Next generation GLP-1/GIP/glucagon triple
agonists normalize hody weight in obese mice
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ABSTRACT

Objective: Pharmacological strategies that engage multiple mechanisms-of-action have demonstrated synergistic benefits for metabolic disease
in preclinical models. One approach, concurrent activation of the glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP),
and glucagon (Gcg) receptors (i.e. triagonism), combines the anorectic and insulinotropic activities of GLP-1 and GIP with the energy expenditure
effect of glucagon. While the efficacy of triagonism in preclinical models is known, the relative contribution of GcgR activation remains unas-
sessed. This work aims to addresses that central question.

Methods: Herein, we detail the design of unimolecular peptide triagonists with an empirically optimized receptor potency ratio. These optimized
peptide triagonists employ a protraction strategy permitting once-weekly human dosing. Additionally, we assess the effects of these peptides on
weight-reduction, food intake, glucose control, and energy expenditure in an established DIO mouse model compared to clinically relevant GLP-
1R agonists (e.g. semaglutide) and dual GLP-1R/GIPR agonists (e.g. tirzepatide).

Results: Optimized triagonists normalize body weight in DIO mice and enhance energy expenditure in a manner superior to that of GLP-1R
mono-agonists and GLP-1R/GIPR co-agonists.

Conclusions: These pre-clinical data suggest unimolecular poly-pharmacology as an effective means to target multiple mechanisms
contributing to obesity and further implicate GcgR activation as the differentiating factor between incretin receptor mono- or dual-agonists and

triagonists.

© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

The continuing clinical successes of GLP-1 receptor (GLP-1R) agonists
has reinforced the substantial potential of this pharmaceutical
approach to the treatment of type 2 diabetes and obesity, and these
agonists remain the only class of pharmaceuticals approved for both
indications [1—3]. The once-daily injectable GLP-1R agonist liraglutide
at a dose of 3.0 mg (Saxenda) reduces body weight by an average of
5—10% in non-diabetic obese patients [4], and the recently approved
2.4 mg dose of once-weekly GLP-1R agonist semaglutide (Wegovy)
increases mean weight reduction in this population to 15—20% [5—8].
However, further enhancement of the efficacy of GLP-1R agonists
alone is limited by dose-dependent gastrointestinal events [9,10],
which could be mitigated with prolonged dose escalation algorithms.
However, the maximal efficacy of GLP-1R agonists alone is seemingly
plateaued with increased doses, at least in diabetic patients [11].
Therefore, combinatorial approaches are being pursued in order to
drive additional efficacy by leveraging distinct mechanisms of weight
reduction and metabolic improvement, particularly the use of peptides
exhibiting activity at multiple targets [12—16].

While a variety of partners for GLP-1R agonists are currently under
investigation, two candidates have emerged with recent, provocative
clinical data: glucagon (Gcg) and glucose-dependent insulinotropic
polypeptide (GIP). Unimolecular co-agonists of GLP-1R and the
glucagon receptor (GcgR) were the first to emerge, seeking to leverage
the anorectic and anti-diabetic effects of GLP-1 with the ability of Gcg
to increase energy expenditure [17—19]. After an initial flurry of pre-
clinical reports highlighting additive effects on weight reduction (for
a review, see [20]), data from clinical trials of once-daily GLP-1R/GcgR
co-agonists  cotadutide (previously MEDI0O382) [21—23] and
SAR425899 [24,25] have generated guarded optimism over the
modest effects on weight reduction (<10% after 4—6 weeks of
treatment). However, it is important to note that the diabetogenic ef-
fects of GcgR agonism need to be offset by the insulinotropic effects of
GLP-1, typically steering the molecular design of such co-agonists
toward greater GLP-1R potency than GcgR potency by virtue of
reducing the relative GecgR potency by as much as 10-fold [26—28].
While this selection criterion ensures safety from the standpoint of
glycemic control, it also limits the weight lowering efficacy of the
glucagon component, which has an inherently steep dose response
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curve at least in pre-clinical models. This suggests that inclusion of
additional insulinotropic targets that enhance hyperglycemic buffering
may facilitate more robust GcgR agonism and reciprocally allow for
greater maximal weight loss.

Interest in GIP as a pharmaceutical agent has grown recently after
decades of languishing in the shadows of its fellow incretin, GLP-1,
though the direction to manipulate receptor function to unleash its
therapeutic potential remains unsettled [29—31]. Indeed, agonists and
antagonists of the GIP receptor (GIPR) are currently in development,
both of which have paradoxically demonstrated the ability to potentiate
the weight reduction of GLP-1R agonists in preclinical models [32—
37]. The issue is further complicated by recent data demonstrating
that GIPR agonism in the CNS reduces body weight by reducing food
intake while peripheral GIPR agonism acts through food intake inde-
pendent means to achieve weight loss [38]. Neutralizing GIPR anti-
bodies, which are presumably sequestered to the periphery, reduce
body weight in an independent manner to food intake and modify
energetic substrate utilization in vivo [33]. These data demonstrate that
GIPR modulation can serve both to enhance the anorectic effects of
GLP-1R agonism and facilitate additional weight loss through other
putative mechanisms such as improvement in insulin sensitivity [30]
and reduction in GLP-1R mediated adverse gastrointestinal events to
permit increased GLP-1R engagement [39]. To date, clinical results are
available for two unimolecular co-agonists of GLP-1R and GIPR: once-
daily NNO090-2746 (previously RG7697 and MAR709) [40] and once-
weekly tirzepatide (previously LY3298176) [41]. Clinical efficacy data
are particularly compelling for tirzepatide. A phase 3 study in type 2
diabetic patients demonstrated that, when compared head-to-head
against semaglutide at the 1.0 mg dose level, tirzepatide not only
further improved HbA1c levels at all doses tested (5—15 mg), but the
highest dose level of tirzepatide also doubled the average weight loss
after 40 weeks of treatment achieved with semaglutide (—12.4 kg
compared to —6.2 kg) [42].

The reinforcing incretin effects of GLP-1R and GIPR agonism on gly-
cemic control logically seem an appropriate buffer to the hyperglyce-
mic liability of GcgR agonism [43]. This could allow a higher ceiling for
efficacy through both a wider therapeutic window for the Gcg
component as well as harnessing three complementary mechanisms

2. METHODS

2.1. Peptide synthesis, purification, and analysis

Peptides were built by standard fluorenylmethoxycarbonyl (Fmaoc)-
based solid-phase synthesis using one of the following resins: Rink
Amide-ChemMatrix resin, Rink Amide AM polystyrene resin, or PAL
Amide AM resin. Automated peptide synthesis was performed using
one of the following protocols: a SymphonyX peptide synthesizer
(Protein Technologies) employing 20% piperidine in dimethylforma-
mide for Fmoc deprotection and diisopropylcarbodiimide (DIC)/ethyl
cyanohydroxyiminoacetate for amino acid coupling; or a 431A peptide
synthesizer (Applied Biosciences) employing 20% piperidine//N-
methyl-2-pyrrolidone for Fmoc deprotection and DIC/6-chloro-1-
hydroxybenzotriazole for amino acid coupling. For peptides bearing
an acylation, the lysine to be acylated was incorporated with N°-4-
methyltrityl (Mtt) protection and the N-terminal amino acid with N*-
Boc protection. Following completion of the peptide backbone, Mtt
deprotection was performed with 30—75% hexafluoroisopropanol in
dichloromethane. The acylation was either built by the same Fmoc-
based chemistry as described above or added as a single unit via a
succinimidyl ester. Following completion of peptide synthesis, the
peptide was cleaved from the resin by treatment with 2.5% water/
2.5% triisopropylsilane in trifluoroacetic acid (TFA) for 2 h, followed by
precipitation with diethyl ether and isolation by centrifugation. The
precipitate was dissolved in a water containing sufficient acetonitrile to
solubilize, allowed to stand at room temperature until all labile adducts
decomposed, and purified by reversed-phase high-performance liquid
chromatography (RP-HPLC) on a C8 or C18 column with a gradient of
acetonitrile in 0.1% aqueous TFA. Relevant fractions were analyzed for
identity and purity by analytical RP-HPLC with electrospray ionization
mass spectrometry (Methods Table 1). Appropriate fractions were
pooled and lyophilized to afford the desired peptide as a white solid.

Methods Table 1 — Theoretical monoisotopic molecular weight and

observed m/z of the most abundant isotope for each compound
synthesized.

. . . . Compound Theoretical Theoretical Observed
of weight reduction. Thus “triple agonism” of GLP-1R, GIPR, and GegR P molecular  m/z M+3HP+  miz [M-+-3H]*
could represent a new standard for pharmaceutical intervention in weight (Da)
ot?esity [44,45.]. In support. of this notion, unimolgqular triplef ggoni§ts 1 (semaglutide) 114 13714 13718
with time-action appropriate for once-daily clinical administration 2 (acyl GLP-1/GIP) 4784.5 1595.8 1596.5
demonstrate the metabolic benefits of the three combined activities in 3 (acyl glucagon) 4224.2 1409.1 1409.6
preclinical settings [43,46]. 4 (NNC0090-2746) 4470.3 1491.1 1491.7
Delineating the relative contribution of GcgR agonism to the efficacy of : jgigg }gggg 1:2;2
triple GLP-1R/GIPR/GcgR agonists remains a critical question in the 7 4818.4 1607.1 1607.1
field of obesity pharmacology. In this work, we sought to address this 8 4846.5 1616.5 1616.5
question by rationally designing peptide backbones with fatty acid- 9 4932.5 1645.2 1645.7
based protractors intended to permit once-weekly dosing in humans :? :ggg'g }g:g'g 1‘;3?2
to create high potency triple agonists with variable ratios of activation 4, 48725 1625.2 1625.8
between the three constituent receptors. These novel, unimolecular 13 4881.5 1628.2 1628.8
GLP-1R/GIPR/GcgR triple agonists display extended time-action, sup- 14 4881.6 1628.2 1629.0
porting the potential of once-weekly administration in humans. Criti- :2 :g;g-g 1222-3 13223
pally, administration of.thesg compounds reduced body weight in diet- 17 (acyl GLP-1/GIP) 4966.6 1656.5 1657.4
induced obese (DIO) mice with greater potency and efficacy than could 18 (acyl GLP-1/Gcg) 4567.3 1593.4 1524.1
be achieved with the clinical GLP-1R mono-agonist semaglutide, the 19 5020.6 1674.5 1675.3
experimental GLP-1R/GIPR dual agonist tirzepatide, or GLP-1/GcgR co- Tirzepatide 4810.5 1604.5 1604.9

; : : : g : First-generation triagonist ~ 4540.3 1514.4 1514.9
agonists, and other reported triagonists without sacrificing glycemic e 18636 16022 16234
control.
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2.2. Receptor activation

Cyclic AMP (cAMP) production was assessed as a proxy for receptor
activation using stably transfected baby hamster kidney (BHK) cell lines
expressing the DNA for one individual receptor (GLP-1R, GIPR, GcgR;
human- or mouse-specific sequence) and the DNA for the firefly
luciferase reporter gene linked to the cAMP response element (CRE).
The cells were kept in continuous culture at 37 °C and 5% CO5 in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%
heat-inactivated fetal bovine serum (HI-FBS), 300 pg/mL hygromycin,
and 500 pg/mL G418; for cell lines expressing GIPR, the G418 con-
centration was lowered to 400 pg/mL. Cells were plated in a 96-well
poly-p-lysine-coated plate at 5,000 cells per well in growth media and
incubated overnight at 37 °C with 5% CO,. After the overnight incu-
bation, the media was removed, the plate was washed once in Dul-
becco’s phosphase-buffered saline (DPBS), and 50 plL of assay buffer
(DMEM without phenol red, 10 mM HEPES, 1x Glutamax, 1% oval-
bumin, 0.1% Pluronic F-68) was added to each well. Compounds to be
tested were serially diluted 3.5-fold across the rows of a separate low-
bind 96-well plate to create a 12-point dilution curve in assay buffer.
Aliquots of the dilution curves were added to the cell plate in a volume
of 50 plL per well resulting in final assay concentrations ranging from
1 x 107101 x 10~7 M. The assay plate was incubated for 3 h at
37 °C and 5% CO,. After the incubation, the assay plate was washed
once with DPBS. A 100 pL aliquot of DPBS was added to each well
followed by 100 L of steadylite plus reagent (PerkinElmer). The assay
plate was covered to protect reagent from light, shaken at 250 rpm at
room temperature for 30 min, and read in a microtiter plate reader.
ECs values were calculated using Prism software (GraphPad) with the
nonlinear regression log(agonist) vs. response. A minimum of two
replicates were measured for each sample.

2.3. Pharmacokinetics in minipigs

Studies were conducted in accordance with the Protection of Animals
Act, the Act on Experiments on Animals, and the Standard Operating
Procedures for Experiments on Animals at Novo Nordisk A/S. The
experiments were performed under the supervision and approval of the
Danish Government Animal Experiments Inspectorate and the Novo
Nordisk Ethical Review Counsel. Female Gottingen minipigs (Ellegaard
Gottingen Minipigs A/S), 7—14 months old and weighing 16—35 kg,
were housed individually and fed once daily with a restricted SDS
minipig diet (Special Diets Services). At least one week before the
study, two permanent central venous catheters were implanted in the
caudal vena cava of each animal. The animals were fasted for
approximately 18 h before dosing and 4 h after dosing but had ad
libitum access to water during the whole period. Test compounds
dissolved to a concentration of 20—40 nmol/mL in a vehicle (pH 7.4)
containing 0.025% polysorbate-20, 10 mM sodium phosphate, and
250 mM glycerol were administered via an intravenous injection
through one catheter at a dose of 2 nmol/kg. Blood samples were
collected in 8 mM aqueous EDTA for up to 14 days post dosing,
preferably through the other catheter, then centrifuged at 4 °C and
~2000g for 10 min. Plasma was isolated and immediately frozen until
RP-HPLC/MS analysis. Individual plasma concentration—time profiles
were analysed by a non-compartmental model in Phoenix WinNonLin
software (Pharsight Inc.), and the resulting terminal half-lives were
determined at the harmonic mean.

2.4. Pharmacodynamics in DIO mice

Studies were approved by and performed according to the guidelines
of the Institutional Animal Care and Use Committee of the University of
Cincinnati. Male C57BL/6J mice (Jackson Laboratories) were housed 4
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per cage, exposed to a controlled 12 h/12 h light—dark cycle at room
temperature (22 °C), and provided ab libitum access to water and a
58% fat, high-sugar diet (012331, Research Diets) for 12 weeks. Mice
exceeding 50 g of body weight were considered diet-induced obese
(DIO) and included in studies, where they were randomized and evenly
distributed to test groups (n = 8 per group) according to body weight.
Test compounds dissolved at a concentration of 0.5—2 M in a vehicle
(pH 7.4) containing 0.05% polysorbate-80, 50 mM sodium phosphate,
and 70 mM sodium chloride were administered subcutaneously once
daily, unless otherwise noted, during the light cycle for each day of
treatment at a volume of 2—5 pL per gram of body weight as
necessary to achieve the desired dose. Body weight and food intake
were measured immediately prior to dosing each day. The percent
change in body was calculated individually for each mouse based on
initial body weight prior to the first injection. For intraperitoneal (i.p.)
glucose tolerance tests (IPGTT), animals were fasted for 6 h prior to the
test but had access to water. Fasted blood glucose levels were
measured, then mice were injected with an i.p. glucose load of 2 g/kg
from a 200 mg/mL aqueous glucose solution. Tail blood glucose levels
were measured 0, 15, 30, 60, 90, and 120 min following the glucose
load using a handheld glucometer (Freestyle, Abbott).

2.5. Energy expenditure in DIO mice

Energy expenditure was assessed using a combined indirect calo-
rimetry system (TSE Systems, Chesterfield, MO). Animals were kept in
the indirect calorimetry system for 7d; d1 (0—24h) included accli-
mation to the new cages but no energy expenditure readings, d2
included baseline energy expenditure readings with vehicle injections,
d3-7 included experimental energy expenditure readings and treat-
ment injections. Treatment injections begin at t = 48h as indicated by
the vertical dashed line and were performed every 24h as indicated by
the arrows. 0, consumption and CO» production were measured every
20 min to determine the respiratory quotient and energy expenditure
using the Weir equation (EE=(3.94 x v0,) + (1.1 x vCOy)).

2.6. Pharmacodynamics in db/db mice

Studies were approved by and performed according to the guidelines
of the Institutional Animal Care and Use Committee of the University of
Cincinnati. Male C57BL/6 db/db mice (Jackson Laboratories) were
housed 4 per cage, exposed to a controlled 12 h/12 h light—dark cycle
at room temperature (22 °C), and provided ab libitum access to water
and a standard chow diet. Mice were randomized by ad libitum-fed
blood glucose and body weight and were double-housed for the
study. Test compounds were dissolved and administered as for DIO
mice. Tail blood glucose levels were measured 0, 1, 3, 6, and 24 h
after dosing, and every 24 h thereafter for 1 week.

3. RESULTS

3.1. GLP-1/GIP/Gcg combination outperforms GLP-1/Gcg
combination in weight reduction and glycemic control in DIO mice
To test the hypothesis that the combined effects of GLP-1, GIP, and
Gcg on glycemic control and weight reduction are superior to that of
the constituent factors, we performed a study comparing combinations
of similarly acylated, long-acting agonists for GLP-1R (semaglutide, 1)
[47], GLP-1R/GIPR (2), and GcgR (3) in DIO mice (Figure 1). In vitro
receptor activation assays indicated that 1 and 2 possessed similar
potency at the mouse GLP-1R receptor with respect to cAMP pro-
duction (Figure 1), permitting a straightforward examination of the role
of the GIP and Gcg activities in mice. After eight days of once-daily
treatment, 2 demonstrated robust improvements in body weight
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N Relative Relative Relative
Compound Description ECo (M) | potancy% | E0 (PM) potency% | G0 M | porency%
Native ligand 27 29.6 4.4
1 Semaglutide 1.9 197 nd. N/A >10000 <0.04
2 Acyl GLP-1R/GIPR co-agonist 25 144 68.0 44 >10000 <0.04
3 Acyl GegR agonist nd. N/A n.d. N/A 6.0 73

Figure 1: Pharmacological effects of GLP-1R, GIPR, and GcgR agonism alone or in combination in DIO mice. Body weight (A—C) and IPGTT blood glucose (D—F) for DIO
mice. Animals were given subcutaneous injections once per day with semaglutide (1; 1 nmol/kg), acyl-GLP-1R/GIPR co-agonist (2; 1 nmol/kg), acyl-GcgR agonist (3; 3 nmol/kg), or
combinations thereof. Body weight was measured daily over 8 days. The IPGTT was performed on day 8 (24 h after compound administration). /n vitro potency at mouse-derived
receptors is provided in panel G. Average starting body weight for mice in these studies was 62.6 g and did not differ significantly between any group. * indicate a p-value < 0.05
compared to vehicle control; indicate a p-value < 0.05 relative to a treatment group as indicated.

lowering and glycemic control compared to an equimolar dose of 1,
recapitulating previous data for shorter-acting molecules [34]. The
combination of 1 and 3 similarly resulted in improved body weight
lowering compared to either agent alone, though the glycemic benefit
of semaglutide was eroded by the hyperglycemic activity of 3. Finally,
combination treatment with 2 and 3 resulted in both superior weight
reduction and glycemic control over the 1/3 combination, highlighting
the importance of the GIP component to contribute to further weight
reduction in this context and also to provide additional buffering of the
diabetogenic effect of GcgR agonism, even in the presence of super-

Table 1 — /n vitro receptor activation of human-spec

aminoisobutyric acid; B = K[OEG-OEG-yGlu-C18 diac

stoichiometric amounts of 3. Of note, combination treatment with 2
and 3 also resulted in superior weight reduction relative to 2 alone,
albeit with a lessened improvement in glucose tolerance. With these
promising results, we sought to develop a long-acting triple agonist
bearing all three agonistic activities.

3.2. Optimization of in vitro receptor potency of triple agonists

Our design of long-acting GLP-1R/GIPR/GcgR triple agonists began
upon the foundation of the clinical, once-daily GLP-1R/GIPR co-agonist
NN0090-2746 (4, Table 1) [34]. We established two goals for our

ceptors by novel long-active triple agonists, compared to the native ligand for each receptor. X = 2-
= K[OEG-OEG-yGlu-C20 diacid]; Z = K]

-eLys-yGlu-C20 diaci

Compound Peptide Sequence hGLP-1 Receptor hGIP Receptor hGcg Receptor
ECso (pM) Relative ECso (pM) Relative ECso (pM) Relative
Potency % Potency % Potency %
Native ligand 6.9 10.4 9.5
4 YXEGT FTSDY SIYLD KQAAX EFVNW LLAGG PSSGA PPPSK(C16)—NH, 3.6 193 4.8 217 2333.8 0.4
5 YXQGT FTSDY SIYLD KQAAX EFVNW LLAGG PSSGA PPPSK(C16)—NH, 3.5 199 6.0 173 29.0 33
6 YXQGT FTSDY SIYLD KQAAX EFVNW LLAGG PSSGA PPPSB—NH, 1.7 59 445 23 703.4 1
7 YXQGT FTSDY SIYLD BQAAX EFVNW LLAGG PSSGA PPPS—NH, 7.4 93 27.4 38 81.9 12
8 YXQGT FTSDY SIYLD JQAAX EFVNW LLAGG PSSGA PPPS—NH, 6.8 101 26.7 39 163.4 6
9 YXQGT FTSDY SIYLE JQAAX EFVQW LLEGG PSSGA PPPS—NH, 3.1 220 11.4 92 185.0 5
10 YXQGT FTSDY SIYLE ZQAAX EFVQW LLEGG PSSGA PPPS—NH, 2.8 244 7.0 150 86.6 11
11 YXHGT FTSDY SIYLE ZQAAX EFVQW LLEGG PSSGA PPPS—NH, 106.4 7 71 147 721 13
12 HXQGT FTSDY SIYLE ZQAAX EFVQW LLEGG PSSGA PPPS—NH, 1.7 410 55.0 19 357.1 3
13 HXHGT FTSDY SIYLE ZQAAX EFVQW LLEGG PSSGA PPPS—NH, 2.0 340 71 146 48.7 19
14 HXHGT FTSDY SIYLE ZKAAX EFVQW LLEGG PSSGA PPPS—NH, 33 211 7.3 142 13.7 69
15 HXHGT FTSDY SIYLE ZQYAX EFVQW LLEGG PSSGA PPPS—NH, 6.8 101 7.7 135 13.1 72
16 HXHGT FTSDY SIYLE ZKYAX EFVQW LLEGG PSSGA PPPS—NH, 3.9 177 15.6 67 () 102
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campaign: introduce GcgR potency into the molecule without sacri-
ficing the GLP-1R and GIPR potency of 4; and protract time-action
through acylation with a fatty diacid, inspired by once-weekly acyl-
ated peptides such as semaglutide [47] and tirzepatide [35]. As pre-
viously described [34], a single Glu3GIn mutation (5) introduced GcgR
agonism with little impact on incretin potency (Table 1). However,
substitution of the palmitoylation at position 40 with the diacid-based
acylation of semaglutide (OEG-OEG-yGlu-C18 diacid, as in compound
6), rationally introduced to further extend time-action, resulted in loss
of potency at all three receptors with respect to cAMP production,
particularly GcgR. Importantly, this demonstrates that the chemical
nature of the acylation influences not only the pharmacokinetics of the
peptide but also the pharmacophore itself, which further highlights that
such modifications are not inert bystanders with respect to biological
activity [48] and biodistribution [49]. Therefore, we performed a scan
of acylation positions throughout the peptide backbone to identify sites
more accommodating of the diacid protractor, which identified position
16 (as in 7) as a preferred site for this nature of acylation due to
appreciable potency across all three receptors. The elimination half-life
of 7 (Table 2), as measured after i.v. dose in minipigs, could be
increased by nearly 40% through the replacement of the C18 diacid
protractor with a C20 diacid (8), providing an even more attractive PK
profile for potential once-weekly clinical administration when
compared to the once-weekly GLP-1R agonist semaglutide [47].

Because the potency of these diacid-protracted molecules was still
reduced at all receptors compared to parent 5, our attention focused on
improving overall potency through select modifications of the peptide
backbone and linker region (Table 1). A significant improvement in
cAMP potency was observed with a dual mutation of position 1 and
position 3 to histidine (13), even though each individual mutation alone
(11, 12) hindered potency at one or more receptors. As we sought to
test the effect of more aggressive GegR potency on both weight loss
and glycemic control, we explored additional mutations to increase the
GcgR potency of 13 with a more balanced ratio with respect to GLP-1R
potency. A Q17K mutation (14) and a A18Y mutation (15) improved
GcgR potency with slight to moderate reduction in GLP-1R potency,
and a combination of these mutations (16) resulted in a compound with
potencies at both GLP-1R and GcgR comparable to the native ligands.
Ultimately, this mutational “fine-tuning” provided a suite of high-
potency triple agonists with subtle variations in receptor activity ra-
tios that could be used to interrogate optimal activity balance. How-
ever, differences in in vitro cAMP potencies between human receptors
and those of different pre-clinical models, particularly with regard to
GIPR, can complicate translation of pre-clinical results to a clinical
setting [44]. Therefore, triple agonists were assayed at mouse-derived
GLP-1R, GIPR, and GcgR (mGLP-1R, mGIPR, and mGcgR, respectively)
along with comparator compounds to investigate in vitro CAMP po-
tencies and subsequently support the appropriate in vivo pharmaco-
dynamic comparisons in DIO mice. The presence of Lys at position 17
(as in 16) was found to be beneficial for mGIPR potency despite having

Table 2 — . Pharmacokinetic parameters after a single intravenous dose of
2 nmol/kg in minipigs (n = 2—3). Data for semaglutide is taken from Lau

et al. [47]].
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a modestly detrimental effect for hGIPR potency. The high potencies
and relative balance of 16 at all three mouse-specific receptors, as
well as the long half-life of this compound in minipigs (75 h, Table 2)
encouraged us to take this compound forward for pharmacodynamic
evaluation in DIO mice.

3.3. Metabolic effects of triple agonists in DIO mice

Compound 16 dose-dependently reduced body weight and food intake
in DIO mice while maintaining improvements in glycemic control
compared to vehicle (Supplemental Fig. 1). Body weight reductions
greater than 30% were achieved after 2 weeks of treatment with a
3 nmol/kg daily dose. We next sought to compare the maximal weight
lowering efficacy of the balanced triple agonist 16 to similarly acylated
comparators possessing GLP-1R agonism alone (semaglutide), GLP-
1R/GIPR co-agonism (17), GLP-1R/GcgR co-agonism (18), or to an
“imbalanced” triple agonist (19) with 10-fold lower mGcgR potency
compared to 16 (Figure 2). All compounds possessed comparable
in vitro potency at mGLP-1R, which allowed for a delineation of the
contributions of the GIP and Gcg activities. To ensure tolerability, doses
of all compounds were up-titrated from 1 nmol/kg to 10 nmol/kg over
24 days, then maintained at the 10 nmol/kg dose for up to 18 days.
Animals that achieved the average weight of lean litter mates (22.5 g)
were removed from the study as this criterion was determined to be
normalization of body weight; the number of animals achieving
normalized body weight and day at which they achieved normalization
of body weight are detailed in Supplemental Table 1. Mean body
weight loss was calculated from all animals remaining in the study on a
given day. Five of the eight animals treated with 16 achieved body
weight normalization, accounting for an unprecedented 55—60% body
weight loss. Differentiation of 16 from all comparators was also
apparent within the first two weeks of treatment, providing evidence
for the contributions of all three constitutive activities to enhance
weight lowering potency in addition to maximal efficacy. Furthermore,
the influence of GcgR agonism to influence maximal weight lowering
efficacy was readily apparent with the recently-reported clinical GLP-1/
Gcg co-agonist 18 [50], as well as a sharp differentiation in perfor-
mance between balanced triple agonist 16 and imbalanced triple
agonist 19. Despite the wide range of weight lowering efficacy, food
intake suppression was similar among all treatment groups, further
highlighting the impact of harnessing distinct mechanisms of body
weight reduction, independent of food intake, that complement the
GLP-1R mediated effects on food intake. These findings were also
largely recapitulated in DIO rats treated with balanced triagonist 20
(Supplemental Fig. 4).

Next, we compared our triple agonist 16 against GLP-1/GIP co-agonist
tirzepatide, the most clinically advanced long-acting, incretin-based
mixed agonist that shows clear differentiation from GLP-1R mono-
agonists in preclinical studies as well as in clinical studies [35,41]. DIO
mice were treated with daily doses of 1 nmol/kg, 3 nmol/kg, or an
escalation from 1 nmol/kg to 30 nmol/kg of either compound
(Figure 3). Both compounds demonstrated a strong correlation be-
tween dose, body weight lowering, and food intake suppression, with
16 showing a steeper dose response reflective of the glucagon con-
stituent. While treatment with either 16 or tirzepatide at a dose of
1 nmol/kg resulted in similar weight loss after 20 days of treatment,
both the 3 nmol/kg and dose-escalated groups demonstrated signifi-

Cl (Lh/kg) Vz (L/kg) T1s2 (h) cantly more weight lowering efficacy with 16 treatment than tirzepa-

Semaglutide, 1 0.0016 0.102 46 tid_e, despite comparable fopd intake suppression in all four groups.
7 0.0014 0.121 61 This further supports the notion that a threshold level of GcgR agonism

8 0.0012 0.154 85 is required for the full impact of triple agonism on body weight
o nEniE 0:164 75 lowering. Importantly, groups treated with the higher doses of 16
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Figure 2: GcgR agonism provides additional body weight lowering efficacy over GLP-1R agonism and GLP-1R/GIPR co-agonism in DIO mice. Body weight (A) and food
intake (B) for DIO mice given subcutaneous injections once per day with semaglutide 1, acyl-GLP-1R/GIPR co-agonist 17, acyl-GLP-1R/GcgR co-agonist 18, imbalanced GLP-1R/
GIPR/GcgR triple agonist 19, and balanced GLP-1R/GIPR/GcgR triple agonist 16. Dosing concentrations and dose-escalation schedule is provided in panel C. The in vitro potency at
mouse-derived receptors is provided in panel D. Average starting body weight for mice in these studies was 59.0 g and did not differ significantly between any group. * indicate a

p-value < 0.05 compared to vehicle control; ~indicate a p-value < 0.05 relative to a treatment group as indicated.
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Figure 3: Triple receptor agonism of GLP-1R, GIPR, and GegR produces superior body weight lowering efficacy compared to GLP-1/GIPR co-agonist tirzpatide in DIO
mice. Body weight (A) and food intake (B) for DIO mice given subcutaneous injections once per day with tirzepatide or GLP-1R/GIPR/GcgR triple agonist 16. Dosing concentrations
and dose-escalation schedule is provided in panel C. Average starting body weight for mice in these studies was 61.2 g and did not differ significantly between any group. *
indicate a p-value < 0.05 compared to vehicle control; “indicate a p-value < 0.05 relative to the equimolar dose of tirzepatide as indicated.

showed similar improvements in glycemic control relative to groups
treated with tirzepatide (Supplemental Fig. 3). This provides further
evidence that dual incretin activity can not only offset the

hyperglycemic effects of glucagon activity, but even overcome it to
yield net improvements in glycemic control comparable to a dual
incretin alone.
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To unequivocally demonstrate the contribution of glucagon-stimulated
increased energy expenditure to body weight reduction, DIO mice were
treated with daily injections of 3 nmol/kg of 16 or tirzepatide for 5 days
inside an indirect calorimeter (Figure 4). Treatment with 16 resulted in
increased energy expenditure over both vehicle and tirzepatide, con-
firming the expected contribution of glucagon receptor agonism to
weight lowering efficacy in this triple agonist independent of differ-
ences in food intake [43]. The energy expenditure increase was not
accompanied by a change in locomotor activity (Figure 4C) as
demonstrated previously with triagonists [43].

Finally, the efficacy of these next-generation balanced (16) and
imbalanced (19) triagonists for weight reduction, food intake, and
glucose control was further benchmarked against the published first
generation triagonist [43] as well as the recently disclosed, balanced
triagonist SAR441255 [51]. Mice treated with high dose (2 nmol/kg)
16 or 19 showed significantly superior body weight loss compared to
both the first generation triagonist and SAR441255 (Figure 5B).
Conversely, 19 showed increased weight loss compared to all
compounds tested at lower doses (1 nmol/kg, Figure 5A); the dose
response curve for 16 was notably steeper than all other compounds
in keeping with the dose titration response observed in Figure 2A.
The weight loss observed in mice treated with 16, 19, and the first
generation triagonist was predominantly derived from a reduction in
fat mass, not lean mass (Figure 5E—H). However, there was no
significant difference in fat mass reduction but significant changes in
lean mass reduction between SAR441255 and 16, indicating lean
mass constitutes a meaningful amount of the overall weight loss
difference induced by these compounds. Glucose control was
improved by all compounds when administered at low doses 1 h prior
to an IPGTT (Figure 51,J,M). The degree of improvement is largely
predicated by glucagon receptor potency with SAR441255 and 19
providing the greatest degree of improvement. Glucose control was
improved in mice treated with 19, SAR441255, and the first gener-
ation triagonist but not 16 in an IPGTT performed after chronic
dosing, 24 h following final injection (Figure 5K,L,M). Plasma tri-
glycerides, ALT, AST were unchanged in any group, whereas circu-
lating cholesterol was decreased at both doses in all groups
consistent with previous studies (Supplemental Fig. 5) [43]. Leptin
levels were measured as a broad marker of adiposity. Leptin was
decreased in all groups at the higher dose compared to vehicle
(Supplemental Fig. 5), whereas insulin levels, an indicator of insulin
sensitivity, were only decreased in the first generation triagonist and
16 and 19 treated groups at the higher dose (Supplemental Fig. 5).
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4. DISCUSSION

Obesity prevalence is escalating due in part to, but not limited to, the
minimal efficacy of lifestyle interventions and the inaccessibility of
effective yet invasive treatments like bariatric surgery [52]. This makes
pharmacologic intervention for weight loss an increasingly critical
modality for patient care. GLP-1R agonists can effectively lower body
weight in obese patients to levels not achieved before with anti-obesity
therapies [11,53]; however, weight loss seems to plateau over time
and with diminishing gains as dose is increased within tolerable ranges
[11]. Thus, there is a clear need for agents that enhance weight loss
above that of GLP-1R agonists alone. Here, we demonstrate a superior
weight-lowering effect of rationally-designed, next-generation single
molecule GLP-1/GIP/Geg triagonists relative to semaglutide, tirzepa-
tide, other chemically/pharmacokinetically matched dual agonists, and
pharmacologically disparate triagonists in DIO mice. Furthermore, the
optimal triagonist safely normalized body weight in these mice with
chronic treatment, a phenomenon that has not been shown before with
pharmacotherapy alone. These data also show the addition and po-
tency of GcgR agonism as a determinate factor in the weigh-lowering
and weight-normalizing efficacy of this triple receptor agonism, and
the inclusion of GIPR agonism not only contributes to the weight-
lowering efficacy but permits maximal GcgR engagement without a
deterioration in glucose control.

Previous studies in preclinical models demonstrate the potential for
GegR agonism to induce weight loss either alone [54,55] or in com-
bination with GLP-1R and/or GIPR agonism [43]. However, this multi-
receptor agonism approach to weight loss was hindered by com-
mercial considerations of production and formulation [45], the bio-
logical impasse that glucagon potently induces hyperglycemia [56,57],
and potential dose-limiting cardiovascular liabilities arising from pos-
itive chronotropic actions to influence hemodynamic parameters [58].
The invention of monomeric triple receptor agonists capable of acti-
vating the GLP-1R, GIPR, and GcgR provides an apparent resolution to
these issues. These compounds, termed triagonists or triple agonists,
couple the weight-reducing efficacy of GLP-1R, GIPR, and GcgR ago-
nism while simultaneously buffering the glycemic effects of Gcg with
dual incretin receptor activation [43,45]. The resultant compounds
deliver effective glycemic control and weight reduction in preclinical
studies [43,59] with anticipated efficacy in emergent clinical studies.
However, the individual constituent mechanisms of action that
contribute to the observed weight loss are incompletely understood.
The data presented here demonstrate that the potency of GcgR
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Figure 4: Triple receptor agonism of GLP-1R, GIPR, and GcgR but not the dual receptor agonism of GLP-1 and GIPR induces energy expenditure in DIO mice. Energy
expenditure (A), respiratory exchange ratio (B) and locomoter activity (C) for DIO mice given subcutaneous injections once per day with tirzepatide (3 nmol/kg) or GLP-1R/GIPR/GcgR
triple agonist 16 (3 nmol/kg). * indicate a p-value < 0.05 compared to vehicle control; " indicate a p-value < 0.05 relative to tirzepatide as indicated.
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Figure 5: Comparison of in vivo efficacy of next-generation triagonists to published triagonists. Weight-loss (A,B), food intake (C,D) fat mass (E,F), and lean mass (G,H) for
DIO mice treated with either vehicle (black), SAR441255 (green), first generation triagonist (red), 19 (blue), or 16 (purple) at either 1 nmol/kg (A,C,E,G; solid symbols) or 2 nmol/kg
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compound injection on day 18 (K,L) and glucose area under the curve (AUC; M). Average starting body weight for mice in these studies was 60.2 g and did not differ significantly
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SAR441255.

agonism defines the maximal weigh-lowering capacity of the triple
agonist, presumably through multiple mechanisms of increased energy
expenditure, insofar as increasing in vitro GcgR potency with respect to
cAMP production prognosticates in vivo weight reduction. Furthermore,
our data demonstrate that a triple agonist with balanced activity at the
three receptors produces greater maximal weight loss compared to
tirzepatide, a dual GLP-1R and GIPR agonist that shows remarkable
clinical efficacy. Critically, our data suggest that the differentiating
factor for this superior weight loss effect is achieved through an in-
crease in energy expenditure, given the elevated energy expenditure in
combination with similar reductions in food intake between maximally
effective triple agonist and tirzepatide (and other co-agonist) groups.
This is consistent with the known role of GLP-1R [49,60] and GIPR
[37,38] agonism to reduce food intake, primarily but not exclusively via
CNS mediated signaling events, and GcgR agonism to induce energy
expenditure [54] through mechanisms that are not fully described. It

has been reported in both clinical and preclinical settings that GIPR
agonism helps to ameliorate the adverse nauseating effects of GLP-1R
agonists [39,42]. While the appropriate assay systems to test this
outcome are not in place for these preclinical studies in mice, it is an
interesting possibility that triagonists might be able to induce greater
weight-loss without additional adverse events. Although speculative,
these mechanisms likely include canonical and non-canonical ther-
mogenesis as well as macronutrient futile cycling, notably glucose
when paired with incretin receptor agonism.

The superiority of triple agonists over dual incretin receptor agonists
like tirzepatide in preclinical models suggests the inclusion and relative
potency of GcgR agonism as the primary determinant of weight-
reducing efficacy for these compounds. This is further demonstrated
by the superiority of a second-generation triagonist with heighted
potency at the GcgR for weight loss compared to less potent, first-
generation triagonists. Optimization of GcgR agonism for weight loss
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is in its infancy; however, insight into this process may be gleaned
from recent characterization of dual incretin receptor agonists. First,
largely speculative arguments have been mounted regarding the
optimal potency ratio between two or more receptors. However, in vitro
potency and preclinical efficacy data directly assessing these re-
lationships is lacking and confounded by the apparent reduction in
potency of GIPR agonists in rodents [61] and the compensatory
sensitization of incretin receptors in genetic knockout mouse lines
[62,63]. Thus, adequately assessing how receptor potency ratio affects
in vivo efficacy in the context of GIPR agonism requires extensive and
costly clinical investigation. Secondly and similarly, there is ongoing
debate as to whether tirzepatide activation of the GIPR contributes to its
efficacy as suggested by the clinical and preclinical data [61]. While
GIPR antagonism has been shown to reduce adiposity in preclinical
models [64], the clinical data show tirzepatide, a dual GLP-1R/GIPR
agonist, produces greater weight loss and glucose lowering than the
GLP-1R agonist semaglutide alone [42], particularly at doses which
comparably engage the GLP-1R [61]. This suggests that the addition of
GIPR agonism is responsible for meaningful differences in clinical
outcomes. Tests in human subjects to ascertain the relative contri-
bution of each constitutive receptor activity to the pharmacology of
triple agonists are difficult even with emerging tracers to estimate
receptor occupancy in vivo, but a robust analysis of emerging clinical
trials may allow for a crude deduction of this information. Third, tir-
zepatide has been demonstrated to be a biased GLP-1R agonist
exhibiting largely retained efficacy with respect to cAMP production,
albeit with reduced potency, but significantly reduced [-arrestin
recruitment [61]. This biased signaling profile is known to contribute to
the insulin secretory capacity of tirzepatide in isolated cell systems and
is broadly thought to improve GLP-1R agonist efficacy in preclinical
studies, but any therapeutic benefit over unbiased signaling in clinical
settings remains to be proven. While cursory efforts have been devoted
to characterizing the structure activity relationship responsible for this
signaling profile at the GLP-1R [65], the structural and sequence de-
terminants of biased agonism at GIPR and GcgR are largely unknown,
and thus would add another level of complexity to the structure—
activity relationships leveraged in the rational design of these unim-
olecular triple agonists.

The pharmacologic mechanisms by which triple agonism of the GLP-1R,
GegR, and GIPR influences weight loss are worth considering in the
context of optimization of receptor engagement. GLP-1R agonists are
thought to primarily mediate weight loss by reducing food intake
[49,53]. There is observational data to infer an additive and possibly
synergistic effect of exercise with GLP-1R agonism on weight loss,
suggesting non-anorectic mechanisms that are not well characterized
[5,66]. The contribution of GcgR agonism to weight loss appears to be
primarily mediated by an increase in energy expenditure as suggested
by our data; it is hypothesized that hepatic glucose mobilization for
consumption in peripheral tissues, including the fat, is primarily
responsible. The weight loss contribution of GIPR agonism is less clear.
Initial reports that GIPR null mice [64] are protected from diet-induced
obesity have been supported by preclinical studies in rodents and
non-human primates that GIPR antagonism induces additive weight loss
when combined with GLP-1R agonism [32,67], and human genetics
data that loss-of-function GIPR variants associate with reduced adiposity
[68]. However, recent data provides human genetic evidence that
supports a beneficial role of sustained GIP signaling on cardiometabolic
health outcomes, notably a lower BMI [69]. Further, preclinical dem-
onstrations that GIPR agonism induces significant weight loss through
CNS GIPR activation [38] align with emerging clinical data of tirzepatide,
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particularly as compared head-to-head against GLP-1R agonist sem-
aglutide [42], to suggest that activation of GIPR is advantageous for
weight loss. How GIPR antagonism and agonism regulate body weight is
unclear, but it has been suggested that there are common mechanisms
of antagonism and agonism to drive desensitization of GIPR, although
the same effect has been observed with GLP-1R manipulation [70].
Recent evidence suggests that GIPR activity may modulate GLP-1
dependent feeding behavior by reducing the emetic activity promoted
that GLP-1R in the hindbrain [39], an area of the brain relatively exposed
to small circulating peptides. Thus, it is plausible that differential bio-
distribution of the pharmacologic compound or chemical modality used
(i.e. peripherally restricted antibody vs. brain-permeable peptide by
nature of the fatty acid used 49) may lead to the cell or tissue-selective
engagement of their targeted receptors.

Weighing the therapeutic potential of triple agonists for diabetes and
obesity against the cardiovascular effects of GcgR agonism specifically
is a necessary consideration. Glucagon is broadly thought to have
cardio-stimulatory effects via GcgR expressed on the myocardium [58].
GcgR mono-agonists are known to increase heart rate and contractility,
which has led to the suggestion for them to be used as a treatment for
low cardiovascular output in acute settings. However, human efficacy
data for this strategy is scant. Recent reports demonstrate that triple
agonists exert a transient stimulatory effect on heart rate [71], akin to
that observed with preclinical studies of GLP-1R agonists. This finding
is notable given the demonstration from large scale cardiovascular
outcomes trials that GLP-1R agonism is largely cardioprotective [72],
and preclinical data that tachycardia observed with GLP-1R agonists
dissipates over time or is minimized in the clinic with dose escalation
[73,74]. Thus, it possible that dose escalation regimens, which are
standard of care for available GLP-1R agonists to minimize gastroin-
testinal adverse events, may mitigate these apparently detrimental
outcomes of GcgR agonists on heart rate but must be empirically
proven in a clinical setting.

5. CONCLUSIONS

Previous studies have demonstrated that pharmacologic activation of
GLP-1R, GIPR, and GcgR provides significant body weight loss in
preclinical models, and emerging clinical data of compounds that
engage two of these receptors are showing the translation of these
preclinical results into human subjects. While GLP-1R and GIPR acti-
vation are necessary to buffer the hyperglycemic effects of glucagon
pharmacology, we demonstrate herein that a long-acting, balanced
triple receptor agonist reduces body weight in a manner superior to
that achieved by mono- or dual-incretin receptor agonism alone,
notably outperforming the clinical assets semaglutide and tirzepatide,
and a related clinical asset SAR441255. It should be noted that
compound 16 induces a notable reduction in lean mass and glucose
control compared to both 18 and SAR44125. This phenomenon ap-
pears to be positively correlated to in vitro GegR potency, indicating a
potential contribution of GcgR mediated amino acid catabolism and
muscle wasting to the weight-loss phenomenon of 16 in this preclinical
study [75], while elevated glycogenolysis and gluconeogenesis may
contribute to the glucose control outcome [75]. Optimization of the
peptide backbone and acylation resulted in triple agonists with in vitro
potency equaling or surpassing that of the native hormone for each
receptor and pharmacokinetic properties supporting once-weekly
clinical administration. Characterization in DIO mice revealed unprec-
edented efficacy to lower body weight to the point of weight normal-
ization and reversal of obesity. This weight loss is proportional to the
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degree of GcgR engagement, at least as assessed in vitro, and func-
tionally mediated by an increase in energy expenditure. These data
provide clear evidence for the potency of glucagon pharmacology to
tune the maximal weight loss that can be achieved pre-clinically, and
eventual clinical testing will provide the translational evidence of the
power in harnessing these three pharmacologies for patients with
obesity. Additionally, these data also suggest a series of considerations
for the future discovery, development, and optimization of triple re-
ceptor agonists on this nature.
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