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Information about macromolecular structure of protein complexes
and related cellular and molecular mechanisms can assist the
search for vaccines and drug development processes. To obtain
such structural information, we present DeepTracer, a fully auto-
mated deep learning-based method for fast de novo multichain
protein complex structure determination from high-resolution
cryoelectron microscopy (cryo-EM) maps. We applied DeepTracer
on a previously published set of 476 raw experimental cryo-EM
maps and compared the results with a current state of the art
method. The residue coverage increased by over 30% using Deep-
Tracer, and the rmsd value improved from 1.29 Å to 1.18 Å. Addi-
tionally, we applied DeepTracer on a set of 62 coronavirus-related
cryo-EM maps, among them 10 with no deposited structure
available in EMDataResource. We observed an average residue
match of 84% with the deposited structures and an average
rmsd of 0.93 Å. Additional tests with related methods further
exemplify DeepTracer’s competitive accuracy and efficiency of
structure modeling. DeepTracer allows for exceptionally fast com-
putations, making it possible to trace around 60,000 residues in
350 chains within only 2 h. The web service is globally accessible
at https://deeptracer.uw.edu.
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The determining factor for a protein’s functionality is its struc-
ture, which is given by a unique sequence of amino acids

and its three-dimensional (3D) arrangement (1). Consequently,
researchers can draw conclusions about the behavior of the pro-
tein based solely on its molecular structure. This outcome can
be useful in developing new vaccines and drugs, as viral fusion
proteins play a central role in how the viruses invade the host’s
cells (2). In order to prevent infections, researchers attempt to
develop vaccines and medicines that target these fusion proteins.
The structural information about the fusion proteins is crucial
for researchers to predict their behaviors and ultimately to find
the right vaccine (3).

To determine the structure of a protein, this work builds
upon cryoelectron microscopy (cryo-EM) data (4). Cryo-EM
allows researchers to capture macromolecules’ 3D maps at a
near-atomic resolution. The technology has gained popularity in
recent years as an alternative to established structure determina-
tion methods, such as X-ray crystallography, due to its improved
quality and efficiency (5, 6). Amid the current global crisis, it is
important that cryo-EM is being deployed right alongside X-ray
crystallography to support the search for medicines and vaccines
to fight the current COVID-19 pandemic (7). To derive the struc-
ture of a protein based on its 3D cryo-EM map, researchers
currently either have to manually fit the atoms or resort to
existing template-based or homology modeling methods (8–10).
Therefore, there is a tremendous demand for a method that
automatically and accurately determines the molecular structure
from a cryo-EM map. Unfortunately, existing tools (11–15) such
as Rosetta, MAINMAST (Mainchin model tracing from span-
ning tree), and Phenix determine only fragments of a protein
complex, or require extensive manual processing steps. Due to

the ability of cryo-EM to capture multiple large proteins in the
course of a single study (16, 17), a fully automated, efficient tool
to determine complex structures would be crucial to increase the
throughput of the technology and speed up the development of
medicines.

In this paper, we present DeepTracer, a fully automated
software tool that determines the all-atom structure of a pro-
tein complex based solely on its cryo-EM map and amino acid
sequence (Fig. 1). No manual processing of the map is neces-
sary, and the tool requires no further parameters to run. The
core of the method is a tailored deep convolutional neural
network that allows for fast and accurate structure predictions
when combined with complex preprocessing and postprocessing
steps. This paper significantly improved our previous preliminary
method and results (18). We also provide a web service and a
CoV-related dataset along with the constructed models at Deep-
Tracer’s website. This web service allows for fully automated
protein complex determination and coronavirus modeling using
3D cryo-EM.

Methods
DeepTracer performs an array of tasks to determine the struc-
ture of a protein. It preprocesses each cryo-EM map for the
neural network, feeds the map to the network, and then trans-
forms the output into a protein structure. An overview of the
steps involved in this process is provided in Fig. 1. In this section,
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Fig. 1. DeepTracer model determination pipeline. All-atom structure of multichain protein complexes is determined fully automatically solely from a cryo-
EM map and amino acid sequence using the steps shown in the center of the figure. The structure shown on the right side is an actual model built by
DeepTracer.

we focus on all steps, starting with the neural network. A
detailed description of the preprocessing steps can be found in
SI Appendix.

Neural Network Architecture. The convolutional neural network is
the central piece of DeepTracer. Its job is to predict four vital
pieces of information: the locations of amino acids, the loca-
tion of the backbone, secondary structure positions, and amino
acid types. Here, we take a closer look at the architecture of the
neural network used in DeepTracer.

The U-Net forms the basis for DeepTracer’s neural network. It
is a convolutional network architecture developed by researchers
at the University of Freiburg. Its name derives from the U shape
of its architecture. The U-Net excels in fast and precise image
segmentation tasks, particularly for biomedical applications (19).
For DeepTracer, we modified its original 2D architecture for
3D cryo-EM maps and connected four separate U-Nets, one
for each structural aspect (atoms, backbone, secondary structure
elements, and amino acid types). The detailed architecture of
the network used by DeepTracer can be seen in Fig. 2. The pre-
processed cryo-EM maps are fed to the 643 input layer of each
U-Net. The output layer of each U-Net has the same 643 shape,
with a varying number of channels depending on which structural
aspect it predicts. The following paragraph describes the output
channels in detail.

The overall convolutional network consists of four U-Nets.
The first U-Net is the Atoms U-Net, which determines whether
each voxel contains either a Cα atom, a nitrogen atom, a carbon
atom, or no atom. Thus, its output has four channels. The sec-
ond U-Net is the Backbone U-Net, which determines whether
each voxel belongs to the backbone, meaning either it is on the
backbone, a part of a side chain, or not a part of the protein.
Thus, it has three different output channels. Next, the Secondary
Structure U-Net is responsible for finding out the secondary
structure of each voxel. It has four output channels for loops,
sheets, helices, and no structure. Finally, the Amino Acid Type
U-Net determines the amino acid type for each voxel. As 20
different types of amino acids have been found in nature, this
U-Net has 21 output channels, representing the amino acids
plus the case in which the voxel is not part of the protein.
By combining the separate U-Nets into a single network with
four outputs, we can train it in a single run while specifying
different loss functions for each output. Particularly, we used
a weighted cross-entropy loss function for each U-Net, with a
different set of weights depending on the class balance of its
training data.

Training Data Collection. Before training the U-Net model, we
have to collect a training dataset. Previous projects, such as
ref. 14, used simulated cryo-EM maps to train their neural
networks. However, for the network to learn common noise pat-
terns in cryo-EM maps, we decided to use experimental maps.
The maps were downloaded from the EMDataResource web-
site (20), together with their deposited model structures that
served as the ground truth in the training process and were
fetched from Protein Data Bank (21). As this work focuses on
high-resolution maps, we only used maps with a resolution of 4
Å or better. In total, we downloaded 1,800 experimental maps
and their corresponding deposited model structures. The maps
were randomly split into training and validation sets, with an
80:20 ratio.

To label each cryo-EM map, we created masks with the same
dimensions as the grid of the map, providing a label for each
voxel. The labels of the masks were hereby created based on the
deposited model structures of each map. As shown in Fig. 2, the
model has four different outputs, for each of which we created
separate masks. The atoms mask provides a label for each voxel
as to whether or not it contains a Cα, C, or N atom. Therefore,
we filtered out these atoms from the protein structure, calcu-
lated the corresponding grid indices for their location, and set
that voxel and all directly neighboring voxels to the value rep-
resenting the atom (one for Cα, two for C, and three for N
atoms). A visualization of an atom mask can be found in SI
Appendix, Fig. S5.

The masks for the backbone, secondary structure, and Amino
Acid Type U-Net were created in a similar manner. The back-
bone mask filters all backbone atoms and side-chain atoms and
sets the respective voxels and all surrounding voxels with a dis-
tance of two to one for backbone and two for side chain. To
create the secondary structure mask, we filtered all atoms for
helices, sheets, and loops and then set all voxels with a distance
of four surrounding the atoms to one for loop, two for helix,
and three for sheet. Finally, for the amino acid type mask, all
Cα atoms for each of the 20 amino acid types were filtered out,
and all surrounding voxels within a distance of three were set to a
value between 1 and 20, where each value corresponds to a spe-
cific amino acid type. An example of all masks can be seen in
Fig. 3. An example of a raw prediction from the trained neural
network for the EMD-6272 map can be found in SI Appendix,
Fig. S4.

Tracing Backbone. This step uses the output of the U-Net to
create an initial model structure that contains only Cα atoms
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Fig. 2. Architecture of tailored convolutional neural network. Top shows overview of DeepTracer’s neural network architecture consisting of four parallel
U-Nets. The gray boxes show the input and output maps, with their dimensions noted to the left and the number of channels marked below. Bottom dashed
box shows the detailed architecture of each parallel U-Net. The blue boxes show the output maps of the different layers, where the dimensions of the maps
are depicted on the left and the number of channels is depicted on top.

connected into chains. This is a central postprocessing step, and
its accuracy determines, to a great extent, how well the remain-
ing postprocessing steps will perform. The step can be split into
three different parts: identifying disconnected chains, which can
be processed independently; calculating the x, y, and z coordi-
nates of the Cα atoms; and connecting the Cα atoms into chains
by applying a modified traveling salesman algorithm.

Identifying chains prior to any atom prediction has two advan-
tages. First, it improves the performance of the step, as each
chain will contain a lower number of atoms that have to be con-
nected by the traveling salesman algorithm. Second, it decreases
the number of incorrect connections between atoms of separate
chains, as they are processed independently. To identify chains,
we used the output of the Backbone U-Net. We rounded each
voxel of the confidence map to either zero or one and then found
connected areas of voxels with a value of one. Disconnected
areas were then identified as separate chains. An example of the
chain identification process visualized for the EMD-0478 map
can be seen in Fig. 4.

To find the x, y, and z coordinates of the Cα atoms, we uti-
lized the Cα channel from the output of the Atoms U-Net.
A voxel value in this map describes the confidence of whether
this voxel contains a Cα atom. The coordinates were then cal-
culated in two steps. First, we found the indices of all local
maximums in the confidence map within a distance of four vox-
els that have a minimum value of 0.5. Next, we refined the
indices by calculating the center of mass of all voxels within a
distance of four surrounding the local maximums. This is possi-
ble as we moved away from integer indices toward floating point

coordinates, giving us the opportunity to express locations more
precisely.

The most challenging part of this step is to connect the
placed Cα atoms into chains correctly. The factorial growth
of the number of ways in which the atoms can be connected
makes it infeasible to test all possible solutions even for a low
number of atoms. Therefore, we decided to solve the problem
using an optimization algorithm, particularly, for the travel-
ing salesman problem (TSP). However, our problem does not
match every criterion of the TSP. The shortest possible path is
not necessarily the correct one, as the ideal distance between
Cα atoms is 3.8 Å (22). Deviations from this value are, how-
ever, possible due to prediction inaccuracies. Additionally, it
is often difficult to decide, only based on the distance, which
atoms to connect if there are multiple possibilities with a sim-
ilar distance. To address these issues, we developed a custom
confidence function instead of solely relying on the Euclidean
distance between atoms. The confidence function’s idea is to
return a score between zero and one, which expresses how con-
fident we are that these two atoms are connected. The goal
of the TSP algorithm is then to connect the atoms such that
the sum of all confidence scores between connected atoms is
maximized.

The calculation of the confidence score between Cα atoms
considers two factors: the Euclidean distance between the atoms
and the average density values of voxels that lay in between the
atoms on the backbone confidence map predicted by the Back-
bone U-Net. The latter factor is to ensure that connections are
made along the backbone of the structure. The voxels that lay
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Fig. 3. Example masks from the training dataset based on the PDB ID code 6NQ1 deposited model structure. (A) Deposited model structure. (B) Backbone
(Cα, C, and N atoms) in purple and side chains in green. (C) Atoms mask with labels for Cα, C, and N atoms. (D) Secondary structure mask with helices in
turquoise, loops in pink, and sheets in orange. (E) Amino acid type mask with 20 different colors.

between the atoms are found using Bresenham’s algorithm (23).
To transform these metric values to a confidence score, we used
a probability density function p(x ,µ,σ) with a mean µ, which
represents the ideal metric value, and a standard deviation σ.
To make sure that the function returns exactly one at the mean,
we normalized it by dividing it by the probability density value
at the mean. For the Euclidean distance, we used a mean of 3.8
and a standard deviation of one. The average backbone confi-
dence has a mean of one and a standard deviation of 0.3. The
standard deviations were determined based on several rounds
of testing. Both probability density functions can be seen in SI
Appendix, Fig. S6. In order to combine both results into a sin-
gle confidence score, we simply multiply both values. As the TSP
algorithm was designed to minimize distances between paths, we
then just subtract the confidence score from one and provide it
to the algorithm.

To apply the TSP algorithm, we had to specify a start/end
point. However, we could not know yet at which atom the chain
will start and end. Therefore, we added a new atom that is con-
nected to every other atom with a confidence of one. This atom
was then specified as the start/end and, later on, removed from
the actual chain. An example of the application of the TSP on a
list of Cα atoms can be seen in Fig. 5.

Amino Acid Sequence Mapping. To realize the side-chain predic-
tion for the protein structure, we first need to know each amino
acid’s type. As discussed in Neural Network Architecture, one
output of the deep learning model is the amino acid type pre-
diction. However, depending on the resolution of the cryo-EM
map, this prediction is of limited accuracy, around 10 to 50%,
since some amino acids have a similar appearance in cryo-EM
maps. The goal of this step is to improve the amino acid type
accuracy by aligning intervals of the initially predicted sequence
to the known true amino acid sequence (protein primary struc-

ture) and then updating the types of the predicted amino acids
accordingly (Fig. 6).

Aligning amino acid sequences is a common problem in the
field of bioinformatics, and previous research has led to the
development of multiple algorithms (24–26). However, these
algorithms are usually applied between different proteins to
measure their sequence similarities, which does not quite fit our
use case. The main problem is that we require an algorithm that

Fig. 4. Backbone confidence map of the EMD-0478 map with identified
chains annotated in different colors.
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Fig. 5. Traced backbone atoms. Predicted Cα atoms for the EMD-4054 map in blue before (Left) and after (Right) the backbone tracing step compared to
the deposited model structure in pink.

does not treat all matches and mismatches in the same way. This
stems from the fact that some amino acid types have a more sim-
ilar appearance in cryo-EM maps than others, which leads to
some mismatches of the U-Net being more likely than others.
To analyze the relative frequency of a certain match of predicted
and true amino acid types, we applied the U-Net to 200 differ-
ent maps and compared the predicted amino acid types with the
actual types from the deposited model structures. The heatmap

depicting this analysis is shown in Fig. 6. As expected, the most
frequent matches are those of the same predicted and true amino
acid types. However, we can also see that the U-Net often mixes
up some types (e.g., ALA and SER) and struggles more with
other types (e.g., CYS).

To incorporate the U-Net prediction behavior described in
the previous section into the alignment algorithm, we defined a
reward function r which returns a score denoting how valuable a

Fig. 6. Protein sequence alignment algorithm. Interval of the predicted sequence is aligned with the target sequence using a custom dynamic algorithm.
The amino acid confusion matrix depicts the relative frequency of pairs of predicted and true amino acid type and was calculated based on a set of test
cryo-EM maps. The numbers shown in the score matrix are solely for illustrative purposes and do not reflect real data.
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certain match of predicted type p and true type t is. With f (p, t)
defined as the relative frequency of a match, we constructed the
reward function shown in Eq. 1. The constant 100 as a multiplier
is used to balance the match rewards with gap penalties described
in the next section, and was chosen based on multiple rounds
of testing. The 0.05 constant was chosen as this represents the
likelihood of a correct match if we would choose the amino acid
type randomly, since there are 20 different types of amino acids.
The score is zero if the relative frequency equals this random
likelihood.

r(tp , tt)= 100× (f (p, t)− 0.05). [1]

In addition to the match reward, our algorithm also requires a
gap penalty. A gap represents a skipped amino acid in either the
predicted or true sequence. This penalty, however, cannot simply
be a static value, as not all gaps are the same. For example, gaps
in the beginning of a sequence before any matches were made
should not result in any penalties, as we only match short inter-
vals of the predicted sequence, meaning it is highly unlikely that
they align at the first amino acid of the true sequence. Addition-
ally, the number of consecutive gaps is important. Cases where
DeepTracer misses an amino acid or predicts an extra amino
acid appear relatively frequent, meaning that a single gap is
not unlikely. However, two missed amino acids in a row is very
uncommon, and three gaps in a row virtually never happens.
Therefore, we must define our penalty function p such that it
takes the number of consecutive gaps g into account. Let i be
the index of the amino acid that is not skipped. Then we can
define p as shown in Eq. 2. The constants 20 and 30 were cho-

sen based on test runs to create a good balance with the rewards
function.

p(g , i)=


0, if i =0

∞, if g ≥ 3

20+ (g × 30), otherwise
. [2]

Since we have defined a reward and penalty function, we can
find the ideal alignment by maximizing the sum of all rewards
and penalties using a dynamic algorithm. To do so, we defined
a recursive equation which calculates the optimal solution based
on an index i , which points to the current amino acid in the true
sequence; an index j , which points to the current amino acid in
the predicted sequence; and g , which counts the number of pre-
vious consecutive gaps. With t and p as the true and predicted
sequence, we defined this function as shown in Eq. 3. To effi-
ciently find the solution, we applied the dynamic programming
“bottom up” approach (27).

OPT(i , j , g)=



0,

if i =0 or j =0 or g ≥ 3

max {OPT(i − 1, j − 1, 0)+ r(ti , pj ),

OPT(i , j − 1, g +1)+ p(g , i),

OPT(i − 1, j , g +1)+ p(g , j )},
otherwise

. [3]

Carbon, Nitrogen, and Oxygen Determination. So far, the deter-
mined residues consist solely of Cα atoms. A complete protein

A

B

C

Fig. 7. Carbon, nitrogen, and oxygen determination. (A) Initial positioning of carbon (yellow) and nitrogen (blue) atoms in between the Cα atoms (gray)
on Left and their initial refined positioning, which fits the U-Net prediction of carbon atoms (green volume) and nitrogen atoms (blue volume), on Right.
(B) The positions of carbon and nitrogen atoms are refined further by forcing bond angles into their well-known values. The blue lines represent the
bonds from the initial refinement. The red lines represent the bonds from the final refinement. (C) Position of oxygen atom in the carbonyl group by
definition.
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backbone also consists of carbon, nitrogen, and oxygen atoms.
Previous research has introduced various methods for recon-
struction of a protein backbone from a reduced representation,
such as one that contains only Cα atoms (28). Instead of employ-
ing these theoretical methods, we chose to implement our own
backbone reconstruction method to make use of the information
captured from the 3D cryo-EM maps. This section presents our
all-atom backbone reconstruction method. This is necessary for
the next step in the pipeline, resolving the side-chain atoms.

In addition to Cα prediction, the U-Net also provides infor-
mation about carbon and nitrogen atoms in the confidence map
predicted by the U-Net. We can use this information in com-
bination with the previously determined Cα atom positions to
place the carbon and nitrogen atoms. Between the Cα atoms of
two connected amino acids, there is always a nitrogen and a car-
bon atom. Therefore, we can guess the initial position of these
atoms by calculating the vector from one Cα atom to the other
and then placing the nitrogen and carbon atoms at one-third and
two-thirds of the distance of this vector. To refine these initial
positions, we calculated the center of mass around them in the
carbon and nitrogen confidence maps. In Fig. 7A, we can see an
example for the initial and refined placement of the carbon and
nitrogen atoms.

After the initial refinement, we can further refine the positions
of the carbon and nitrogen atoms by applying well-known molec-
ular mechanics of a peptide chain. We made several assumptions
about the positions of carbon, nitrogen, and oxygen atoms rela-
tive to the Cα atoms, as seen in Fig. 7B. First, we assumed the
planar peptide geometry in which the Cα atom and carbon atom
in the carbonyl group of an amino acid are in the same plane
as the next amino acid’s nitrogen and Cα atom (29). Second, we
constructed a virtual bond between the neighboring Cα atoms.

The angles between this bond and the Cα(i)–C(i) bond (θ2) and
between this bond and the Cα(i+1)–N(i+1) bond (φ2) are 20.9◦

and 14.9◦, respectively (29). Third, the peptide bonds in a protein
are in the stable trans configuration (30).

To refine the position of the carbon atoms, we relied on the
previous refinement. Let us call the unit vector pointing from
Cα(i) to C(i)refined v1, the unit vector pointing from Cα(i) to
C(i) v2, and the unit vector pointing from Cα(i) to Cα(i+1) v3.

v1 = < a1, a2, a3>

v2 = < b1, b2, b3> [4]
v3 = < c1, c2, c3> .

The goal is to solve for the components of v1. Due to the planar
peptide geometry, v1, v2, and v3 exist in the same plane. Thus,
their triple product equals zero.

v1× (v2 · v3)= 0 [5]

or

a1(b2c3− b3c2)− a2(b1c3− b3c1)+ a3(b1c2− b2c1)= 0. [6]

From this relation and the cross-product of v1 and v2, and that
of v2, v3, we can construct a system of equations,

a1b1 + a2b2 + a3b3 = cos(θ2− θ1)
a1c1 + a2c2 + a3c3 = cos(θ2)

a1(b2c3− b3c2)− a2(b1c3− b3c1)+ a3(b1c2− b2c1)= 0

.

[7]

Solving this system of equations yields a1, a2 and a3. Next, the
vector v1 is scaled appropriately to resolve the new position of

Fig. 8. Evaluation results for set of 476 experimental cryo-EM maps. Evaluation of determined models from DeepTracer (blue) and Phenix (red) for 476
cryo-EM maps. The dotted lines represent the trend for each method. DeepTracer outperformed Phenix in all four metrics. Precise data can be found in
SI Appendix, Table S3.
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the carbon atom. The position of the nitrogen atom is refined in
a similar manner.

To determine the location of the oxygen atom in the carbonyl
group, we assumed the coplanar relationship between the oxy-
gen, Cα, carbon, and nitrogen atom (29), and that the angles
AαCO and AOCN (Fig. 7C) are approximately identical. We then
derived a unit vector pointing in the direction of the C–O bond
and scaled it with the C–O bond length to get the position of the
oxygen atom.

Side-Chain Prediction. The final step of DeepTracer is the side-
chain prediction. Its goal is to position the side-chain atoms of
each amino acid based on its type and backbone structure. This
is done by using SCWRL4 (31), a tool developed by the Dun-
brack laboratory, which predicts side-chain atoms for structures
that have a complete backbone and amino acid types set. The
tool is integrated in the pipeline of DeepTracer and runs fully
automatically as well. It also performs a collision detection to
ensure that side chains of different residues do not overlap. In SI
Appendix, Fig. S7, we can see an example of an α-helix after the
side-chain prediction step.

Results
We evaluated the effectiveness of DeepTracer by applying it to
multiple test datasets of experimental cryo-EM maps, most of
which depict multichain complexes. As a point of comparison, we
used results generated by Phenix’s map-to-model function. Fur-
ther comparative tests with Rosetta and MAINMAST method
can be found in SI Appendix.

Metrics. To ensure the objectivity of the comparison with the
existing Phenix method, we used the phenix.chain comparison
tool (32), which is available at no cost as part of the Phenix
software suite. This tool compares two models by finding a one-
to-one match between their residues based on Cα positions. For
two residues to match, they cannot be farther apart from each
other than 3 Å. Based on this matching, several metrics are
calculated. The first metric is the rmsd, which expresses the aver-
age distance between Cα atoms of matched residues. Second,
the coverage is expressed using the matching percentage. This
value represents the proportion of residues from the deposited
model which have a matching interpreted residue, and is calcu-
lated by dividing the number of matches by the total number of

Fig. 9. Results of EMD-6757 map. Models built by DeepTracer (blue) and Phenix (red) next to PDB ID code 5XS7 deposited model structure (yellow) for
EMD-6757 map.
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residues. Third, to evaluate how well the amino acid types were
predicted, the chain comparison tool calculates the sequence
matching percentage, which denotes the percentage of matched
residues that have the same amino acid type. Lastly, to get a
sense of how similar residues are connected, the mean length
of matched segments is calculated where consecutive matches
are connected in both models. Besides the metrics calculated
by the phenix.chain comparison tool, we also apply the LGA
(Local–Global Alignment) algorithm, which aligns two models
and computes the GDC (Global Distance Calculation) score.
This score measures the similarity of two structures based on
all atoms (including side chains) on a range of 0 to 100 with
100 being a perfect match (33, 34). We applied it on the most
important dataset of severe acute respiratory syndrome coron-
avirus 2 SARS-CoV-2 cryo-EM maps due to the high manual and
computational effort involved in the calculation of this metric.

Phenix Benchmark Test. We applied DeepTracer on a set of
476 cryo-EM maps assembled by the authors of Phenix’s
map-to-model method (11) and compared the determined
models against the ones published on Phenix’s website (35)
(Fig. 8). We can see that DeepTracer achieves better results
than the Phenix method for every metric calculated by the
phenix.chain comparison tool. The matching percentage of
deposited model residues is, on average, 76.93% compared to
45.65% with Phenix, representing an improvement of over 30%.
DeepTracer achieved a matching percentage above 70% for
almost all cryo-EM maps, except a few outliers. The average
rmsd value of DeepTracer (1.29) is 0.11 higher than Phenix’s
(1.18). We can see that the distribution of the rmsd values of
DeepTracer follows a similar pattern as Phenix, with a strong
correlation between rmsd and the resolution of the map. The
most significant improvements of DeepTracer were measured
for the sequence matching which expresses the percentage of
matched residues in the determined and deposited model that
have the same amino acid type. For this metric, DeepTracer
achieved 49.83%, which is more than 4 times higher than the
12.29% of the Phenix method. Although 49.83% is still fairly
low, the distribution of the values shows that there is a steep
improvement of the sequence matching with more-accurate
maps. Two factors contribute to this trend. First, side-chain
atoms, which determine the amino acid type, are only visible in
very high-resolution maps, making it almost impossible to accu-
rately predict the amino acid type for lower resolutions. Second,
the amino acid type mapping of every segment can be either cor-
rect or incorrect. It means that either all amino acid types will
be correct for this segment or, in the case of an incorrect map-
ping, the amino acid types are entirely random. This amplifies
the steep incline in accuracy for higher-resolution maps. Third,
for the last evaluated metric, the mean length of matched seg-
ments improved from 8.16 with Phenix to 14.05 with DeepTracer.
While this number is influenced by several factors, including the
average length of connected segments in the deposited model
structure, this is an indicator that DeepTracer connects residues
better than the Phenix method.

Figs. 9 and 10 show multichain complexes modeled by Deep-
Tracer and Phenix compared to the deposited model structure.
In both figures, we can note that DeepTracer’s model is more
complete. In Fig. 9, we can particularly see the greater coverage
and more precise placement of the residues in direct compari-
son with the ground truth. Fig. 10 shows well that, even though
Phenix determined most of the residues correctly, DeepTracer
connected the residues better, creating a less fragmented model.

Coronavirus-Related Results. In the search for an effective
COVID-19 vaccine and medicine, structural information about
the viral protein is crucial. Therefore, we applied DeepTracer
on a set of coronavirus-related cryo-EM maps to demonstrate

Fig. 10. Results of EMD-6272 map. Models built by DeepTracer (blue) and
Phenix (red) compared to PDB ID code 3J9S deposited model structure (yel-
low) for EMD-6272 map. Top shows structures in ribbon view, and Bottom
shows structures in all-atom view. Areas where DeepTracer correctly pre-
dicted amino acids that Phenix missed are highlighted by the four red
circles.

how it can aid researchers in obtaining such structural informa-
tion. To create a point of comparison, we applied Phenix on the
same set of cryo-EM maps. The dataset was aggregated by the
EMDataResource and contained 62 high-resolution cryo-EM
maps, 52 of which have a deposited model Protein Data Bank
(PDB) structure (36). The dataset as well as the determined
models will be actively updated at DeepTracer’s website as more
and more data are deposited to EMDR (EMDataResource).

The scatter plots in Fig. 11 show the evaluation results for
the metrics calculated by Phenix’s chain comparison tool, for
the 52 coronavirus-related cryo-EM maps that have a deposited
model structure. The average percentage of matched model
residues is 84% for DeepTracer and 49.8% for Phenix. This
means that, on average, around 34% more residues were cor-
rectly placed by DeepTracer than by Phenix. The rmsd metric
calculated an average value of 1.37 Å for Phenix compared to
0.93 Å with DeepTracer. Thus, DeepTracer not only determines
more residues correctly than Phenix, but the correctly deter-
mined residues were also closer to the residues of the deposited
model by around 0.4 Å. For the sequence matching results,
Phenix scored 24.95%, while DeepTracer achieved a sequence
matching percentage of 63.08%. Finally, the mean length of
consecutively matched residues in the modeled and deposited
structure increased from 8.9 with Phenix to 20 with DeepTracer.

The SARS-CoV-2 results from Table 1 show a pattern sim-
ilar to the results of all coronavirus-related maps. DeepTracer
outperformed Phenix in every metric with the most significant
differences in the matching percentage and sequence matching.
Additionally, the DeepTracer achieved a GDC score almost 3
times that of the Phenix method.

In Fig. 12, we can see the structures modeled by DeepTracer
for the EMD-30044 map, which captures the human receptor
angiotensin-converting enzyme 2 (ACE2) to which the spike
protein of the SARS-CoV-2 virus binds (8) and the EMD-
21374 map of a SARS-CoV-2 spike glycoprotein. No model
structure has been deposited to the EMDR for either map as
of the date this paper is announced. This represents an ideal
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Fig. 11. Results for coronavirus-related cryo-EM maps. Evaluation of models built by DeepTracer (blue) and Phenix (red) for 52 coronavirus-related high-
resolution cryo-EM maps. The dotted lines represent the trend for each method. Computation times are shown on a logarithmic scale. Precise data can be
found in SI Appendix, Table S2.

opportunity to showcase the potential of DeepTracer. Without
any other parameters or manual processing steps, DeepTracer
can determine detailed models based on the cryo-EM maps.
Researchers can use these models to develop therapeutics target-
ing the binding process between the spike protein and the human
enzyme.

Computation Time. A major bottleneck of existing methods is
their computational complexity, which renders them unable to
model larger protein complexes. Thus, we conducted an anal-
ysis of DeepTracer’s computational time versus Phenix’s. The
result is shown in Fig. 11. The tests were executed on a machine
with an Nvidia GeForce GTX 1080 Ti graphics processing unit
(GPU), eight processors, and 62 GB of memory. Although a
comparison with the Phenix method is not entirely fair, as Phenix
does not take advantage of the machine’s GPU, this compari-

son provides a glimpse of the possibility that DeepTracer can
achieve. We observed that Phenix took about 45 min to pro-
cess a map containing 79 residues, while DeepTracer processed a
map containing 2,798 residues in only 26 min. Furthermore, the
largest cryo-EM map (EMD-9891) that DeepTracer was tested
on required around 14 min to complete, whereas Phenix’s pro-
cessing time for this map was over 60 h. DeepTracer is able to
exploit the processing power of the GPU, which is becoming a
staple on modern computing systems, to increase the through-
put of scientific discovery. DeepTracer can model even very large
protein complexes in a matter of hours. As an example, it traced
around 60,000 residues for the EMD-9829 map within only 2 h.

Discussion
In this paper, we present DeepTracer, a fully automatic tool that
determines the all-atom structures of protein complexes based
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Table 1. Comparison of DeepTracer (DT) and Phenix (P) for SARS-CoV-2 dataset

Percent matching rmsd Percent sequence ID GDC

EMDB PDB Residues DT P DT P DT P DT P

21375 6vsb 2905 84.90 48.60 1.14 1.40 45.90 20.90 17.88 5.39
21452 6vxx 2916 91.40 53.80 0.96 1.18 61.30 40.00 — —
30039 6m17 3072 80.30 53.10 1.72 1.72 69.80 54.60 11.84 8.31
30127 6m71 1077 91.70 54.20 1.02 1.20 58.60 16.60 20.74 8.89
30178 7btf 1227 94.90 81.00 0.83 1.09 85.80 51.80 65.57 23.06
30209 7bv1 1102 87.60 67.00 0.84 1.29 87.50 30.50 55.62 18.15
30210 7bv2 1006 92.40 78.20 0.78 1.08 88.90 53.70 40.90 13.32
Average 89.03 62.27 1.04 1.28 71.11 38.30 35.42 12.85

GDC score could not be calculated for the EMD-21452 map, as the LGA web service could not process the modeled
structures due to their size. EMDB, Electron Microscopy Data Bank.

on their cryo-EM maps, using a tailored deep convolutional neu-
ral network and a set of computational methods. We applied this
software on a set of coronavirus-related cryo-EM maps and com-
pared the results to Phenix, the state of the art cryo-EM model
determination method (11). We found that DeepTracer correctly
placed, on average, around 30% more residues than Phenix with
an average rmsd improvement of 0.11 Å, from 1.29 Å to 1.18 Å.
We also applied DeepTracer on a dataset of coronavirus-related
cryo-EM maps and calculated a coverage of 84% compared to
49.8% with Phenix and an average rmsd value of 0.93 Å for

DeepTracer and 1.37 Å for Phenix. Detailed description and dis-
cussion can be found in SI Appendix. Furthermore, we compared
DeepTracer with Rosetta and MAINMAST on a previously
published set of nine cryo-EM maps and observed significant
rmsd improvements in comparison with Rosetta, from 1.37 Å to
0.85 Å, and a much more complete model compared to MAIN-
MAST, with a coverage increase of 57%, from 36.4% to 93.4%.
Detailed description and discussion can be found in SI Appendix.
These results represent a significant accuracy boost, result-
ing in more-complete protein structures. Particularly, for large

Fig. 12. Models built from SARS-CoV-2 cryo-EM maps, which do not have deposited model structures in the EMDR. DeepTracer model for the EMD-
30044 map (Top) showing a human receptor ACE2 to which spike proteins of the SARS-CoV-2 virus bind and (Bottom) the EMD-21374 depicting a
SARS-CoV-2 spike glycoprotein. No model structure has been deposited to the EMDataResource for the cryo-EM maps as of the date this paper is
announced.
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protein complexes, DeepTracer built models much faster than
other methods, tracing tens of thousands of residues with mil-
lion of atoms within only a few hours. We achieved the results
without any manual preprocessing steps, such as zoning or
cutting of the cryo-EM map using a deposited model struc-
ture. This means we can determine models without any prior
knowledge about the cryo-EM map, and the users do not
need to tune any parameters in order to obtain an accurate
structure.

All-atom modeling from experimental cryo-EM data is chal-
lenging. Due to the experimental noises from various aspects of
upstream cryo-EM single-particle analysis workflow (e.g., sam-
ple preparation, image acquisition, and processing), the resulting
atomic structures from DeepTracer may contain unavoidable
geometric issues, local fit-to-map issues, occasionally misplaced
side chains, and occasional tracing/connectivity errors. Deep-
Tracer could be pipelined with other refinement and valida-
tion tools, such as molecular dynamics flexible fitting programs,
to perform additional rebuilding and rerefinement (37, 38).
Researchers reported that, with multiple rounds of rebuilding (in
both the globally sharpened and local resolution-filtered maps),
real-space refinement in Phenix (39) using secondary structure,
rotamer, and Ramachandran restraints, and candidate model

validation using MolProbity in Phenix (40), one could yield better
final models (41).

As the cryo-EM technology becomes more readily available,
the number of captured cryo-EM maps, especially larger pro-
tein complexes, is rising rapidly. DeepTracer allows for a greater
throughput of cryo-EM, as it can automatically and accurately
infer structural information from cryo-EM maps of macro-
molecule. This outcome ultimately accelerates the scientific dis-
covery process, which is particularly urgent today, given the
ongoing coronavirus pandemic. Coronavirus-related cryo-EM
maps are deposited to the EMDR on a daily basis. Our efficient
and automated method to model these maps is an important
tool for researchers to resolve the structural information of the
virus-related macromolecules.

Data Availability. Application programming interfaces have been deposited
on the DeepTracer website (https://deeptracer.uw.edu). All study data are
included in the article and SI Appendix.
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