
 International Journal of 

Molecular Sciences

Article

Application of Homology Modeling by Enhanced
Profile–Profile Alignment and Flexible-Fitting Simulation to
Cryo-EM Based Structure Determination

Yu Yamamori 1 and Kentaro Tomii 1,2,*

����������
�������

Citation: Yamamori, Y.; Tomii, K.

Application of Homology Modeling

by Enhanced Profile–Profile

Alignment and Flexible-Fitting

Simulation to Cryo-EM Based

Structure Determination. Int. J. Mol.

Sci. 2022, 23, 1977. https://doi.org/

10.3390/ijms23041977

Academic Editor: Giuseppe Zanotti

Received: 17 December 2021

Accepted: 9 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and
Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan; yu.yamamori@aist.go.jp

2 AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National
Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan

* Correspondence: k-tomii@aist.go.jp

Abstract: Application of cryo-electron microscopy (cryo-EM) is crucially important for ascertaining
the atomic structure of large biomolecules such as ribosomes and protein complexes in membranes.
Advances in cryo-EM technology and software have made it possible to obtain data with near-atomic
resolution, but the method is still often capable of producing only a density map with up to medium
resolution, either partially or entirely. Therefore, bridging the gap separating the density map and
the atomic model is necessary. Herein, we propose a methodology for constructing atomic structure
models based on cryo-EM maps with low-to-medium resolution. The method is a combination
of sensitive and accurate homology modeling using our profile–profile alignment method with a
flexible-fitting method using molecular dynamics simulation. As described herein, this study used
benchmark applications to evaluate the model constructions of human two-pore channel 2 (one target
protein in CASP13 with its structure determined using cryo-EM data) and the overall structure of
Enterococcus hirae V-ATPase complex.

Keywords: cryo-EM; flexible fitting; homology modeling; profile–profile alignment

1. Introduction

The application of cryo-electron microscopy (cryo-EM) has become an important tool
for ascertaining the structures of large biomolecules such as ribosomes and membrane pro-
tein complexes [1–8]. Its achievements are underscored by the recent increase in the number
of Protein Data Bank (PDB) archive entries related to cryo-EM [9]. Although improvements
in both cryo-EM technology and software enable us to obtain near-atomic-resolution EM
data [4], it is likely that only a medium-to-low resolution density map is obtained, either
partially or completely. Methods must be examined to bridge the gap separating weak
density derived from cryo-EM experiments and an atomic-resolution model.

For the determination of atomic structures, various methods have been proposed
based on density maps derived from cryo-EM experiments. Two important categories are
template-free, i.e., de novo modeling methods [10–14] and template-based, i.e., flexible-
fitting modeling methods [15–21]. De novo modeling is used for methods constructing
an all-atom or Cα model by detecting and tracing atomic positions in an EM map with-
out using a template structure. For example, de novo modeling with the pathwalking
method uses a traveling salesman problem solver for backbone tracing, which requires
slight manual adjustment [10,11]. The Rosetta software suite includes an automatic de
novo modeling protocol, which assembles fragment structures from a protein-structure
library with subsequent optimization, to be fitted to an EM map [12,13]. Another recently
developed fully automatic method, MAINMAST, is a method connecting local dense points
identified as main-chain or side-chain positions by presuming a minimum spanning tree.
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EM maps with around 4 Å resolution have sufficient information for this method [14].
Flexible-fitting modeling methods optimize an initial structure to achieve a better fit to an
EM map using various methods such as real-space refining [15,22], molecular dynamics
(MD) simulation [16,18–21], and normal mode analysis [17]. Initial structures are provided
from known X-ray structures [17] or are based on the results of homology modeling [18].
MDFF, which introduces an EM-map-derived term into the MD force field, has been a
widely applied method among flexible-fitting methods [20,23,24]. Other methods such as
cryo-fit [21], cryo-fit2 [25], and MDfit [19] are classified as cross-correlation-based methods
in which a bias term to the EM map is added to the force field. This is designed to maximize
the cross-correlation coefficient (CCC) [17,26] between an EM map and an atomic model.

Regarding recent progress in the modeling of protein structures, AlphaFold2 (AF2) [27]
achieved magnificent results in the modeling of a monomer structure of protein for compre-
hensive targets in CASP14 [28]. For multimer prediction, it remains a frontier of prediction.
For CASP14, a method that combines template-based and ab initio docking with deep-
learning-based contact prediction has shown great success for multimer prediction [29–31].
In fact, AF2, in its earlier versions, did not support multimer prediction. It is not necessarily
a good initial structure for rigid-body docking, even though the prediction was regarded
as a success for a monomer structure [32]. In more recent progress, AF2-multimer [33]
was tuned for multimer prediction. Other efforts to apply the original AF2 to multimer
prediction have been reported in the relevant literature [34,35]. Of course, these also led
to considerable improvement in multimer prediction. Research does not seem to have
reached the stage at which AF2 has achieved its monomer predictions. For application
to cryo-EM-data-based modeling, recent CASP14 indicates that examples exist for which
the AF2 model improves the accuracy of the structure determined using the de novo
method [36]. More recently, AF2 has been applied to a more practical case of modeling of
nuclear pore complexes [37].

As an application of our developed homology modeling method [38], we propose
a new scheme of atomic structure modeling based on a cryo-EM density map with sub-
nanometer or higher resolution. We have developed a highly sensitive and accurate ho-
mology modeling method using enhanced profile–profile alignments. The profile–profile
alignment method has been widely regarded as a powerful tool not only for finding pro-
teins suitable for templates but also for producing an accurate alignment between a target
sequence and a template sequence. Our own profile–profile alignment and comparison
methods, constituting the FORTE method uses a scoring scheme based on the correlation
coefficient between two profile columns [39,40]. Modeling protocols including profile–
profile alignment using FORTE have already been applied to many advanced or practical
studies: past and recent critical assessments of techniques for protein structure predic-
tions (CASP) experiments [38,40], critical assessment of predicted interactions (CAPRI)
experiments [41,42], supporting the structure determination and modeling of the sorting
and assembly machinery (SAM) complex [5], translocation of the outer membrane (TOM)
complex (mitochondrial outer membrane translocators) [43], and a CASP community-wide
experiment on modeling SARS-CoV-2 proteins causing the coronavirus disease, CASP-
commons (CASP-COVID) [44]. The noteworthy properties of our method are its ability
to predict oligomeric structures and its suitability for providing an initial structure for
structure determination using cryo-EM [9,38]. For the study described herein, we combine
our homology modeling method using enhanced profile–profile alignments and flexible
fitting using MD simulation. The homology models generated using our method and
filtered by the degree of agreement with an EM map are used as initial structures for
flexible-fitting simulation. We expect that there are conditions under which our homology
models can be better starting points for flexible-fitting simulation than models from other
methods. These include the condition that the target is a multimer and that the provided
EM map has low resolution that is inapplicable to de novo modeling.

To demonstrate the performance and applicability of our method, we present results
obtained for two applications intended for modeling of a protein complex for which
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structures are already known and for one application of modeling the protein complex for
which the structure has not yet been determined: human two-pore channel (TPC) 2 and
the whole structure of Enterococcus hirae V-ATPase (Eh V-ATPase). Human TPC2 is a target
in CASP13 for which structures have been ascertained using the cryo-EM technique [9,45].
Furthermore, in the Supporting Information, we present an additional example of modeling
for the a-subunit of Thermus thermophilus V-ATPase, with a structure that was determined
using cryo-EM techniques. For comparison of the performance of our homology modeling
method with those of other methods as the generator of a starting point for flexible fitting,
flexible-fitting simulations were undertaken for all predicted models of the target, generated
without information from the cryo-EM map. Then, the entire structure of Eh V-ATPase,
for which the atomic structure remains unclear, is presented as a demonstration that our
method is applicable for a huge and complex target. Until recently, cryo-EM map single-
particle analysis with the Zernike phase plate provided the entire structure of Eh V-ATPase
only at 17.3 Å resolution [46]. In this report, we explain the construction of atomic structure
models of Eh V-ATPase based on the density map from a further improved cryo-EM map at
subnanometer resolution using the Volta phase plate. Our method generated a reasonable
model of the entire structure of Eh V-ATPase that agrees well with the EM map.

2. Materials and Methods

Our proposed method includes two parts: generating a set of models using our
homology modeling method for a target sequence or sequences, and flexible fitting of
the generated models via an MD simulation biased to an EM map. First, we generate
a set of three-dimensional (3D) models through our template-based modeling pipeline.
These models are evaluated both by the score based on fitting with the EM map and the
scores of model quality. Then, models with higher scores are subjected to flexible-fitting
simulations to improve the fit to the EM map. Finally, scores that evaluate the quality of
the 3D models and the fitting with the EM map are used as criteria for selecting models.
For protein-complex modeling, the EM map is divided into fragments corresponding to
each subunit. Then, 3D models generated by the homology modeling pipeline for each
chain (subunit) are evaluated based on fitting with the EM map fragments. Models with
higher scores for each subunit are used for flexible fitting of the whole model.

2.1. Profile–Profile-Alignment-Based Homology Modeling

The homology modeling method is based on the latest version of our pipeline [38].
The whole protocol of the homology modeling method is summarized as the pipeline in
Figure 1, which presents the following steps: (1) profile constructions , (2) profile–profile
alignment and scoring , (3) 3D model construction , and (4) evaluations of models in both
senses of scoring functions and the fit to the EM map.

First, the step for the construction of profiles is explained. Technical details are
presented in the Supporting Information of the references [38]. As the template library of
sequences, a representative set of protein chain sequences was extracted from PDB using
CD-HIT [47,48] with the threshold of 98 % sequence identity. Three sequence retrieval
methods were applied for both target and template sequences. (1) In the first method, we
used SSEARCH [49] to obtain similar protein sequences with a sensitive matrix MIQS [50]
against the NCBI nr database. Then, a multiple sequence alignment (MSA) was obtained
using MPI-parallelized MAFFT [51]. To construct a profile, PSI-BLASTexB [52], an extension
of the original PSI-BLAST [53], was used to obtain a better position-specific scoring matrix.
(2) In the second method, we conducted a DELTA-BLAST [54] with one iteration against the
NCBI’s Conserved Domain Database (CDD) to construct a profile. (3) In the third method,
an HHblits [55] search was first performed against the Uniclust database [56] to find similar
protein sequences and an MSA using them. Then, we performed a PSI-BLASTexB search
against the NCBI’s nr database using the constructed MSA as a seed MSA. The combination
of software packages and databases used for the profile generation are summarized in
Table 1.
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Figure 1. Schematic showing our homology modeling pipeline.

Table 1. Summary of methods used for profile generation: “nr”and “CDD” stand for the NCBI nr
database and the Conserved Domain Database, respectively. Numbers in () represent the numbers
of iterations.

Method

(1) SSEARCH(nr,MIQS) + MAFFT + PSI-BLASTexB(nr,3)
(2) DELTA-BLAST(CDD)
(3) HHblits(Uniclust) + PSI-BLASTexB(nr,1)

FORTE, our profile–profile alignment algorithm, was used to calculate an alignment
and a score between a target and template profiles. The FORTE scoring scheme is based
on the correlation coefficient found between the two profile columns to be compared. The
Z-scores of the alignments are calculated using alignment scores and log-length correction.
If no good template is found for the entire length of the target sequence in this step, then
the target sequence is split into multiple fragments, where possible, in order to find a
good template.

Based on the obtained alignments of the target sequence with the template sequence
and their Z-scores, the 3D models of the target protein (or protein complex) were con-
structed using MODELLER [57]. We constructed 3D models with higher-ranked templates
according to their Z-scores. Fundamentally, for each combination of query profile and
template profiles, the 10 highest-ranked alignments generated by FORTE were used for
model construction. For each alignment, five models were constructed by MODELLER. If
several good templates existed, then we also tried to generate models with multi-template
alignment. In the construction of the multimer, when multimer templates were found,
those templates were assigned priority. The generated models were sorted by the model
quality scores calculated using the VERIFY3D [58,59] and dDFIRE programs [60,61]. The
secondary structure of a target protein was also predicted using RaptorX Property [62],
which is an effective method. The available standalone scripts can be implemented easily
in our modeling pipeline. Similarity between the secondary structure of a model and the



Int. J. Mol. Sci. 2022, 23, 1977 5 of 20

predicted structure was evaluated at this stage. All constructed models except for those
with an extremely low score were subjected to a series of rigid-body dockings to the EM
map. The CCC of each model was calculated. Rigid-body docking and calculation of the
CCC was performed using the colores program in the Situs package [63]. About ten up
to hundreds of models with higher scores were selected as candidates for the next step:
flexible fitting. Among the described criteria, we preferred the goodness-of-fit of the CCC
between the model and the EM maps to the CCCs found for others.

2.2. Correlation-Based Flexible Fitting

Flexible fitting is aimed at fitting an atomic model to the density map derived from a
cryo-EM experiment. In our scheme, we adopted the cryo-fit [21] or cryo-fit2 program [25]
in PHENIX. For TPC2, flexible-fitting simulations were performed using cryo-fit2 with
the respective conditions of map-weight-multiply= 100. For Eh V-ATPase, flexible-fitting
simulations were performed using cryo-fit with the MD engine, a modified version of
GROMACS [64].

Hereinafter, we briefly summarize the method we adopted. The flexible-fitting proto-
col is fundamentally CCC-based fitting using MD simulation. This fitting was performed
to try to maximize CCC without loss of structural features of the models such as secondary
structure or residue–residue contacts. A benefit of CCC is that it is a measure of how the
model fits a cryo-EM density map [17,26]. The density derived from cryo-EM is represented
by an intensity vector on a cubic lattice as ρexp.(i, j, k), where (i, j, k) are the indices for
grid space points. To measure the similarity between an atomic model and a cryo-EM
density map, the computed density corresponding to the atomic coordinates of the model
is defined as

ρsim. =
N

∑
n=1

∫ ∫ ∫
Vijk

gn(x, y, z)dxdydz. (1)

In addition, the Gaussian function of (x, y, z) space gn(x, y, z) is defined as

gn(x, y, z) = exp
[
− 3

2σ2

{
(x − xn)

2 + (y − yn)
2 + (z − zn)

2
}]

, (2)

where (xn, yn, zn) denote the coordinates of the n-th atom of the model and σ represents
the cryo-EM map resolution. Then, the CCC between the cryo-EM data and atomic models
is defined as

CCC =
∑ijk ρexp.(i, j, k)ρsim.(i, j, k)√
∑ijk ρexp.(i, j, k)2ρsim.(i, j, k)2

. (3)

The objective function of the flexible-fitting simulation includes the biased term EEM
to maximize CCC as

EEM = N × k(1 − CCC), (4)

where k is a parameter for the strength of the biased term along with the force field term
and N stands for the number of heavy atoms. Furthermore, an additional term to maintain
the residue–residue contact of the initial structure is used.

2.3. Correlation-Based Metrics

For evaluation of the model in the terms of the goodness-of-fit to the EM map, cross-
correlation-related (CC-related) values implemented in the map_model_cc module in
PHENIX such as CCmask, CCpeaks, and CCvolume [65] were used as a measure of overall
fitness. CCmask uses map values inside a mask with a fixed radius to measure the fit of
atomic centers. In addition, CCvolume and CCpeaks compare the map regions with the
highest density values to to measure the respective degrees of fit of molecular envelopes
and the strongest peaks [22]. PHENIX’s local CCbox measure and the segment-based
Manders’ overlap coefficient (SMOC) score [66] implemented in the TEMPy software [67]
were used as measures of the local model-to-map fitness. Selection of these measures was
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conducted based on correlation analyses of various measures related to the fit to an EM
map [9].

2.4. Modeling of human TPC2 (T0984o in CASP13)

For demonstration and comparison of the performance of our method with others,
T0984o from CASP13 was selected [9]. Human TPC2 T0984o is a homodimer complex
with 752 residues per monomer. Two-pore calcium channel proteins play important
roles in regulating lysosomal membrane potential. The apo structure was found using
cryo-EM techniques based on an EM map with 3.5 Å resolution (PDB ID code is 6NQ1;
EMDB ID code is EMD-0478) [45]. In CASP13, for the target T0984o, all submitted models
were generated without information from cryo-EM data (the target deadline in CASP13
was 27 June 2018); 157 dimeric structures submitted from 34 groups including ours are
available from the CASP13 website (https://www.predictioncenter.org/casp13/multimer_
results.cgi?target=T0984o, accessed on 10 January 2022). Our five submitted models were
generated using the homology modeling pipeline explained herein. The PDB ID codes of
the template used were 6C96 and 6C9A (both are homodimer structures) [68]. First, all the
submitted models were subjected to rigid-body fitting to the EM map. Then, after excluding
the models that fit the EM map poorly, flexible-fitting simulations of the 96 models were
performed. After flexible fitting, real-space-refinement calculations using PHENIX were
performed. Finally, a comparison between our fitted model and the PDB structure was
performed in terms of both the goodness of fit to the EM map and the similarity with the
reference structure. The metrics described in Section 2.3 were used for the goodness of fit
to the EM map. The TM-score [69] was used for measuring similarity among structures.

2.5. Modeling of Eh V-ATPase

As a demonstration of our method for a rather practical case, the target biomolecule
of Eh V-ATPase was used. V-ATPase is a rotary molecular motor that actively transports
ions coupled with ATP hydrolysis. It comprises 24 chains with 9 types of subunits (three A-
subunits, three B-subunits, a D-subunit, two E-subunits, an F-subunit, two G-subunits, an
a-subunit, 10 c-subunits, and a d-subunit), as shown in Figure 2. The membrane-embedded
region, called the V0 region (a-, c-, and d-subunits), functions for ion transportation. The
water-soluble region, designated as the V1 region (A-, B-, D-, E-, F-, and G-subunits), func-
tions for ATP hydrolysis. The two EG complexes are called stalk A and B. In comparison
with the well-studied molecular motor F-ATPase, there are counterpart subunits except for
the d-subunit in the V0 region of V-ATPase. Both V-ATPase and F-ATPase have been known
to rotate 120 degrees counterclockwise per ATP hydrolysis. Very recent studies of single-
molecule analysis of Eh V0 ATPase revealed a sub-step at 40 degrees. It is noteworthy that
the sub-step differs from those of the well-studied F1-ATPase. Some subunits have already
been found using X-ray crystallography, such as the 10-mer of the c-subunit complex c-ring
(PDB ID code: 2BL2 [70]), DF-complex (PDB ID code: 3AON [71]), A3B3-complex (PDB
ID code: 3VR2 [72]), and A3B3DF-complex (PDB ID code: 5KNB [73]). The first entire
structure appeared recently at 17.3 Å resolution using cryo-EM data for recombinant Eh
V-ATPase (EMDB ID code: EMD-9661 [46]). Here, we particularly examine the construction
of an atomic model based on cryo-EM data at 6.5 Å resolution, derived from cryo-EM
experiments with the Volta phase plate provided by the National Institute for Physiological
Sciences (NIPS) Electron Microscopy Group.

https://www.predictioncenter.org/casp13/multimer_results.cgi?target=T0984o
https://www.predictioncenter.org/casp13/multimer_results.cgi?target=T0984o
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Figure 2. Schematic view of Eh V-ATPase.

The following strategy for modeling of Eh V-ATPase was used. First, the EM map was
split into subunits with appropriate size using UCSF Chimera [74,75]. For subunits where
individual structures had already been found using X-ray observations, rigid-body fitting
to the EM map was performed (c-ring and A3B3DF complex). Further flexible-fitting MD
simulation was performed for the A3B3DF-complex. In cases for which the whole subunit
structure is unknown, homology modeling was performed (E-, G-, a-, and d-subunits).
The most recent date of the considered template was published as February 2019. For this
stage, we prepared multiple models and ranked them based on how they fit the EM map
for each subunit. Then for higher-ranked models, flexible fitting was performed using MD
simulation with restraints for the EM map. Finally, each subunit model was assembled.
For placement of the E- and G-subunits as stalk A or B, we first used a model following
the arrangement of 5Y5X [76]. Other subunits were assembled based on cryo-EM maps
and partially reconstructed using MODELLER to avoid clashes. Further overall flexible
fitting was performed using MD simulation. The MolProbity [77] score and the CCC with
the whole EM map were calculated for the models at the final stage.

3. Results
3.1. Modeling of human TPC2 (T0984o in CASP13)

Figure 3 presents the results of flexible fitting of all submitted dimer models for T0984o
to the EM map (EMD-0478). In Figure 3, each graph shows the change in values of the fit to
the EM map and shows the similarity to the reference structure for the submitted models
and the models after fitting. In Figure 3a, the change in CCmask was calculated by PHENIX,
in Figure 3b the change in CCC was calculated using colores, and in Figure 3c the changes
in TM-scores are shown. The X-axis and Y-axis show values for the model obtained before
and after fitting, respectively. TM-scores between the PDB structure (6NQ1) and model
structures were calculated using the MM-align program [78]. One point, in the figures,
represents one model. The black, red, and gray points correspond to the PDB structure, our
five submitted models, and models submitted by other groups, respectively. Among the
submitted models, our models, (before fitting) are top-ranked in terms of CC-related values
and TM-score, as shown [9]. However, even for a model with a high TM-score, the CCmask
value is rather lower (up to 0.3) than that of the PDB structure (0.8). From Figure 3, it is
apparent that the CC-related values increased considerably and that the TM-score increased
slightly as a result of the flexible-fitting simulation. Models with TM-score values > 0.85



Int. J. Mol. Sci. 2022, 23, 1977 8 of 20

after the fitting simulation, such as YASARA(TS004), Bates-DMM(TS163), Chou-u(TS047),
Kiharalab-capri(TS303), Zhiping-Weng(TS114), Cabonelab(TS299), and Seok(TS068), shown
as dark-gray points in Figure 3, are also top-ranked.
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Figure 3. Flexible-fitting simulation of submitted dimeric models to T0984o in CASP13: (a) changes
in the values of CCmask (PHENIX) with EM map (EMD-0478) caused by the flexible-fitting simulation;
(b) changes in the values of CCC (colores) caused by the flexible-fitting simulation; and (c) changes
in the values of TM-score with the PDB structure (6NQ1) caused by the flexible-fitting simulation.
For each figure, the X-axis shows the values of submitted models before fitting; the y-axis shows the
values of models after fitting. Red points correspond to our five submitted models of D-Haven(TS329)
(T0984TS329_o1, T0984TS329_o2, T0984TS329_o3, T0984TS329_o4 and T0984TS329_o5). Dark-gray
points correspond to YASARA(TS004), Bates-DMM(TS163), Chou-u(TS047), Kiharalab-capri(TS303),
Zhiping-Weng(TS114), Cabonelab(TS299), and Seok(TS068). Gray points correspond to other submit-
ted models. The black point corresponds to the PDB structure.

The superimposed structures between the PDB structure and our model with the
highest CCC and TM-score (before and after fitting) are portrayed in Figure 4. The TM-
score of this model is the highest among all the models subjected to flexible fitting. For
consideration of the overall fit to the EM map, the CC-related values are presented for
comparison in Table 2. These results demonstrate that our final model resembles the
reference structure in terms of both the goodness of fit to the EM map and in terms of
similarity in structure.
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(a) (b)

Figure 4. (a) 6NQ1 (green) and one of our submitted models (red) to T0984o in EM map (EMD-0478).
The model is the rigid-body fit to the map produced by colores in the Situs program. (b) 6NQ1
(green) and our submitted model with the highest CCmask value after flexible-fitting simulation (red)
to T0984o in the EM map (EMD-0478). The RMSD value of the fitted model with the reference PDB
structure is 2.93 Å for the 1242 residues (except the missing residues of 6NQ1) (calculated using the
MM-align program).

Table 2. Scores of 6NQ1 and of our model of T0984o for CASP13: CCmask, CCvolume, CCpeaks, and
CCbox were calculated using the map_model_cc module in PHENIX. Correlation was calculated
using the fit_in_map module in Chimera. The value of SMOC over every residue was calculated
based on the values obtained using TEMPy.

6NQ1 Our Model

CCmask 0.823 0.755
CCvolume 0.794 0.713
CCpeaks 0.516 0.468
CCbox 0.585 0.557
CCC 0.593 0.566
Correlation (fit_in_map) 0.858 0.829
SMOC (avg.) 0.850 0.811
TM-score 1.0 0.930

The SMOC of each chain was also calculated for both the reference structure and
for our model (Figure 5), indicating that our model agrees well with the EM map locally,
except for several regions. The regions in which the SMOC value of our model is lower
than the value of the reference structure are highlighted in pink and red (red regions are
lower than pink) in Figure 6, except for the residues with almost equal values. For chain
A, the residues 103–128, 190–198, 316–321, 366–410, 444–473, 521–525, 539–545, 558–565,
621–631, and 693–701 are the corresponding residues. For chain B, the residues 103–114,
190–199, 313–323, 367–392, 399–409, 444–472, 521–525, 539–546, 621–631, and 693–701 are
the corresponding residues. To clarify this issue, we investigated the effects of template
structures (PDB IDs are 6C96 and 6C9A) for our model. The similarity between template
PDB structures and the reference PDB (6NQ1) structure was calculated using the TM-
score program. In Figure 5, the regions wherein the template structures do not match the
reference structure well are shown as bold lines on the bottom of the graphs (black line for
6C96 and gray line for 6C9A). For residue regions 106–116, both templates used lacked the
corresponding region. These results suggest that, for some loop regions and regions near
loops, the initial structure was insufficient to match the EM map, even after flexible-fitting
simulation. This finding means, in other words, that the difficulty in the initial structure
originated from the template structure.
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Figure 5. SMOC calculated using TEMPy for 6NQ1 and our model for (a) chain A and (b) chain B. The
black line corresponds to 6NQ1. The pink line corresponds to our model. The black and gray lines
show the residue region for which the template structures do not match well to the correspondence
of the reference structure (black line for 6C96; gray line for 6C9A).
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Figure 6. Our model with the highest CCC after flexible-fitting simulation. Regions in which the
SMOC value of our model was lower than the value of 6NQ1 are highlighted as pink and red (red
regions are lower than pink).

3.2. Modeling of Eh V-ATPase

The results for the modeling of each subunit and the whole structure of Eh V-ATPase
using our homology modeling pipeline and flexible fitting are examined. The structures of
the complex of A- and B-subunits (A3B3-complex), complex of A-, B-, D-, and F-subunits
(A3B3DF-complex or V1-center complex), and complex of c-subunits (10mer of c-subunit,
c-ring) were found using X-ray crystallography. The structures of other subunits (E-, G-, a-,
and d-subunits) remain unknown, therefore remaining as targets of the proposed method.
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We first examine how existing structures fit to the EM map (fragments). Figure 7a
presents the results of rigid-body fitting to the corresponding EM map fragment of the
X-ray structures of the c-ring. The X-axis presents the CCC values calculated using the
colores program in the Situs package; the Y-axis shows the value of the resolution of the
structure. Each black point corresponds to one structure, with PDB ID codes of 2BL2(2.1 Å),
2CYD(2.8 Å), 2DB4 [79] (2.4 Å), and 3AOU [79] (3.14 Å) (with numerical values in parenthe-
ses representing their resolutions). Considering both CCC and the resolution, the structure
of 2BL2, with a CCC of 0.89, was selected for the next step.
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Figure 7. Rigid-body fitting of (a) c-ring and (b) V1-center complex (black points) and (b) flexible
fitting of V1-center complex (red points). The X-axis shows the cross-correlation coefficient of crystal
structures. The Y-axis shows the resolution for each structure.

Figure 7b presents the results of rigid-body fitting and flexible fitting of the V1-
center complex. The sources of the initial structures of the V1-center complex are X-
ray structures: PDB ID codes 3VR4 [72] (2.2 Å), 3VR5 [72] (3.9 Å), 3VR6 [72] (2.7 Å),
5KNB(3.3 Å), 5KNC [73] (3.0 Å), and 5KND [73] (2.9 Å). In addition to these, the docking
structures of 3VR2(2.8 Å) and 3AON(2.0 Å), 3VR3(2.8 Å), and 3AON(2.0 Å) were considered.
For each structure, residues, mainly short loops, without template(s) were modeled using
MODELLER. The black points are rigid-body fitted structures. Models with high CCCs
were subjected to flexible-fitting simulation. The red points are flexibly fitted structures of
selected structures. For the next step, the flexibly fitted structure from 5KNB was selected.
Its CCC was 0.92.

Next we examine the results of homology modeling for E-, G-, a- and d-subunits, for
which structures are unknown (E- and G-subunits belong to the V1 region, and a- and
d-subunits to the V0 region). The whole EM map was split into fragments corresponding to
two EG complexes (stalk A and stalk B), an a-subunit, and a d-subunit. The gray points in
Figure 8a,b are scattered points of model quality scores and the CCC of stalk A. In addition,
Figure 8c,d show those of stalk B. Each point represents one complex structure. To construct
these EG-complex structures, we performed homology modeling of the E-subunit and
G-subunit. Then, based on the scores of similarity with the secondary structure prediction
by RaptorX Property, the model quality scores were calculated using VERIFY3D, dDFIRE,
and the Z-score of FORTE, and we selected the numbers of structures for each subunit (45
for the E-subunit and 35 for the G-subunit). The EG-complex structures were composed
of selected subunits by superposition on the structure of PDB ID code 5Y5X. Structures
with a higher CCC (CCC > 0.75) were selected for additional flexible-fitting simulation.
Gray points in Figures 9 and 10 present the results of the homology modeling of the d- and
a-subunits. For both figures, the X-axes show the CCC with corresponding fragments of the
EM map and the Y-axes show scores of model quality or similarity with secondary structure
prediction. For the d-subunit, models with higher scores (CCC > 0.75 and similarity with
secondary prediction > 0.75, and the score of VERIFY3D > 80) were selected for the next
flexible-fitting simulation. For the a-subunit, models with higher scores (CCC > 0.7 and
similarity with secondary prediction > 0.7, and the score of VERIFY3D > 80) were selected
for the next flexible-fitting simulation. Then, the results of the flexible-fitting simulations for
each selected model of stalks A and B, the d-subunit, and the a-subunit were examined. The
changes in the scores are presented as different positions of the black points in Figures 8–10.
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In each figure, the gray points represent the scores of models generated by homology
modeling. The black points show the scores of models obtained from the selected models
after flexible-fitting simulations. All figures show that the CCC increases without loss of
model quality.
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Figure 8. (a) Scores of VERIFY3D vs. CCC calculated using the colores of homology models before
and after flexible-fitting simulations of EG complex (stalk A). (b) Scores of dDFIRE vs. CCC calculated
using the colores of homology models before and after flexible-fitting simulations of EG complex
(stalk A). (c) Scores of VERIFY3D vs. CCC calculated using the colores of homology models before
and after flexible-fitting simulations of EG complex (stalk B). (d) Scores of dDFIRE vs. CCC calculated
using the colores of homology models before and after flexible-fitting simulations of EG complex
(stalk B). For each figure, the gray points denote homology models before flexible fitting. The filled
dark-gray points represent the models selected for flexible fitting. The black points stand for models
after flexible fitting.
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Figure 9. (a) Scores of VERIFY3D vs. CCC calculated using the colores of homology models before
and after flexible-fitting simulations of the d-subunit. (b) Scores of dDFIRE vs. CCC calculated
using the colores of homology models before and after flexible-fitting simulations of the d-subunit.
(c) Similarity with secondary structure prediction by RaptorX Property vs. CCC calculated using the
colores of homology models before and after flexible-fitting simulations of the d-subunit. For each
figure, the gray points represent homology models before flexible fitting. The filled dark-gray points
represent the models selected for flexible fitting. The black points denote models after flexible fitting.
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Figure 10. (a) Scores of VERIFY3D vs. CCC calculated using the colores of homology models before
and after flexible-fitting simulations of the a-subunit. (b) Scores of dDFIRE vs. CCC calculated
using the colores of homology models before and after flexible-fitting simulations of the a-subunit.
(c) Similarity with secondary structure prediction by RaptorX Property vs. CCC calculated using
the colores of homology models before and after flexible-fitting simulations of a-subunit. For each
figure, the gray points represent homology models before flexible fitting. The filled dark-gray
points represent the models selected for flexible fitting. The black points represent models after
flexible fitting.

Finally, the most probable model for each subunit was selected based on the CCC and
model quality scores. Table 3 presents the PDB ID codes of the selected PDB structures for
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structurally known subunits and the templates for structurally unknown subunits. These
subunits were assembled for the entire structure of Eh V-ATPase. Finally, the flexible-fitting
simulation was performed for the entire structure (Figure 11). We compare our modeling
with the earlier discussion of global structure modeling based on cryo-EM data with lower
resolution [46]. An earlier study also used methods that adopt homology modeling. As
the template structures used for the modeling of structurally unknown subunits, the same
PDB was used for the d-subunit; different PDB structures were used for the a-, E-, and
G-subunits in this study. Regarding the a-subunit, however, the PDB for the same protein,
Thermus thermophilus, has been updated from 5GAR [80] to 5Y5X. For the E-subunit and
G-subunit, distantly related proteins such as 4DT0 (subunit E of Pyrococcus horikoshii OT3
A-ATP synthase) [81], 3DHR (pigeon methemoglobin) [82], and 2XNX (BC1 fragment
of streptococcal M1 protein) were found through profile–profile analysis. Models based
on these templates were selected as better models than other generated models by their
agreement with the EM map calculated using colores. The values related to goodness of fit
to the EM map are presented in Table 4. For metrics of all types, the values are rather high,
especially for correlation calculated using Chimera (0.901) and SMOC (0.908). The SMOCs
of each chain per residue are also shown in Figure 12. This figure shows that the final
model fundamentally fits the EM map of the overall structure well, although the models
obtained using our method have some regions to be improved.

Table 3. Summary of PDB IDs of the selected PDB structures for structurally known subunits and
templates for structurally unknown subunits.

Subunit Template (PDB ID(s)) Method (Resolution)

a-subunit 5Y5X EM (5.0 Å)
c-ring 2BL2 X-ray (2.1 Å)

d-subunit 1R5Z X-ray (2.05 Å)
E-subunit (Stalk A) 4DT0 X-ray (3.65 Å)
G-subunit (Stalk A) 3DHR X-ray (2.0 Å)
E-subunit (Stalk B) 4DT0 X-ray (3.65 Å)
G-subunit (Stalk B) 2XNX X-ray (3.3 Å)

A3B3-complex 5KND X-ray (2.89 Å)
DF-complex 5KND/3AON X-ray (2.89 Å/2.0 Å)

90°

Figure 11. Entire atomic structure model of Eh V-ATPase in the EM map.
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Figure 12. SMOC calculated using TEMPy for our model for (a) A-subunit, (b) B-subunit, (c) D-
subunit, (d) E-subunit, (e) F-subunit, (f) G-subunit, (g) a-subunit, (h) d-subunit, and (i) c-subunit.
Lines of different colors represent different chains for subunits of the same type.

Table 4. CC-related values of the model of Eh V-ATPase: CCmask, CCvolume, CCpeaks, and CCbox

were calculated using the map_model_cc module of PHENIX. Correlation was calculated using the
fit_in_map module in Chimera. The value of SMOC over every residue was calculated based on
values obtained using TEMPy.

Our Model

CCmask 0.652
CCvolume 0.534
CCpeaks 0.352
CCbox 0.892
CCC 0.386
Correlation (fit_in_map) 0.901
SMOC (avg.) 0.908

4. Discussion and Conclusions

Our developed homology modeling method is combined with cross-correlation-based
flexible fitting to establish a method of constructing an atomic model based on an EM den-
sity map. Our homology modeling method is characterized by the adoption of enhanced
profile–profile alignment in which our developed aligner, FORTE, is applied for alignment
and comparison between profiles of templates and target proteins calculated in multiple
ways. Due to FORTE-based alignment features, our homology modeling is expected to
provide better initial structures for flexible-fitting simulation.

Two examples of application of our modeling method using the cryo-EM data were
presented herein. In the first example, the dimer structure of human TPC2, one target of
CASP13, was modeled. The structure of this target had already been determined using
an EM map with 3.5 Å resolution [45]. This case is regarded as a demonstration of our
method’s performance for the generation of initial structures for flexible-fitting simulation.
The output models after flexible fitting closely approximate the reference structure in terms
of TM-score. Moreover, the output models show very good fit to the EM map in terms
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of CCmask and CCpeaks, even though our five submitted models were not evaluated and
filtered using the EM map before fitting in this case. Our models demonstrated superiority
to almost all other models submitted in CASP13 in terms of the fit to the EM map and
similarity to the reference structure after the same flexible-fitting simulation procedure.
However, even for the model with the highest CCmask, the CC-related values of our model
were somewhat worse than those of the reference PDB structure. Considering the local fit
to the EM map by SMOC per residue, it was found that the cause was in the loop and near-
loop regions originating from the template structures of our homology modeling. These
points were also observed in another example, i.e., modeling of the a-subunit of Thermus
thermophilus V/A-ATPase (T. thermophilus V-ATPase). This target was also elucidated
structurally using cryo-EM techniques with multiple resolutions [76,80,83]. Our model
based on the EM map with 5.0 Å resolution showed better agreement with the EM map
than the reference PDB structure (Table S1), and the SMOC of our model also showed
lower values in a loop region (Figure S1). These modeling results demonstrate that it is
often possible that our model does not fully fit a loop region to the EM map. To overcome
this difficulty, we might be able to improve our method by considering partial adoption
of de novo modeling or by increasing the bias to the EM map when using flexible-fitting
simulation, only in areas for regions with a lower SMOC value.

As a second example in this paper and as a practical demonstration, construction of
the entire structure of Eh V-ATPase was shown. In fact, Eh V-ATPase consists of 24 chains
with 9 types of subunits. We constructed a reasonable model both in terms of fitting with
the EM map and of model quality scores. It is noteworthy that the step of splitting the
EM map into fragments was important for these models. Suitable fragments are useful
for distinguishing between good and poor homology models. They often require manual
tuning and repeated trials to partition the map properly. As already described in Section 2.1,
it might be necessary to decide how to split the target sequence or to use multiple alignment
for better homology modeling. Automating these processes or setting clear guidelines
provides room for development of this method.

The novelty and strength of our method lies in a combination of enhanced profile–
profile analyses and a filtering/fitting method using cryo-EM data. Profile–profile align-
ment enables us to create a group of accurate alignments based on the sensitive search for
the template library including distantly related alignments. Filtering with the correlation
with the cryo-EM map enables us to select the appropriate alignment (model) among them.
Flexible-fitting simulation biased to the EM map used was sufficiently powerful to raise a
low CC-related value to a high CC-related value for models generated by our homology
modeling. We expect that if homology modeling is self-sufficient based on scores within the
method (Z-score of FORTE and scores of model quality), then the final modeling is likely
to be successful. Although few examples are presented herein, diversity does exist, as
represented by homodimers and heterooligomers, and by those using multiple templates.
It was possible to present some useful features and results of this method. In fact, this
method is expected to play a valuable role in determining heterooligomer structures when
the target EM data resolution is medium to low, and when the structures are outside the
scope of ordinary de novo modeling methods.

Finally, we described the effects of recent progress that has been made in AI-based
modeling of protein structures: as described in the Introduction, AF2, today’s state-of-the-
art AI-based structure prediction method, achieved a breakthrough for the modeling of a
monomer structure. However, multimer predictions based on AF2 [33–35] do not show a
performance that is as good as the monomer prediction of AF2. Furthermore, it is expected
that there are cases in which application of AF2 is not straightforward, not only because
of the difficulty posed by multimers but also because AF2 is designed to generate only
one state of a protein [84,85]. Additionally, we performed the modeling of TPC2 based on
the model generated by AF2. The details are shown in the Supporting Information. These
results indicate that even the state-of-the-art method requires flexible-fitting simulation to
improve the goodness of fit to an EM map and that even then it might not reach a model
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(6NQ1 in this case) obtained by manually adjusted modeling using Coot [86] based on
an EM map with high resolution in terms of local fitting. We therefore expect that, as
long as these frontiers remain, some room exists for the combination of template-based
modeling and flexible-fitting simulation to be useful for the construction of models using
cryo-EM data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23041977/s1, Analyses of modeling of T. thermophilus V-
ATPase by our method and of human TPC2 based on the model generated by AlphaFold2 are
provided as Supporting Information. The alignments used for the models of human TPC2, a-subunit
of T. thermophilus V-ATPase, and subunits of Eh V-ATPase, which are not yet structurally determined,
are also provided in the Supporting Information.
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