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Purpose: The purpose of this systematic review is to evaluate motor cortex

reorganization in amputees as indexed by transcranial magnetic stimulation (TMS)

cortical mapping and its relationship with phantom limb pain (PLP).

Methods: Pubmed database were systematically searched. Three independent

researchers screened the relevant articles, and the data of motor output maps, including

the number of effective stimulation sites, center of gravity (CoG) shift, and their

clinical correlations were extracted. We calculated a pooled CoG shift for motor cortex

TMS mapping.

Results: The search yielded 468 articles, 11 were included. Three studies performed

correlation between the cortical changes and PLP intensity, and only one study compared

cortical mapping changes between amputees with pain and without pain. Results

showed (i) enlarged excitable area and a shift of CoG of neighboring areas toward the

deafferented limb area; (ii) no correlation betweenmotor cortex reorganization and level of

pain and (iii) greater cortical reorganization in patients with PLP compared to amputation

without pain.

Conclusion: Our review supports the evidence for cortical reorganization in the

affected hemisphere following an amputation. The motor cortex reorganization could be

a potential clinical target for prevention and treatment response of PLP.

Keywords: amputation, phantom limb pain, transcranial magnetic stimulation, motor cortex reorganization,

cortical mapping

INTRODUCTION

Amputation leads to reorganization in the motor cortex. Several neurophysiological and
neuroimaging studies pointed out that there is cortical reorganization associated with limb
amputation (Schwenkreis et al., 2003) and that one of the consequences of reorganization is
phantom limb pain (PLP) (Flor et al., 1995, 2001, 2006; Foell et al., 2014). Increasing evidence
suggests that changes in the primarymotor cortex are observed in amputees with PLP (Schwenkreis
et al., 2001; Mercier and Léonard, 2011). Despite PLP having a high incidence, affecting up to
85% of the amputees (Sherman et al., 1980; Pezzin et al., 2000), PLP underlying mechanism
remains controversial and unclear. One hypothesis is that the lack of inhibitory activity in the
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sensory-cortical feedback pathways leads to continued efferent
motor cortical commands due to enhanced cortical excitability
(Ziemann et al., 1998; Zagha et al., 2016; Ruddy et al., 2018).
Therefore, cortical deafferentation and lack of inhibitory activity
may play a role in phantom pain that still needs to be elucidated.
This notion is also supported by studies showing decreased
intracortical inhibition in neuropathic pain and other chronic
pain syndromes (Castillo Saavedra et al., 2014; TarragoMda et al.,
2016).

In this context, two techniques -transcranial magnetic
stimulation (TMS) and magnetic resonance imaging (MRI)-
have been used to assess cortical reorganization following an
amputation and to elucidate pathophysiologic mechanisms of
PLP, as well as provide clues to optimize the rehabilitation of
individuals with PLP in the clinical context. TMS is used to brain
mapping of the cortical regions (Wagner et al., 2007; Dayan
et al., 2013; Rossini et al., 2015). For motor cortex mapping,
by applying TMS to different locations in the scalp referenced
by vertex, MEP amplitudes can be evoked in target muscles
(Thickbroom et al., 1999). Then the map of the area is created
by the MEP responses collected at contralateral muscle. The hot
spot, center of gravity (CoG), and number of effective stimulation
site are the main parameters evaluated. While hot spot represents
the maximum value of the MEP response, the CoG is spatial
average optimal site (Rossini et al., 2015). The number of effective
sites represent the surface area of the muscle representation. In
amputees, these can be especially useful in the characterization of
cortical reorganization. The stability of TMS measures supports
use of TMS to assess underlying cortical plasticity in amputees
(Hetu et al., 2011).

TMS studies provide evidence of motor cortex excitability
changes. Cohen et al. (1991) was the first to describe the
motor cortex reorganization following an amputation, showing
larger motor evoked potentials (MEP), and increased number of
excitable stimulation sites for the muscles immediately proximal
of the stump. Similarly, Pascual-Leone et al. (1996) performed
TMS cortical mapping before and after upper limb amputation
and showed cortical reorganization as the neighboring areas
“invade” the deafferented zone (enlargement and/or shift of the
targeted muscle motor area) in amputees (Pascual-Leone et al.,
1996). These results further supported the evidence of motor
output map alterations in amputees. However, Gagné et al. (2011)
challenged these findings by showing no significant difference in
the map areas or the shift of their locations in traumatic upper
limb amputees (Gagné et al., 2011).

There is no clear understanding as to why and how
amputation and subsequent cortical reorganization relates to
pain as some TMS studies showed no correlation between
pain intensity and shift in cortical map (Irlbacher et al., 2002;
Schwenkreis et al., 2003). Even though changes in the cortical
representation of neighboring areas are frequently observed (Flor
et al., 1995; Lotze et al., 2001), the same mixed results are
observed in fMRI studies. Lotze et al. (2001) show that upper
limb amputees with PLP have a shift of the lip area into the
deafferented hand motor area and that the shift is positively
correlated with the PLP intensity. These results are also replicated
in 5 fMRI studies (Lotze et al., 1999; MacIver et al., 2008; Diers

et al., 2010; Foell et al., 2014; Raffin et al., 2016). However,
although Makin et al. (2013) and Kikkert et al. (2018) also found
a correlation between the level of reorganization and PLP, this
correlation was negative indicating that the preserved structural
and functional organization in the brain of the amputated limb
area was related to more pain (Makin et al., 2013; Kikkert et al.,
2018).

The TMS measurements of motor cortex can further help
to clarify the discrepancy on cortical reorganization findings
following an amputation and to define which are the neural
correlates of phantom limb pain. Therefore, we conducted this
review in studies including patients with lower or upper limb
amputation that have been assessed by TMS cortical mapping
as to determine (i) whether there is a shift in the center of
gravity of the cortical mapping when combining data from these
studies; (ii) whether this shift is associated with pain and (iii)
whether there is a difference between amputation without pain
and amputation with PLP.

METHODS

Literature Search
A systematic search was conducted in the PubMed database,
utilizing the following keywords: “transcranial magnetic
stimulation” or “TMS” or “cortical reorganization” and
“amputees” or “amputation” and/or “phantom limb pain.” The
last search update was run in December 2018. No additional
filters (e.g., publication year) were set. A manual search was also
conducted to find other potential articles based on references
identified in the individual articles.

Literature Selection: Inclusion and
Exclusion Criteria
We included all original articles and case reports that reported
the assessment of cortical reorganization in amputees using
TMS. Only articles written in English were included. We,
therefore, excluded the following articles: (1) animal studies; (2)
review articles; (3) letters to the editor; (4) editorials and (5)
duplicate studies.

Duplicated records were removed and three reviewers (CBP,
FGSV, FL) screened all titles and abstracts following the pre-
specified framework and selection criteria. Discrepancies were
solved by another reviewer independently (MEG). After the title
and abstract selection, full text of selected reports was sought
and analyzed discrepancies were solved by consensus between
all authors.

Quality Assessment
To assess the quality of the included TMS studies, we used
the checklist developed by Chipchase et al. (2012) following
the standard procedure describe by the authors. This tool the
factors that should be reported and/or controlled in TMS studies.
We assigned a value of zero if they do not report and justify
the criteria in the manuscript and one if they do so. Then, we
calculate the total score per study, a higher number correspond
high quality. The quality evaluationwas assessed by two reviewers

Frontiers in Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 314

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Gunduz et al. Motor Cortex Reorganization in Limb Amputation

(MEG and KP-B), and discrepancies were solved by a third
reviewer independently (FF).

Data Extraction
After a detailed review of the articles, the authors identified and
collected the most significant parameters measured during the
evaluation of cortical reorganization by TMS. Data were collected
and reviewed by two authors independently (MEG and KP-B).
The following list of variables was structured in order to extract
the proper evaluation of cortical reorganization in amputees,
when available:

a) TMS Evidence of Cortical Reorganization: Cortical
Reorganization measured by Motor Output Maps including (i)
number of effective stimulation sites and (ii) center of gravity
(CoG) shift.

b) Clinical Correlations: Illustration of how previous
parameters correlate with clinical characteristics (negative and
positive correlations), including phantom limb pain, residual
pain, telescoping, use of prosthesis, time since amputation, and
level of amputation.

Pooled CoG Calculation
The formula used for data extraction, documented the Cz
referenced medial-lateral coordinates in mm (x axis) ± SD,
and posterior-anterior coordinates in mm (y axis) ± SD. The
studies were divided according to the amputated limb (lower
vs. upper), and according target muscle in the TMS protocol
(upper-limb muscles, lower-limbs muscles, or face muscles), in
order to avoid anatomical heterogeneity in analysis. Then we
calculated the weighted arithmetical mean with the x and y values
and the SD pooled, following the Cohen’s effect size formula
(Thalheimer and Cook, 2002; Durlak, 2009). We represented the
pooled CoG in a cartesian plot and 3D brain template consider
Cz as a reference. The data were processed using MATLAB
R2018a software.

Management of Missing Data
In the case of unreported, missing, or unclear data regarding the
primary outcome data (i.e., CoG) the authors were contacted.
Besides that, we used Web Plot Digitizer v.3.11 to extract data
from relevant graphs. If authors were unresponsive or extracting
the data graphically was not possible, the study was excluded
from the quantitative analysis.

RESULTS

Studies Retrieval
The results of search strategy summarized in Figure 1 as PRISMA
statement flow diagram (Moher et al., 2009). The literature search
resulted in 468 articles. Based on titles and abstracts screening,
440 articles were excluded. Then, the 28 remaining articles were
screened by reading the full text for cortical reorganization
measurements using TMS. In this phase, 17 excluded as they did
not report measures cortical reorganizations and therefore, 11
articles were included.

Demographic Findings
Table 1 indicates the demographic and clinical information of
the sample included in the studies analyzed here. Ten studies
were on upper limb amputees, only 1 study evaluated lower
limb amputees. In the selected articles, the aggregate number of
participants was 84 (77 upper limb amputees and seven lower
limb amputees). Most participants were adults, and the average
age was 36.3 (range of 14–78). The majority of participants
was male, and gender distribution was 77 males and seven
females. Time since amputation wasn’t an inclusion criterion for
the included articles, and it varied from 1 month to 52 years.
From the 11 articles included, only seven studies reported if
participants suffered or not from PLP; 32 participants (%38.1 of
total) had PLP. In 4 studies that reported the level of PLP, the
intensity was moderate (mean 4.3 on 0–10 scale; 0 no pain, ten
worst pain imaginable).

Study Design and Technical Aspects
Table 2 summarizes the neurophysiological parameters used
in the studies included. All included studies used TMS with
figure-of-eight-coil to perform cortical mapping. For surface
EMG recording, the most frequent muscles evaluated for the
case of the affected side in upper limb amputees were: (1)
Biceps brachialis (8 papers); (2) deltoid (6 articles); (3) thenar
eminence muscles (abductor pollicis brevis, oppones pollicis
(1 article); and (4) flexor carpi radialis (1 article). For the
case of studies that involved the evaluation of lower limb
amputees, the only muscle evaluated was the quadriceps femoris.
Also, a couple of studies utilized muscles in face area as
controls (zygomaticus and depressor labi inferioris). In most
of the cases, the homologous muscle of the healthy side was
also evaluated.

Several sizes of grids were observed in the mapping protocol
of either upper or lower limb areas. The distance between points
in the grid varied from 1 up to 2 cm and the size areas ranged
from 1× 1 cm up to 7× 9 cm. Another parameter is the number
of pulses applied over each intersection of the grid. Numerous
variations were observed, finding studies that applied only 3
stimuli per position while others applied either 4, 5, 8, or 15
stimulus per intersection.

Quality Assessment Results
We evaluated the quality of the 11 included studies, the range of
points was from 13 to 20 (out of 26 possible applicable domains).
They mostly did not report adequately the following domains:
“Coil location and stability (with or without a neuronavigation
system)” (90%), “Pulse shape” (90%) “Subjects prescribed
medication” (77%), “Use of CNS active drugs (e.g., anti-
convulsant)” (77%), “Any medical conditions” (77%), “Amount
of relaxation/contraction of target muscles” (77%), and “The time
betweenMEP trials” (72.7%). All studies did not report the “Prior
motor activity of the muscle to be tested,” “History of specific
repetitive motor activity,” “level of relaxation of muscles other
than those being tested,” “Subject attention (level of arousal)
during testing” (See Supplementary Table 1).
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FIGURE 1 | Literature search flow-chart.

Cortical Mapping—Whether There Is a
Shift in the Center of Gravity of the Cortical
Mapping in Subjects With Limb Amputation
The CoG coordinates extracted are summarize in Figure 2. We

calculated the CoG coordinates of upper-limb amputee patients

from 6 studies (n = 42) (Dettmers et al., 1999; Hamzei et al.,

2001; Karl et al., 2001; Schwenkreis et al., 2001; Irlbacher

et al., 2002; Gagné et al., 2011), all of them used upper-limb
muscles as TMS targets (biceps brachii, deltoid and trapezoid
muscles). We showed a significant difference of CoG between
the intact vs. affected hemisphere. The pooled CoG coordinates
from the affected hemisphere (contralateral to amputation)
were 43.7 ± 8.2mm (medial-lateral) and 3.4 ± 4.4mm
(posterior-anterior), and from the intact hemisphere were 41.6±
7.1mm (medial-lateral) and 4± 4.5mm (posterior-anterior). We
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TABLE 1 | Characteristics of included studies.

References Type of

study

Sample

size

Type of

amputation

Gender Time since

amputation

(mean ± SD)

Phantom

limb pain

PLP

intensity on

0–10 scale

(mean ± SD)

Type of control

(comparison)

Number of

effective

stimulation site

CoG shift Clinical

correlation

Schwenkreis

et al. (2003)

Cross-

sectional

7 Lower limb, all

traumatic

6 M/1 F 129.0 ± 122.2

months

All with PLP 5.2 ± 1.8 Interhemispheric

and between groups

(healthy control)

Not assessed Significant medial

shift of CoG on AF

No

correlation

Irlbacher et al.

(2002)

Cross-

sectional

10 Upper limb, all

traumatic

10M 35 ± 15 years 6 with PLP 4.5 ± 4.3 Interhemispheric

and between groups

(healthy control)

Increased in

affected side

Significant lateral

shift on AF

No

correlation

Karl et al.

(2001)

Cross-

sectional

study

10 Upper limb, 5 with

PLP, 5 without

PLP

9 M/1 F With PLP: 32 ± 7.4

Without PLP: 22.6 ±

18.3 years

5 with PLP Not reported Interhemispheric

comparison

Increased in

affected side

Significant medial

shift of target

muscles on

affected side only

in patients with

PLP

Not

assessed

Schwenkreis

et al. (2001)

Cross-

sectional

study

11 Upper limb, 10

traumatic, 1

cancer

10 M/1 F 122.6 ± 187.8

months

6 with PLP 3.1 ± 3.4 Interhemispheric

and between groups

(healthy control)

Increased in

affected side

Significant lateral

shift on affected

side

No

correlation

Cohen et al.

(1991)

Cross-

sectional

study

8 Upper limb, 7

acquired, 1

congenital

3 M/5 F 1–12 years Not reported Not reported Interhemispheric

and between groups

(healthy control)

Increased in

affected side

Not assessed Not

assessed

Gagné et al.

(2011)

Cross-

sectional

study

8 Upper limb, all

traumatic

7 M/1 F 11.6 ± 17.4 years 5 amputees

with PLP

4.4 ± 1.8 Interhemispheric

comparison

Not assessed No significant

difference

Not

assessed

Hamzei et al.

(2001)

Case

series

7 Upper limb in early

childhood, 6

acquired, 1

congenital

7M 3–38 years No amputee

with PLP

N/A Interhemispheric

comparison

Increased in

affected side

2 significant lateral

shifts

1 significant

medial shift

Not

assessed

Kew et al.

(1994)

Cross-

sectional

study

6 Upper limb, 3

traumatic, 3

congenital

5 M/1 F 2–12 years 3 with PLP

(traumatic)

3 without PLP

(congenital)

Not reported Interhemispheric

comparison and

comparison

between groups

(healthy control)

Traumatic:

Increased in

affected side

Congenital: No

difference

Not assessed Not

assessed

Röricht et al.

(1999)

Cross-

sectional

study

15 Upper limb 14 M/1 F 38.7 ± 17.5 years Not reported Not reported Interhemispheric

and between groups

(healthy control)

8/15 increased in

affected side (only

3 significant)

Not assessed Not

assessed

Dettmers

et al. (1999)

Case

report

1 Upper limb,

traumatic

1M 14 years No PLP N/A Interhemispheric

comparison

Increased in

affected side

Significant lateral

shift on AF

Not

assessed

Pascual-

Leone et al.

(1996)

Case

report

1 Upper limb,

traumatic

1M 5 weeks, 4 and 11

months

Not reported Not reported Interhemispheric

comparison

Not assessed Invasion of the

deafferented area

by the face and

hand

Not

assessed

AF, Affected hemisphere; CoG, Center of gravity.
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TABLE 2 | Neurophysiological parameters of included studies.

References Type of coil Area of

interest

Muscles evaluated Task performed Size of grid Number

of pulses

applied

Use of prothesis

Schwenkreis

et al. (2003)

Figure-of-eight coil M1 Quadriceps femoris

muscle

No task performed Until no

further MEP could

be elicited in steps

of 1 cm

8 All patients

Irlbacher et al.

(2002)

Figure-of-eight coil M1 Biceps brachii and first

dorsal interosseus

No task performed 1 × 2 cm 5 No prosthesis

within 4 years

Karl et al.

(2001)

Figure-of-eight coil M1 and

S1

Biceps brachii,

Zygomaticus,

Depressor labii inferioris

No task performed 7 × 9 cm 3 Not reported

Schwenkreis

et al. (2001)

Figure-of-eight coil M1 and

S1

Biceps brachii and

deltoid muscles

No task performed Until no

further MEP could

be elicited in steps

of 1 cm

8 5 Myoelectric;

3 Cosmetic;

3 without

Cohen et al.

(1991)

Figure-of-eight coil M1 Biceps brachii and

deltoid muscles

No task performed 1 × 2.5 cm At least 3 Not reported

Gagné et al.

(2011)

Figure-of-eight coil M1 Biceps brachii and

deltoid muscles

3 conditions tested;

(1) at rest;

(2) during a slight

voluntary contraction;

(3) during a phantom

movement

5 × 3 cm 4 Only 4 patients

Hamzei et al.

(2001)

Figure-of-eight coil M1 Deltoid muscle no task performed Until no

further MEP could

be elicited in steps

of 1 cm

Not

reported

2 Static

prosthesis;

1 Bio-prosthesis;

4 without

prosthesis

Kew et al.

(1994)

Figure-of-eight coil M1 and

S1

Deltoid, flexor carpi

radialis and biceps

brachii muscles

No task performed 1 × 2 cm 3 1 Bodypowered;

1 Cosmetic;

3 Myoelectric;

1 Acosmetic

Röricht et al.

(1999)

Figure-of-eight coil M1 Biceps brachii, deltoid

and trapezoid muscles

No task performed 1 × 2 cm 5 All patients

Dettmers

et al. (1999)

Figure-of-eight coil M1 Deltoid muscle No task performed Until no further

MEP could be

elicited in steps of

1 cm

Not

reported

Not reported

Pascual-

Leone et al.

(1996)

Figure-of-eight coil M1 and

S1

Right lower facial

muscles, thenar and

biceps muscles

No task performed 1 × 1 cm 15 Not reported

M1, The Primary Motor Cortex; S1, The Primary Somatosensory Cortex; MEP, Motor evoked potential.

FIGURE 2 | Cartesian plots presenting the CoG coordinates from the included studies and the pooled calculation. (A) Upper-limb amputation; (B) lower-limb

amputation.
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found one study (n= 7) (Schwenkreis et al., 2003) on lower-limb
amputee patients (the target muscle was quadriceps femoris), the
CoG coordinates the affected hemisphere were 13.4 ± 1.5mm
(medial-lateral) and 15.6 ± 5.3mm (posterior-anterior),
and from the intact hemisphere were 21.7 ± 4.3mm
(medial-lateral) and 12.6 ± 6.5mm (posterior-anterior)
(see Figure 3).

Eight studies assessed the number of effective stimulation
sites; six showed significant increase in affected hemisphere,
one study compared traumatic amputees with congenital
amputees and showed increase only in traumatic subjects.
One study with 15 subjects evaluated separately each
subject and showed increased in affected hemisphere
in eight patients while only three were significant
(see Table 1).

Clinical Correlation—Whether This Shift Is
Associated With Pain
TMS parameters of cortical reorganization were not correlated
with clinical characteristics of enrolled subjects. We found
three articles in which investigators attempted to investigate
possible correlations (Table 1) (Schwenkreis et al., 2001,
2003; Irlbacher et al., 2002). These studies evaluated age,
time since amputation, phantom and stump pain intensity,
and their correlation with CoG and number of effective
stimulation sites. None of these studies reported any significant
correlation between neurophysiologic TMS parameters and
clinical features.

Whether There Is a Difference Between
Amputation Without Pain and Amputation
With PLP
Additionally, one study compared the CoG between groups
with PLP and without PLP (Karl et al., 2001). They specifically
reported that the target muscles’ CoG were significantly more
medial (toward the missing hand area) only in patients with PLP.

DISCUSSION

In this review, we evaluated cortical mapping reorganization in
upper and lower limb amputees and how this correlates with
clinical parameters such as phantom limb pain. We showed a
pooled lateral mapping shifting (2.1mm) in upper limp amputees
and a medial shift in lower limb (8.3mm). Besides that, the
functional cortical representation of the missing limb was larger
and more widespread than the non-affected one. However, most
of the articles either did not investigate this change with PLP
or those that did show no correlation between the changes in
mapping and intensity of PLP.

There is a notion that changes in cortical mapping are related
to the presence of acute and chronic pain. One of the ideas
recently hypothesized is that pain can itself cause reorganization
of the motor cortex (Pinto et al., 2016). The exact mechanisms
by which these alterations can correlate with pain presence
are far from being understood. Recently, several patterns of
changes in the motor cortex and somatosensory cortex have been
observed in patients that experience PLP such as (i) Invasion
of neighboring areas into the zone of the deafferented limb

FIGURE 3 | 3D brain representation of the CoG shift (affected vs. intact hemisphere) in upper and lower amputee patients.
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area, CoG shift, and enlargement of the excitable area (Pascual-
Leone et al., 1996); (ii) Clinical correlation between motor cortex
reorganization and PLP, and whether cortical mapping changes
would be a biomarker for the PLP vs. amputation with no
pain; besides the previously mentioned, there are as well two
contrasting findings of how these changes are associated with PLP
(Karl et al., 2001); (iii) The intensity of pain is associated with the
level of reorganization (maladaptive or abnormal/enlargement)
(Lotze et al., 2001), or it is associated with the level of
preservation of the limb representation (Makin et al., 2013).
As to understand these critical patterns, we address each
of them separately.

Invasion of Neighboring Areas Into the
Zone of the Deafferented Limb Area; CoG
Shift and Enlargement of the Excitable
Area
Several research groups have shown that in human subjects,
deafferentation of a limb leads to changes in the activity of
contralateral cortical areas to the side of amputation (Cohen
et al., 1991; Kew et al., 1994). In particular, there is an
invasion of the neighboring areas into the deafferented space
that corresponds to the missing limb. For example, fMRI studies
showed that upper limb amputees that experience PLP have
a medial shift in the sensorimotor representation of the lip
area into the former hand area, these patients also had an
enlarged representation of the lip area during lip movement
when compared with amputees with no pain and healthy controls
(Lotze et al., 2001). These results were also observed in this
review, since following an amputation most of the studies also
revealed evidence of cortical reorganization in the affected motor
cortex (contralateral to the amputated side) for both lower
and upper amputees. The findings of included studies showed
displacements of the pooled CoG corresponding to the evaluated
muscle (shift in neighboring areas), however, there was no
consensus on the direction of the displacement as some authors
showed lateralization of the muscle representation (Dettmers
et al., 1999; Schwenkreis et al., 2001; Irlbacher et al., 2002)
and others showed medial displacement (Pascual-Leone et al.,
1996; Karl et al., 2001; Schwenkreis et al., 2003). In our review,
one study investigated cortical organization before and after
amputation with an single subject, and showed an invasion
of the hand deafferented area by the face area (Pascual-Leone
et al., 1996). The idea of deafferented zones, is also supported
by observations of patients referring sensations in phantoms
that are produced after stimulation of the adjacent areas as well
as distant areas from the missing limb (Ramachandran et al.,
1992). Similar findings were seen when changes of mapping
were assessed by TMS, as studies most frequently showed an
increase in the number of scalp stimulation sites for the most
proximal muscles to the stump, suggesting an enlargement
of the cortical representation. The above mentioned provides
an insight into the potential underlying changes in cortical
sensory-motor representations seen in association with pain in
this population.

Clinical Correlation Between Motor Cortex
Reorganization and PLP, and Whether
Cortical Mapping Changes Would Be a
Biomarker for the PLP vs. Amputation With
no Pain
In our review, although none of TMS studies found a significant
correlation between cortical mapping and intensity of PLP, as
well as stump pain, almost all the analyzed manuscripts showed

evidence of cortical reorganization. Considering the cortical
reorganization findings seen in patients with PLP (Karl et al.,
2001), our results suggest a dissociation between CoG shift
and intensity of pain. Different from TMS studies, EEG and
fMRI studies, reported correlations between the amount of
cortical reorganization and the magnitude of PLP (Flor et al.,
1995; Birbaumer et al., 1997; Grusser et al., 2001). Thus, rather
than focusing on correlation with the intensity of the pain,
future studies should focus on using TMS measurements as
neurophysiologic predictors for the identification of potential
patients with increased risk in developing phantom pain.
Likewise, TMS evaluation can also be used as a follow-up
measurement that will allow determining if a specific treatment
is leading to plastic changes (in plain words the disorganization
is being reorganized) and if these changes can be dependent on
the treatment being tested (Pinto et al., 2016).

In regards of the relationship of cortical reorganization with
the presence of PLP, only one TMS study compared amputees
with and without PLP, showing a significant medial shift in the
CoG (toward themissing hand area) only in upper limb amputees
with PLP (Karl et al., 2001).

This study by Karl et al. (2001) included five upper limb
amputees with PLP and five without PLP in which the first
complete muscle above the stump was used as a target for
the TMS assessments. Although the number of patients was
limited, there was an increase of the mapped area for the
muscles in the amputated site and a medial displacement of
the CoG only in patients with PLP. Also, the five patients
with PLP presented increased cortical excitability (motor-evoked
potentials were larger) when compared with the ones without
PLP. These changes in cortical excitability are another important
pattern of cortical reorganization frequently observed in patients
that experience PLP. TMS studies in amputees showed increased
excitability in the stump muscles (lower motor threshold and
higher motor evoked potential amplitudes), and this response
could be observed in a large scalp area than in the intact
hemisphere (Cohen et al., 1991; Kew et al., 1994; Röricht
et al., 1999). Mechanistic studies suggest that the increase in
excitability after amputation is a result of the down-regulation
of gamma-aminobutyric acid (GABA)-related inhibitory circuits
(Ziemann et al., 1998). Further TMS evidence shows the
increased motor cortex excitability by decreased intracortical
inhibition paradigms measured by paired-pulse stimulation
(Chen et al., 1998; Schwenkreis et al., 2000; Hordacre et al.,
2015). Moreover, studies using neuroimaging techniques, such
as fMRI and Positron emission tomography (PET), are in
agreement with TMS data showing that BOLD activations
in both somatosensory and motor cortices are significantly
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greater in patients with phantom limb pain (Kew et al.,
1994).

Besides the alterations in brain activity observed in the
contralateral area corresponding to the amputated limb, there is
strong evidence of increased motor excitability in areas ipsilateral
to the lost limb. For example, ischemic nerve block of the right-
hand induced a transient increase in motor control in the left
hemisphere; this process seems also to be driven by changes in
GABA-ergic modulation (Werhahn et al., 2002). Although this
review did not focus in changes in motor cortex excitability
measured by the TMS, data suggests that the lack of inhibition in
the motor cortex may be contributing to the underlying phantom
limb pain mechanisms.

Furthermore, the amputees with PLP presented a medial
somatosensory displacement of the mouth area into the hand
area, similarly to the motor cortex displacement (Karl et al.,
2001). This somatosensory reorganization was significantly
correlated with the intensity of PLP. Therefore, the motor
cortex reorganization might be secondary to somatosensory
cortex changes. These results suggest that the motor cortex
reorganization might be a better marker for the presence of
PLP vs. amputation with no pain. However, larger studies are
needed to gather better data and adequately test the hypothesis in
which the deafferentation results in disrupted functional cortical
representations and that this disruption is associated with the
presence of pain.

The Intensity of Pain Is Associated With
the Level of Reorganization (Maladaptive
or Abnormal/Enlargement), or It Is Related
to the Level of Preservation of the Limb
Representation
Although several studies documented an association between
the presence and/or the intensity of PLP (and other types of
chronic pain) with cortical reorganization alterations (shifts) in
the representation of sensory and motor maps in humans, there
is a current debate regarding the concept of reorganization. For
example, fMRI studies showed that expansion or shift of the lip
representation into the amputated hand area is correlated with
higher pain levels: greater cortical remapping—more intense
pain (Flor et al., 1995; Lotze et al., 2001; Raffin et al., 2016).
Additionally, one study showed that after mirror therapy there
is a reversal of this dysfunctional shift, which is significantly
correlated with the reduction in phantom limb pain (Foell et al.,
2014). However, it has been proposed that phantom pain in upper
limb amputees is independent of cortical remapping, and it is
associated with increased inputs into the cortical representation
zone of the amputated limb (Makin et al., 2013). In this case,
higher local activity and structural integrity lead to greater pain
intensity. Some differences in techniques in the imaging analysis
and experimental protocols could have been the reason for these
mixed (but not mutually excluding) findings and should be
considered when evaluating the literature. Even though TMS
studies showed evidence of cortical reorganization following
amputation and this reorganization is mainly observed in
amputees with PLP, so far, the relationship between the intensity

of pain with the amount of reorganization remains unclear.
Our results suggest a lack of association between CoG shift
and intensity of pain, but an association between these changes
and the presence of pain—i.e., greater cortical remapping, the
higher probability of having PLP. These observations suggest
that deafferentation and alterations in local excitability patterns
(decrease in inhibitory activity) showed by TMS andMRI studies
can lead to shifts in network connections that can facilitate
cortical reorganization that might lead to PLP. Moreover, the
amount of reorganization—that could be a result of unmasking
synaptic connection due to lack of inhibition—is associated with
the intensity of pain as described by fMRI studies.

TMS assessment of cortical reorganization provides
insights into PLP underlying mechanisms. Understanding
the mechanisms of central reorganization can be used to explain
the potential pain modulation effects of neuromodulation
techniques, such as non-invasive brain stimulations (Collins
et al., 2018; Meeker et al., 2019). Regarding the previous
studies showing the top-down motor cortex modulation of pain
networks through thalamocortical connections (Garcia-Larrea
et al., 1999; Miranda et al., 2006; Yoon et al., 2014), the motor
cortex can be a potential treatment target to decrease PLP.
Therefore, the modulation of sensory-motor plasticity by non-
invasive brain stimulation techniques, such as transcranial direct
current stimulation, can play a role to optimize rehabilitation,
and pain management of patients with amputation (Pinto et al.,
2016).

However, the role of the somatosensory cortex and its
reorganization after an amputation is far from being understood.
Therefore, more studies evaluating larger samples and using
more than one measurement of reorganization are necessary to
elucidate this discussion. In the case of TMS studies, the main
limitation is the numerous methodological variants observed
across the performed studies as there is a wide variety of grid
sizes, shape designs, and assessment protocols. Due to sample
heterogeneity (upper or lower limbs amputation), several sizes
of grids were observed as to account for the different sizes and
position of the cortical representation of the evaluated limp or
determinedmuscle. The variation of the prothesis use and type in
studies can be another reason of the different results by affecting
motor and sensory areas (Di Pino et al., 2014; Ferreri et al., 2014).
The heterogeneity of trial design, population idiosyncrasy, and
small sample sizes can also explain these mixed findings. The
sample size among studies reviewed ranged from 1 to 15 patients,
which may produce unpowered results and a more significant
chance of a type II error.

CONCLUSION

In conclusion, our review provides further evidence for post-
amputation cortical reorganization in the affected motor cortex
and suggests that the cortical reorganization is seen mainly
in patients with PLP but not correlated with the intensity
of PLP. Besides that, the stability and reliability of TMS
measures across time support the use of TMS in studying
cortical plasticity in amputees (Hetu et al., 2011). Given the
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limitations of the current data, longitudinal studies with larger
sample size, and more homogeneous populations are needed
to define underlying cortical mechanisms of PLP and their
association with clinical parameters. The role of motor cortex
reorganization is of high clinical interest, especially when
applied for prevention and treatment response of phantom
limb pain.
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