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Abstract: In this review, we discuss findings from studies carried out over the past 20+ 
years that document the occurrence of asymmetric introgressive hybridization in a plant 
clade. In particular, analyses of natural and experimental hybridization have demonstrated 
the consistent introgression of genes from Iris fulva into both Iris brevicaulis and Iris 
hexagona. Furthermore, our analyses have detected certain prezygotic and postzygotic 
barriers to reproduction that appear to contribute to the asymmetric introgression. Finally, 
our studies have determined that a portion of the genes transferred apparently affects 
adaptive traits. 
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1. Introduction 

The network of interactions between flowering plants and their pollinators can be complex in terms 
of the number of pollinator classes visiting a given plant species. An added, and evolutionarily 
important, consequence can occur when there is spatial overlap between closely related plant taxa. 
Specifically, these co-occurrences may lead to the process of introgressive hybridization (or 
introgression), a process by which genes are transferred through the formation of an initial F1 hybrid 
that subsequently crosses with individuals of one or both of the parental species [1]. Some of the 
possible outcomes from introgression include: 1) the transfer of adaptive traits between the hybridizing 
lineages, 2) the formation of hybrid taxa (e.g., subspecies or species) and/or 3) the loss of one of the 
parental forms through genetic assimilation by the other, e.g., [2-8]. 

A pattern often seen in instances of introgression in natural populations is the asymmetric transfer 
of genetic material, see [6,9,10]. Thus, one of the hybridizing lineages acts mainly as a donor and the 
other taxon as a recipient of the genetic material in the transfer event. Some of the causal factors that 
have been suggested for asymmetric introgression include divergence among components of mating 
systems and ecological selection, e.g., [11,12]. 

Though numerous studies have detected asymmetric introgressive hybridization in nature, there are 
few examples in which multiple components of reproductive isolation (that may contribute to the 
pattern of asymmetry) have also been determined. In this paper, we review an example of consistent 
asymmetric introgression among species belonging to the Louisiana Iris plant assemblage. In 
particular, we will discuss genetic analyses of natural and experimental hybrid populations formed 
from crosses between Iris fulva, Iris brevicaulis and Iris hexagona that 1) detected the occurrence of 
asymmetric introgression, 2) defined some of the reproductive isolating barriers contributing to the 
asymmetric introgression and 3) revealed the genetic architecture (in terms of the distribution of 
segregation distortion) associated with this asymmetric exchange. 

2. Louisiana Irises and asymmetric introgression in natural hybrid zones 

Natural hybrid zones between the various species of Louisiana Irises have been documented since 
the first half of the 20th Century, e.g., [13-19]. A common observation in many of these studies has 
been asymmetry in introgression, with the transfer of more genic material from I. fulva into either  
I. brevicaulis or I. hexagona, than this species has received from either of the latter taxa. Figure 1 
illustrates this class of observation for an I. fulva x I. brevicaulis hybrid population in southern 
Louisiana. The genetic markers used to define the various genotypic classes derived from both the 
chloroplast and nuclear genomes of these plants. Such combinations of cytoplasmic and nuclear data 
not only allow a cumulative genetic score to be obtained, but also provide estimates of cytonuclear 
incompatibilities, and are a standard measure for estimating genotypic diversity in natural hybrid zones 
(e.g., 5-7). 

A significant proportion of the hybrid seeds and adult plants fell within the introgressed  
I. brevicaulis category (Figure 1). This indicates that gene flow (i.e., introgression) occurred from  
I. fulva genomes into those of I. brevicaulis. In comparison, the reverse flow occurred much less 
frequently, reflected by the significantly fewer hybrids categorized as introgressed I. fulva [20]. An 
additional indication of the strong directionality was detected when single loci were analyzed. Table 1 
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presents one such nuclear locus. In particular, only 2.5% of the “I. fulva-like” plants and seeds were 
introgressed with I. brevicaulis alleles. In contrast, 72% of the I. brevicaulis-like plants possessed 
alleles introgressed from I. fulva. This highly significant difference in frequency of introgression [20] 
reflects well the extreme asymmetry in the pattern of gene flow between these two species. 

Figure 1. The distribution of genetic markers among adult plants and seeds collected from 
an I. fulva x I. brevicaulis natural hybrid population. The genotypic score was based upon 
nuclear and chloroplast DNA markers. Individuals with scores of “0” or “9” indicated I. 
fulva or I. brevicaulis individuals, respectively. Those adult plants or seeds with scores 
from 1-8 were hybrids [20]. 

 
 

Table 1. The frequency of homozygous I. brevicaulis (“bb”), heterozygous (“bf”) and 
homozygous I. fulva (“ff”) genotypes among adult plants and seeds from an I. fulva x  
I. brevicaulis natural hybrid zone [20]. 

 Adult Plant Genotypes Seed Genotypes 
  bb bf ff bb bf ff 

Iris brevicaulis-like 17 20 0 29 89 9 
Iris fulva-like 0 0 37 0 2 42 

The pattern of I. fulva >> I. brevicaulis introgressive hybridization has been substantiated by 
studies of additional, natural hybrid zones. Arnold [21] and Johnston et al. [19] thus found a majority 
of hybrids in two separate hybrid zones to consist of I. brevicaulis genomes introgressed with I. fulva 
alleles. Importantly, Arnold [21] also detected a small number of hybrids in one hybrid zone that 
possessed I. hexagona genomes introgressed with I. fulva alleles as well. These latter data suggested 
that introgression between I. fulva and I. hexagona might have demonstrated a pattern of biased 
introgression from the former into the latter. In the following sections, we extend our discussion to 
studies of experimental I. fulva x I. brevicaulis and I. fulva x I. hexagona hybrid zones. Like the 
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analyses discussed above, the findings from the experimental populations allow inferences concerning 
the directionality and extent of asymmetric introgression. 

3. Louisiana Irises and asymmetric introgression: experimental hybrid populations 

3.1. I. fulva x I. brevicaulis 

It is now well-recognized that hybridization can give rise to not only less fit genotypes, but also 
hybrid genotypes that, in certain environments, demonstrate elevated fitness relative to their parents 
(e.g., see [6-8,22]). In regard to the present discussion, such differential selection on hybrid genotypes 
could contribute to asymmetric introgression. Figure 2 illustrates the results of a test for differential 
selection among I. fulva x I. brevicaulis F2 genotypes at a single locus. The pattern of expected and 
observed frequencies of the three possible genotypes (homozygous for the I. fulva or I. brevicaulis 
alleles or heterozygous for these alleles) did indeed support a role for differential selection in the 
production of asymmetric introgression in this species pair. Specifically, the homozygous I. 
brevicaulis genotype was absent. Thus, there were significantly less than expected I. brevicaulis alleles 
in the F2 hybrids, and a significantly greater than expected frequency of I. fulva alleles [23]. As with 
the findings for the single locus sampled in the natural hybrid population (Table 1), the presence of 
significantly more I. fulva than I. brevicaulis alleles in the F2 hybrid progeny (Figure 2), is consistent 
with a greater level of introgression from the former species into the latter. 

Figure 2. The observed and expected genotypic distributions at the L180 RAPD locus in I. 
fulva x I. brevicaulis F2 progeny derived from crosses with either I. fulva (“F2f”) or I. 
brevicaulis (“F2b”) as the female parent [23]. 

 

As with the analyses of allele frequencies at individual loci (Table 1 and Figure 2), whole-genome 
scans have likewise detected asymmetric transfer of genetic material between I. fulva and I. 
brevicaulis. Figure 3 illustrates the findings from a linkage map analysis using hybrid individuals from 
two first-generation backcross populations; one population was constructed by crossing an F1 plant 
with I. fulva and the other through crosses between an F1 individual and I. brevicaulis. Approximately 
1/3 of the genetic markers occurred at either significantly higher or lower frequencies than expected 
(i.e., demonstrated “transmission ratio distortion”) in each of the reciprocal backcross maps (Figure 3; 
[24]). The distortion in transmission was biased, with I. fulva alleles largely overrepresented at the 
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expense of I. brevicaulis alleles. Specifically, 18 separate regions demonstrated significant 
introgression of I. fulva alleles into the I. brevicaulis genetic background (i.e., in the backcross hybrids 
towards I. brevicaulis). Furthermore, 12 regions in the backcross population towards I. fulva also 
showed elevated frequencies of I. fulva alleles. In contrast, I. brevicaulis alleles were significantly 
overrepresented in only five locations in each of the backcross populations (Figure 3). 

Figure 3. The observed frequencies of introgressed alleles from either I. fulva (red lines) 
or I. brevicaulis (blue lines) into first generation backcross progeny formed from crosses 
between these two species. The X-axis indicates the genetic distances (in centimorgans) 
along each of the 21 linkage groups in the composite map. The Y-axis indicates the 
transmission ratio of either the I. fulva alleles or I. brevicaulis alleles introgressed into the 
backcrosses toward the alternate species. The expected frequency is 0.50 and is indicated 
by the dotted line. Data points above and below the solid lines indicate significant 
deviations from 0.50 (α = 0.05). Frequencies > 0.50 indicate an overrepresentation of 
either the I. fulva (red line) or I. brevicaulis (blue line) alleles in the genetic background of 
the alternate species. Frequencies < 0.50 indicate an underrepresentation of these same 
categories [24]. 

 



Genes 2010, 1                            
 

 

14 

This pattern of transmission ratio distortion caused Tang et al. [24] to conclude the following: 
“Whatever the mechanism(s) involved, given that these two species hybridize in nature, this 
asymmetry in gene flow could have important implications for introgressive hybridization. Namely, 
we would expect that for a majority of the regions revealing transmission ratio distortion, I. fulva 
alleles might be favored to introgress into a predominately I. brevicaulis species-background, while the 
introgression of I. brevicaulis alleles into I. fulva would be retarded.” 

3.2. I. fulva x I. hexagona 

Natural and experimental hybridization between I. fulva and I. brevicaulis consistently produces 
asymmetric introgression. One hypothesis derived from this observation is that asymmetric 
introgressive hybridization is only typical for reproductive interactions between these two species, and 
not other species of Louisiana Irises. It is possible to test this hypothesis using a series of genotyping 
assays carried out in an experimentally constructed iris population in southern Louisiana (Figure 4). 

Figure 4. Schematic illustration of the distribution of 1) naturally occurring I. fulva plants 
(red ovals), 2) introduced I. hexagona (blue rectangle) and 3) I. fulva x I. hexagona F1 
plants (purple squares) [27,28]. 

 

The experimental population lies within a region typified by numerous natural hybrid zones 
between I. fulva, I. brevicaulis and I. hexagona, e.g., [16,25,26]. Originally, this population consisted 
only of naturally occurring I. fulva individuals. In 1989, we introduced 200 I. hexagona plants in a 
centralized block (Figure 4). Over three consecutive years, we collected and genotyped >5000 seeds 
from I. fulva and I. hexagona fruits formed by pollen transfer by natural pollinators. F1 hybrid seed 
formation was very infrequent in the fruits of both species. However, there was a significant bias in the 
direction of hybrid formation (Figure 5) with F1 seeds being formed at 50x the frequency in I. 
hexagona fruits (i.e., 0.74%) relative to I. fulva fruits (i.e., 0.03%; [27,28]). 
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The asymmetry in the frequency of F1 formation between I. fulva and I. hexagona – like hybrid 
formation in general being limited more in I. fulva fruits – is consistent with directional introgression 
from the former into the latter species. Yet, it should be kept in mind that, though F1 hybrid formation 
is requisite for introgression, this hybrid stage does not reflect an introgressed generation. The 
introduction of experimentally formed F1 hybrids into this same population did, however, allow a test 
for asymmetric introgression. In particular, we collected and genotyped seeds from fruits produced by 
I. fulva, I. hexagona and F1 plants (spatially near either I. fulva or I. hexagona plants; [28]). The 
determination of the frequencies of backcross hybrids toward the two species allowed another test for 
asymmetric introgression. 

Figure 5 Percentage of F1 (0.03% and 0.74% in I. fulva and I. hexagona fruits, 
respectively) and first generation backcross seeds (Bf and Bh) formed on plants in an 
experimental population by natural pollinations [27,28]. The Bf and Bh hybrid seeds reflect 
the first generation of introgression into I. fulva and I. hexagona, respectively. 

 

The placement of F1 plants near either I. fulva or I. hexagona individuals allowed an estimate of 
backcross formation in a spatial context (Figure 5). The frequencies of backcross seeds toward I. fulva 
were 1.7% and 0% in I. fulva and F1 fruits, respectively when F1 plants were spatially adjacent to I. 
fulva plants. Additionally, 5% of the seeds in F1 fruits from hybrid plants near I. hexagona possessed I. 
fulva backcross genotypes. In contrast, the frequencies of backcross hybrids toward I. hexagona were 
significantly greater, regardless of spatial arrangement of F1 plants. Thus, the frequency of backcross 
hybrids in F1 fruits from plants near either I. fulva or I. hexagona was 10% and 95%, respectively 
(Figure 5). Finally, first generation backcross seeds were formed at a frequency of ca. 7% in I. 
hexagona fruits. Just as with introgression between I. fulva and I. brevicaulis, strong asymmetry in the 
formation of both F1 and backcross hybrid progeny between I. fulva and I. hexagona was  
detected [28]. 

4. The causes of asymmetric introgression in Louisiana Irises: Prezygotic reproductive isolation 

The Louisiana iris species complex has been recognized for decades as a paradigm for examining 
processes associated with natural hybridization and speciation [2,5-7]. Indeed, this complex is now 
recognized as a model system for describing a number of the possible outcomes of reticulate evolution 
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[7], and the causal factors affecting the outcomes. In regard to the present discussion, it is possible to 
ask if prezygotic and/or postzygotic reproductive isolating barriers might contribute to the observed 
asymmetric introgressive hybridization between I. fulva and its two congeners. 

Figure 6 Percent F1 hybrid seeds produced by various mixtures of I. fulva and I. hexagona 
pollen. The solid line illustrates the expected percentage of hybrid seeds assuming random 
fertilization. All the observed F1 percentages were significantly less than expected (except 
for the 0% and 100% treatments, in which there were no mixtures of conspecific and 
heterospecific pollen). The blue and red rectangles indicate the percentage of 
heterospecific pollen necessary to increase significantly F1 hybrid formation above the 
value of “0” in I. hexagona and I. fulva fruits, respectively. Note the much greater 
frequency of F1s formed in I. hexagona fruits relative to I. fulva fruits [29]. 

 

One of the best-documented, prezygotic, barriers between these three species is gamete 
competition. Gamete competition is defined by the observation that when mixtures of conspecific and 
heterospecific sperm or pollen are made available for the fertilization of eggs, the conspecific gametes 
father more offspring than expected. An example of gamete competition between I. fulva and I. 
hexagona is illustrated in Figure 6. Carney et al. [29] detected a significant reduction in the frequency 
of hybrid seed formation for each of their pollination treatments involving mixtures of conspecific and 
heterospecific pollen (Figure 6). The pattern of hybrid seed formation indicated that post-pollination 
(but pre-fertilization) phenomena were limiting the formation of F1 hybrid seeds. As the proportion of 
heterospecific pollen in the mixtures increased, so did the proportion of hybrid seeds formed, albeit at 
a significantly lower frequency than expected. However, there was strong asymmetry in the degree of 
reproductive isolation, with F1 formation being much greater in the direction of I. hexagona than 
towards I. fulva. As mentioned previously, the F1 generation is not “introgressed”. However, if gamete 
competition continues to affect the formation of later generation hybrids, it could act as a causal factor 
in the observed asymmetric introgressive hybridization in natural hybrid zones between I. fulva and  
I. hexagona. 

In addition to the findings of Carney et al. [29], Emms et al. [30] also detected asymmetric effects 
from gamete competition between I. fulva and I. brevicaulis. Pollen tube growth measurements led to 



Genes 2010, 1                            
 

 

17 

the prediction that relatively more conspecific progeny would be produced by I. fulva than  
I. brevicaulis flowers, when both pollen types were present on the same stigma. This prediction was 
supported with results from a seed siring experiment. The application of 50% : 50% mixtures of  
I. fulva and I. brevicaulis pollen to the stigmas of both species resulted in 24.1% and 38.6% F1 hybrid 
seeds in I. fulva and I. brevicaulis fruits, respectively. These frequencies are significantly different 
from one another and from the expected 50% : 50% ratio [30], once again supportive of gamete 
competition playing a role in asymmetric introgression between these two iris species. 

5. The causes of asymmetric introgression in Louisiana Irises: Postzygotic reproductive isolation 

5.1. Selection at early life history stages 

As discussed above, introgression occurs largely from I. fulva into I. brevicaulis and I. hexagona in 
both natural and experimental hybrid populations. Some of these results also allow a determination of 
possible reproductive barriers that contribute to this asymmetry. Gamete (or pollen) competition was 
presented as one of the prezygotic barriers underlying this asymmetry. There is also evidence that 
postzygotic barriers contribute to the directionality of introgression. In particular, viability selection 
disfavors introgressed genotypes towards I. fulva, but favors those towards I. brevicaulis. 

Figures 1 and 2 and Table 1 illustrate the effects of natural selection, at the seedling establishment 
stage, against certain hybrid genotypes in both natural and experimental hybrid populations. For 
example, there are numerous I. fulva-like introgressed genotypes present in the seeds sampled from the 
natural hybrid zone that are not present in the adult iris plants (e.g. those with genotypic scores of 2-4; 
Figure 1). In contrast, there are adult plants in all of the I. brevicaulis-like introgressed categories (i.e., 
5-8). This indicates viability selection against introgressed I. fulva genotypes, but likely for certain 
introgressed I. brevicaulis genotypes [6,20]. Similarly, Figure 2 reflects selection that disfavors 
hybrids containing a higher frequency of introgressed I. brevicaulis alleles, but favors hybrids with a 
higher proportion of I. fulva alleles [23]. Finally, this lack of penetration of I. brevicaulis alleles can 
also be seen in the data presented in Table 1. In this instance, data from a single locus (as with those 
given in Figure 2) indicates that I. fulva alleles are incorporated into adult I. brevicaulis-like plants, but 
I. brevicaulis alleles are almost completely excluded from plants that are I. fulva-like [20]. 

5.2. Selection at later life history stages 

From the above, we see that there is evidence consistent with selection-generated asymmetry in 
introgression due to differential viability at early life history stages in Louisiana Irises. Similarly, a 
number of analyses have detected asymmetry in survivorship at latter stages of plant development. For 
example, the segregation distortion illustrated by Figure 3 is due to differential survivorship of adult 
plants maintained in the greenhouse. Thus, even under what is assumed to be highly favorable 
environmental conditions (i.e., the greenhouse), asymmetric introgression from I. fulva into  
I. brevicaulis was detected [24]. 

The pattern of survivorship under natural conditions has also been studied by transplanting the same 
genotypes maintained in the greenhouse [24] into field conditions in southern Louisiana. Table 2 
contains the observed survivorship frequencies for I. fulva, I. brevicaulis and introgressed genotypes of 
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both species subsequent to a severe (water depth of several feet) and extended (ca. four month) natural 
flooding event [31]. We detected the following, hierarchical, survivorship values: I. fulva > 
Introgressed I. fulva > Introgressed I. brevicaulis > I. brevicaulis. This pattern of survivorship is 
consistent with previous observations suggesting greater tolerance to root/rhizome submersion by  
I. fulva relative to I. brevicaulis [18].  

Table 2. Survivorship frequencies for I. brevicaulis, I. fulva and introgressed genotypes of 
these two species. Survivorship estimates were derived after a severe flooding episode 
[31]. 

Class Alive Dead % Survival 

I. brevicaulis 0 13 0 

Introgressed I. brevicaulis 23 393 0.055 

Introgressed I. fulva 33 325 0.092 

I. fulva 3 8 0.273 

 
In regard to asymmetric introgression, it might be argued that the above pattern (of greater 

survivorship of Introgressed I. fulva genotypes relative to Introgressed I. brevicaulis genotypes) would 
facilitate greater levels of introgression into I. fulva. However, the data from both Tables 2 and 3 argue 
against this inference. Instead, it is apparent that I. fulva alleles often (but, not always, see [31]) 
provide the basis for higher survivorship. First, the surviving “Introgressed I. brevicaulis” genotypes 
contained a significantly higher number of positively selected I. fulva alleles than I. brevicaulis alleles 
(Table 3, [31]). Second, I. fulva and “Introgressed I. fulva” hybrids survived at the highest frequencies 
(Table 2), reflecting the selective advantage of this species’ genetic background in a flooded 
environment. These field surveys will also allow an estimate of temporal fluctuations in the direction 
and/or strength of selection (e.g. as expected if drier environmental conditions, favoring I. brevicaulis, 
occur). 

Table 3. The number of I. fulva and I. brevicaulis alleles inferred to be selectively favored 
in “Introgressed I. brevicaulis” plants that survived the flooding episode (see Table 2; 
[31]). 

 Introgressed I. brevicaulis 

Alleles Favored I. fulva I. brevicaulis 

Number of Alleles Favored 101 41 
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6. Asymmetric introgression and adaptive trait transfer 

The studies discussed in this review provide evidence that selection causes at least a portion of the 
asymmetry in gene flow among the Louisiana Iris species. The available data also allow a test of 
whether or not some of the asymmetric introgression reflects adaptive exchanges: 1) the patterns of 
segregation distortion in the greenhouse-maintained plants (Figure 3), as well as survivorship under 
stress (i.e., severe flooding), support the inference of adaptive transfers; and 2) the presence of I. fulva 
alleles allowed introgressed individuals to survive and persist at a significantly higher frequency than 
those plants with fewer (or no) I. fulva alleles, under a variety of environmental conditions. 

Figure 7 Spatial distribution of Louisiana Iris genotypes in a natural population containing 
“I. brevicaulis-like” and “I. fulva-like” genotypes. Each circle reflects a single plant. The 
numbers indicate elevations, with the “0” line indicating the water level of the pond. 
Negative values reflect flooded areas, and positive values reflect areas above the waterline 
[19]. 

 
 

The above two observations led Martin et al. [31] to conclude that introgression of adaptive alleles 
would occur in natural hybrid zones under certain environmental conditions. In particular they stated, 
“While some proportion of this introgression almost certainly involves neutral loci, any selectively 
advantageous alleles are likely to introgress across the species’ boundaries [32]. In the case of I. 
brevicaulis and I. fulva hybrid zones, we predict that the QTL found to promote tolerance to flooded 
environments are candidates for introgression, since they will presumably be positively selected under 
flooded conditions.” In this context, Figure 7 illustrates a natural hybrid population between I. fulva 
and I. brevicaulis in which ecological-genetic associations suggest the process of asymmetric, adaptive 
trait introgression. Iris brevicaulis genotypes are not adapted to extended, flooded environments 
[18,31], yet in this population “I. brevicaulis-like” plants occur mostly in this type of habitat (Figure 7; 
[19]). This observation, in the light of previous findings [18,31], supports the inference of adaptive 
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trait transfer from I. fulva into I. brevicaulis in this natural hybrid population allowing the latter to 
invade habitats not open to non-introgressed I. brevicaulis. 

7. Conclusions 

Evolutionary and ecological studies of Louisiana Irises have confirmed the process of asymmetric 
introgression. In both experimental and natural hybrid populations, genetic material predominantly 
moves from I. fulva into both I. brevicaulis and I. hexagona. Furthermore, analyses designed to dissect 
out the various components of reproductive isolation have determined some of the causal factors – 
both prezygotic and postzygotic – that contribute to this asymmetry. In particular, gamete competition 
and viability selection likely contribute to the biased production of zygotes that contain more 
introgressed I. brevicaulis and I. hexagona, than introgressed I. fulva genotypes. It is also likely that, 
under certain environmental conditions, the incorporation of I. fulva alleles into the other two species 
is adaptive. Asymmetric introgressive hybridization among the Louisiana Iris species has thus likely 
affected not only the population genetic structure of hybrid zones, but also to some degree determined 
the ecological and evolutionary trajectories of the hybrids and introgressed species. 
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