaturized battery and sensor electrode,
which are implanted within minutes subcutaneously in the chest above the heart, enabling long-term
high quality cardiac rhythm monitoring [83,84]. Once an arrhythmia is detected, it is recorded by
the ILR, which then sends an automatic alarm to the patient’s clinic via internet connection, in order
to facilitate diagnosis and the selection of additional appropriate therapy. After completing their
mission (arrhythmia detection) or once their battery life is over, the ILR could be explanted via a simple
procedure with a tiny remnant scar. As of today, there are thousands of syncope and stroke patients
who owe their accurate and, at times, life-saving diagnosis to these ILRs, after multiple previous 24 h
Holters failed to diagnose their arrhythmias [73,74,78,85].

7. Implantable Devices to Monitor Heart Failure (HF) Hemodynamics

HF is a chronic syndrome that is caused by inability of the heart to pump sufficient blood to the body
tissues along with elevated cardiac filling pressures. These translate to fluid overload in the lungs and
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tissue hypoperfusion, which will eventually lead to pulmonary congestion and end-organ dysfunction,
correspondingly. The clinical consequences of these changes include symptoms, such as shortness of
breath due to pulmonary congestion, peripheral edema due to inadequate pumping of blood from
the extremities, general weakness, attenuated exercise tolerance, and multiorgan dysfunction due
to inadequate blood supply. Although some patients remain stable for years, most will suffer from
exacerbations that may lead to hospitalizations, disability, and eventually death. The timely detection
of exacerbations before overt clinical manifestations ensue will trigger identification of reversible
causes and appropriate treatment to prevent hospitalization and further deterioration. To this end,
several intracardiac microdevices have been developed and put into clinical use. The leading concept
behind these intra-cardiac devices for HF monitoring is that cardiac filling pressure increases days to
weeks before overt clinical exacerbation occurs [86,87]. Several technologies were developed over the
past decade in order to accurately measure pressure at different sites along the cardiac circulation and
transmit this information to a care facility, where care-givers can appropriately react by changing the
treatment dose and strategy [87,88].

The first of these devices that was clinically tested was the Chronicle implantable continuous
hemodynamic monitor (Medtronic, Inc., Minneapolis, MIN, USA). This device resembles a PPM, with a
programmable component that processes and stores information that is similar in appearance to the
pulse generator of a conventional PPM, and a transvenous lead that has a sensor incorporated near its
tip, which enables continuous intra-cardiac pressure measurements. The lead tip was inserted into the
RV near the outflow tract and collected RV systolic and diastolic pressures. The leading clinical trial
(COMPASS-HF), randomized HF patients to HF treatment with and without hemodynamic monitoring,
revealing no significant change in HF-related adverse events apart from delaying the time to first
HF-related hospitalization [89].

A significant success with hemodynamic monitoring in HF was first demonstrated while using
the CardioMEMS pulmonary artery (PA) pressure monitoring system (Abbott, Sylmar, CA, USA).
This novel wireless device with a battery free technology is powered and interrogated via an external
antenna, using electromagnetic coupling. The device is implanted into a branch of the PA where
pressure to its sensor causes the deflection of the pressure-sensitive surface, causing a shift in the
resonant frequency. The device external antenna is usually embedded within a pillow on which
the patient lies, so pressure transmissions occur while the patient is resting. Clinical utilization was
tested in the CHAMPION trial that randomized 550 HF patients and demonstrated a significant
reduction in the rate of HF hospitalizations [90]. This pivotal trial showed, for the first time, the ability
of an implanted electronic device to transmit accurate real-time hemodynamic changes occurring
within the hearts of HF patients, heralding symptomatic HF exacerbations. Given these transmitted
subclinical changes, a physician can instruct the patients to change their medications in order to
counteract these hemodynamic changes, for example, by increasing diuretic medications to facilitate
fluid removal and prevent full blown clinical HF exacerbation, which would otherwise necessitate
prolonged hospitalization. Based on this trial as well its follow up trial, the U.S. Food and Drug
Administration approved the CardioMEMS HF System for use in patients with advanced HF, who had
at least one HF hospitalization in the previous year before implantation [90–92].

While pulmonary pressure monitoring was found to be successful, the direct measurement of left
atrial pressure (corresponding to LV filling pressure) is thought to have further clinical advantages for
HF monitoring. Left atrial pressure (LAP) is less influenced by pulmonary disease and pulmonary
vascular remodeling, and it may be a better marker of response to HF medications. Furthermore,
animal studies demonstrated a strong correlation between increases in LAP and pulmonary congestion.
The utility of direct LAP monitoring was first evaluated using the HeartPOD system (Abbott, formerly
St. Jude Medical/Savacor, Inc., Saint Paul, MN, USA). This system includes an implantable sensor
lead coupled to a subcutaneous antenna coil, a patient advisory module, and remote clinician access
via secure computer-based data management. The tip of the sensor system lead was transvenously
implanted into the left atrium via the atrial septum. The implant was powered and interrogated
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through the skin by wireless transmissions from the patient advisory module. The LAPTOP-HF trial
was intended to evaluate the utility of this system, but it was stopped early due to a perceived excess
of implant-related complications [93].

Newer devices to measure and transmit LAP with promising initial results include the V-LAP
system (Vectorious Medical Technologies, Tel Aviv, Israel) [94]. This is a digital miniature (<18 mm
length, 3.9 mm diameter) wireless and leadless sensor (Figure 6A), which is implanted permanently in
the interatrial septum via a minimally invasive procedure. The device incorporates an advanced micro
application-specific integrated circuit (ASIC) technology, allowing for onboard drift compensation.
The system also includes an easily portable external wearable device (Figure 6B), which remotely
powers and interrogates the implant via radio frequency bi-directional communication upon activation,
and then transmits the collected LAP data, including a high-resolution LAP waveform (Figure 6C),
to a secure cloud-based database. The data are accessible for clinician review via a designated web
application. The first in-man VECTOR-HF trial is currently recruiting patients.
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Figure 6. V-LAP heart failure (HF) monitoring system composed of a miniature cardiac sensor (A),
and a portable external wearable device (B). The system enables a continuous high-resolution left atrial
pressure (LAP) waveform recording (C).

Notably, among HF patients implanted by an ICD or CRT devices, one could use these intracardiac
devices to promote continuous monitoring of various hemodynamic parameters to facilitate diagnosis
of HF exacerbations [95–103]. Indeed, various algorithms derives from these intracardiac devices were
shown to promote subclinical HF exacerbations [100–103].

8. Conclusions

Major technological advances, including large-scale integration circuitry using complementary
metallic oxide semiconductor (CMOS)-based electrical chips or advanced microelectronic chips (ASIC),
which result in highly compact electric circuits with low-power consumption, underlie the development
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of various implantable miniaturized devices used for pacing and real-time monitoring of cardiac patients.
Thereafter, use of novel communication technologies enable fast and reliable intracardiac inter-device
communication with minimal interference from cardiac motion and external signals. These miniaturized
leadless devices, which are directly implanted into the heart, overcome most endovascular-related
complications that are associated with conventional pacing devices. Although many of these devices
are still not micro-scale, current significant size reduction, along with novel medical engineering
approaches, suggest real micro-scale devices are forthcoming.

As of today, single chamber (usually RV) leadless pacing systems are widely used and multiple
leadless pacing systems, such as the leadless CRT, are under clinical trials. Initial studies on leadless
CRT pacing systems reveal good implant efficacy, but with high complication rates. Should these
multiple leadless device systems prove to be safe and feasible, this would enable the wide use of
leadless pacing systems for all cardiac pacing and resynchronization purposes. Last and not least,
new technology is needed in order to develop miniaturized high-energy power sources to enable the
development of miniaturized ICDs. Until then, leadless pacing systems would need to interact with
endovascular conventional ICD or subcutaneous ICD.

Regarding real-time hemodynamic monitoring of HF patients, various implanted devices were
developed in order to measure cardiac pressure and utilize it for clinical practice (Table 2). The only
one currently available for clinical practice is the CardioMEMS, which captures and transmits PA
pressure. Technical solutions have evolved from pacemaker-like to miniature wirelessly charged
devices. Measurement sites evolved from the RV to the PA and eventually the LA, which results in
direct measurements of LV filling pressures. With the new reality enforced by COVID-19 pandemic,
the importance of these sensor-type devices has been further enforced. The advantage of reporting
devices is highlighted, as many HF patients are self-segregated or refrain from seeking medical advice.
Future development of new devices detecting and transmitting other signals besides pressure, such as
saturation, blood viscosity, and temperature, will be evaluated for their usefulness in monitoring HF
patients’ condition. To this end, the V-LAP platform can be utilized, since it incorporates the needed
technological framework for transmitting multiple signals. With the advancements in technology and
miniaturization, micro-devices will be further utilized to assess and treat various aspects of cardiac
function in disease state and disease prevention.

Table 2. Comparison between implantable heart failure monitoring devices.

Parameter Chronicle CardioMEMS HeartPOD V-LAP

Site of pressure
readout Right ventricle Pulmonary artery Left atrium Left atrium

Structure

Subcutaneous
device with

intravenous lead in
right ventricle

Implant and
external antenna

subcutaneous
antenna coil with

intravenous
trans-septal lead

Implanted within
interatrial septum

Energy source Subcutaneous
battery External External External

Clinical study COMPASS-HF [33] CHAMPION [34] LAPTOP-HF [35] Ongoing

Key findings Failed in primary
outcome

Reduced HF
hospitalizations

Stopped early for
implant-related
complications

Pending

Current status Not available for
clinical use FDA approved Not available for

clinical use On trial
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