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Abstract

SARS‐CoV‐2 Omicron with its lineages BA.1, BA.2, and BA.3 has triggered a fresh

wave of Covid‐19 infections. Though, Omicron has, so far, produced mild symptoms,

its genome contains 60 mutations including 37 in the spike protein and 15 in the

receptor‐binding domain. Thirteen sites conserved in previous SARS‐CoV‐2 variants

carry mutations in Omicron. Many mutations have shown evolution under positive

selection. Omicron's giant mutational leap has raised concerns as there are signs of

higher virus infectivity rate, pathogenesis, reinfection, and immune evasion.

Preliminary studies have reported waning of immunity after two‐dose primary

vaccine regime, need for the boosters, folds reduction in vaccine effectiveness and

neutralizing antibodies even after boosting and significant neutralization resistance

with the therapeutic monoclonal, polyclonal, and convalescent antibodies against

Omicron. The narrative that “Omicron is mild,” therefore, needs time to be tested

with a deeper, scientific dwelling into the facts.
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1 | INTRODUCTION

Since its emergence in December 2019, SARS‐CoV‐2 induced Covid‐

19 disease has spread to about 240 countries and territories of the

world with about 435 million (435, 626, 514) confirmed cases and 5.9

million (5, 952, 215) deaths as on March 1st, 2022. Among the worst

Covid‐19 affected nations, the United States has reported a

maximum number of SARS‐CoV‐2 infections and Covid‐19 related

deaths followed by India and Brazil.1 Since the beginning of the

pandemic, the reports of multiple sites in the genome of SARS‐CoV‐2

(ORF1a, ORF1b, ORF3a, ORF8, N, and S genes) under positive

selection, gave early signs of tremendous genome plasticity of this

virus2–4 that resulted in the emergence of many variants each with

their characteristic set of mutations.

A novel SARS‐CoV‐2 variant detected in mid‐November 2021 in

Botswana and South Africa was named B.1.1.529 “Omicron” and

designated as a variant of concern (VOC) by the World Health

Organization (WHO).1 It is the fifth SARS‐CoV‐2 VOC to be detected

after Alpha (B.1.1.7/United Kingdom), Beta (B.1.351/South Africa),

Gamma (P.1/Brazil), and Delta (B.1.617.2/India) variants. In the three

nomenclature systems proposed by phylogenetic assignment of named

global outbreak lineages, Nextstrain and global initiative on sharing all

influenza data (GISAID), Omicron belongs to Pango lineage B.1.1.529

with BA.1, BA.2, and BA.3 included as its three descendent lineages.

BA1.1 has been identified as a sub‐lineage under BA.1. Next strain

nomenclature has assigned “clade 21M” to Omicron; “21K to BA.1; “21L”

to BA.2, while clade “GRA” has been assigned to Omicron by GISAID.1

Although, Omicron has emerged at a time when vaccine

immunity is increasing in the world, still, it has raised concerns by

triggering a fresh wave of Covid‐19 infections even among people

who had previously received two doses and even boosters of Covid‐

19 vaccines. Preliminary evidences suggest an increased risk of

reinfection associated with this variant.1 It is even gripping regions

where the Delta variant is still prevalent. Due to a short doubling time

of 2–3 days, and many unique mutations that may confer it higher

transmissibility and immune escape potential than its predecessors,5

the likelihood of global spread of Omicron is high. At present,

Omicron has been detected in 149 countries with an exponential

increase in the cases.1 Although, symptoms produced by Omicron are

apparently milder than Delta variant,6 the ongoing research on the

durability of immunogenicity acquired by vaccinations or previous

infections and the efficacy of therapeutic antibodies approved for

clinical use against SARS‐CoV‐2 virus will shed light to better

understand the long‐term effects of this novel variant.

2 | MUTATIONAL LANDSCAPE OF
OMICRON VARIANT

It is common for viruses to mutate during their replication. Overall,

coronaviruses' replication is highly fidel and shows a low mutational

frequency due to 3′–5′ exonuclease activity of their NSP14 protein.7

SARS‐CoV‐2 diversity and mutation rate is half of the influenza virus,8 but

several genes including ORF1a, ORF1b, ORF3a, ORF8, N and Swith a high

mutational rate2‐4,9 have resulted in new mutations that offer survival or

selective advantage by improving the “viral fitness.” This has led to the

emergence of new SARS‐CoV‐2 variants by modulation of receptor

binding efficiency, transmission, severity of disease, reinfection, immune

evasion, and resistance to neutralizing and therapeutic antibodies among

others.10 The reported modes of evolution of SARS‐CoV‐2 variants

explained in detail in Section 3 include recombination, epistasis, pervasive,

episodic, and directional selection.4,11‐15

The latest SARS‐CoV‐2 variant “Omicron” is heavily mutated13,16

and has accumulated an unprecedented high number of mutations.

Omicron shares some of its mutations with other SARS‐CoV‐2

variants but carries a large number of unique mutations (detailed in

Section 2.2), some of which have been shown to be linked to higher

transmissibility and immune escape, suggesting a significant shift in

the evolutionary trajectory of the SARS‐CoV‐2 virus. In addition, 13

sites previously observed to be conserved in SARS‐CoV‐2 variants

have been found to harbor mutations in Omicron. These sites have

been divided into 3 clusters.4 Cluster 1 (sites 339, 371, 373, 375),

cluster 2 (sites 493, 496, 498, 505) and cluster 3 (764, 856, 954, 969,

and 981) mutations have shown a decrease in the neutralization of

target classes 4, 1, and 2 antibodies and increased interactions

between S1 and S2 subunits and reduced S1 shedding, respectively.4

It is interesting to note that the emergence of various VOIs and VOCs

of SARS‐CoV‐2 including the current Omicron variant has largely

been supported by induction of substitution, deletion, and sparingly

insertion mutations and ins214EPE mutation has been seen for the

first time in Omicron.

2.1 | Omicron lineages BA.1, BA.2, and BA.3

BA.1 is predominant and represents about 99% of the Omicron

sequence available at GISAID database.17 Although, the majority of

Omicron mutations have occurred on the spike, other proteins have

also been shown to act as pharmacologically‐targetable epitopes

(such as the nucleocapsid protein) or as immuno‐evasion driving and

clinically relevant components (such as ORF8), ORF3a and others

(Table 1, Figures 1 and 2). In comparison to the ancestral reference

SARS‐CoV‐2 Wuhan Hu‐1 genome, BA.1 Omicron genome contains

a total of 60 mutations (Table 1, Figures 1 and 2), with 37 (6

deletions + 1 insertion + 30 substitutions) mutations located in the

spike protein, and remaining 23 mutations spread in other parts of

the genome (Figures 1 and 2). Sub‐lineage BA1.1 with a total of 61

mutations differs from BA.1 in possessing an additional “R346K”

mutation1 (Figure 1). BA.1 and BA.1.1 are unique in containing an

ins214EPE spike mutation.

The BA.2 lineage is popularly known as “Stealth Omicron” and

has a total of 59 genomic mutations and 31 spike mutations

(3 deletions + 28 substitutions) (Table 1 and Figure 1). Besides,

lineage BA.3 supposedly similar to BA.1 in its antigenicity contains a

total of 56 mutations along with 33 mutations in its spike protein

(6 deletions + 27 substitutions) (Table 1 and Figure 1). BA.2 and BA.3
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have been reported in about 0.1% and 0.01% of GISAID entries,17

respectively.

2.1.1 | Comparison of mutation profile in the whole
genome in Omicron lineages

Upon comparison of the mutation profiles of whole virus genomes in

Omicron BA.1, BA.2, and BA.3 lineages, 37 mutations were observed

to be common with 10 and 7 mutations being shared between

BA.1‐BA.3 and BA.2‐BA.3 lineages, respectively (Figure 3). While

only spike protein mutations were observed to be shared between

BA.1‐BA.3, ORF1a (G1307S, T3090I, and 3677del), spike protein

(S371F, D405N), ORF3a (T223I), and N protein (S413R) showed

common mutations between BA.2‐BA.3 (Figure 1 and Table 1).

Likewise, many mutations were observed to be specific to

each lineage. For instance, thirteen BA.1 mutations (ORF1a‐

K856R, S2083del, L2084I, A2710T, L3674del, I3758V; Spike

protein—ins214EPE, S371L, G496S, T547K, N856K, L981F;

M protein—D3G) and fifteen BA.2 mutations (ORF1a—S135R,

T842I, L3027F, L3201F; ORF1b—R1315C, T2163I; Spike

protein—T19I, L24S, P25del, P26del, A27del, V213G, T376A,

R408S; and ORF6—D61L) were found to be unique. For BA.3

lineage, two unique mutations listed were ORF1a‐S153R and

A3657V mutations (Figure 3). Omicron lineage BA.1 has been

found to be more pathogenic than ancestral Wuhan virus and

Delta VOC.18 On the other hand, BA.2 shows a 1.4 times higher

effective reproduction number than BA.1 and its furogenicity

and pathogenicity have also been reported to be higher than

BA.1.19

F IGURE 1 Schematic representation of distribution and sharing of mutations across genomes of Omicron lineages BA.1 with sub‐lineage
BA1.1, BA.2, and BA.3. ORF1a and 1b: Open reading frame 1a and 1b; Different domains of Spike (S) protein are SP: Signal peptide; NTD:
N‐terminal domain; RBD: Receptor‐binding domain; SD1 and SD2: Sub‐domain 1 and 2; S1/S2: Protease cleavage site; S1 and S2: Spike subunit
1 and 2; E: Envelope protein; M: Membrane protein and N: Nucleocapsid protein. *Shows the positive selection
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2.1.2 | Comparison of mutation profile in the spike
protein in Omicron lineages

Spike protein serves as the fundamental domain in SARS‐CoV‐2

pathogenesis as it facilitates viral entry into the human host. It has

been the main target for neutralization of antisera and therefore,

Covid‐19 diagnostics, therapeutics, and vaccines are largely based on

the spike protein.1 A comparison between the 4 Omicron lineages

with respect to the shared and unique spike mutations is shown in

Figure 1. A total of 21 spike mutations were found to be common

between the 3 lineages, while 10 and 2 mutations were shared

between BA.1‐BA.3 and BA.2‐BA.3, respectively. While 6 spike

mutations (ins214EPE, S371L, G496S, T547K, N856K, L981F) were

unique to BA.1, 8 mutations (T19I, L24S, P25del, P26del, A27del,

V213G, T376A, and R408S) were observed to be unique to lineage

BA.2. BA.3 lineage contained a total of 33 spike mutations that were

an amalgamation of 21 common mutations between the 3 lineages

along with 10 and 2 mutations shared with BA.1 and BA.2 lineages,

respectively (Figure 1).

N‐terminal domain (NTD), receptor‐binding domain (RBD), and

receptor binding motif (RBM) are three important regions of spike protein

that mediate viral binding to angiotensin‐converting enzyme 2 (ACE2)

F IGURE 2 Schematic representation of distribution and sharing of mutations across genomes of SARS‐CoV‐2 VOCs (Alpha, Beta, Gamma,
Delta, Omicron BA.1), VOIs (Lambda and Mu), and VUMs (Eta, Iota, and Kappa). ORF1a and 1b: Open reading frame 1a and 1b; Different
domains of Spike (S) protein are SP: Signal Peptide; NTD: N‐terminal domain; RBD: Receptor‐binding domain; SD1 and SD2: Sub‐domain 1 and
2; S1/S2: Protease cleavage site; S1 and S2: Spike subunit 1 and 2; E: Envelope protein; M: Membrane protein and N: Nucleocapsid protein
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receptor for effective transmission. NTD and RBD mostly have been the

primary target of neutralizing antibodies and vaccines reportedly harbor

many mutations in Omicron. BA.1 showed 11 NTD and 15 RBD (10 in

the RBM) mutations. While BA.2 showed 7 NTD and 16 RBD (8 in the

RBM) mutations. BA.3 lineage, on the other hand, showed 10 NTD and

15 RBD (9 in the RBM) mutations (Table 1 and Figure 4A). Multiple

mutations identified in the NTD, RBD, and RBM domains raise concerns

on enhanced transmission, reduced antibody response, and immune

evasion.1 Spike protein of lineage BA.1 is less efficiently cleaved at furin

site and is less fusogenic than the ancestral virus and VOC Delta.18

2.2 | Comparison of Omicron mutational profile
with other VOCs, variants of interest (VOIs), and
variants under monitoring (VUMs) of SARS‐CoV‐2

2.2.1 | Comparison of genomic mutational profile of
Omicron (BA.1) versus other VOCs (Alpha, Beta,
Gamma, and Delta)

Against a total of 60 mutations observed in Omicron BA.1 lineage,

29, 24, 26, and 27 genomic mutations were observed in SARS‐CoV‐2

VOCs Alpha, Beta, Gamma, and Delta, respectively (Table 1 and

Figure 2). Omicron variant was observed to share 10 and 5 common

mutations with Alpha and Beta variants, while 7 mutations each were

shared with Gamma and Delta variants, respectively (Tables 1 and 2,

Figure 2). The genomic regions ORF1b, spike protein, ORF8, and N

protein showed common Omicron mutations in Alpha and Gamma,

and ORF1b, spike protein, and ORF8 regions showed Omicron shared

mutations in Beta and Delta variants.

2.2.2 | Comparison of genomic mutational profile of
Omicron (BA.1) versus other VOIs (Lambda and Mu)

A total of 29 and 24 genomic mutations were observed in VOIs

Lambda and Mu, respectively against a total of 60 mutations

observed in Omicron BA.1 (Tables 1 and 2, Figure 2), out of which

seven and eight mutations were common between Lambda and Mu

when compared with Omicron BA.1. The ORF1a, ORF1b, Spike

protein, ORF8, and N protein were the regions in Lambda that shared

mutations with Omicron. While, in Mu, barring N protein the

remaining four regions (ORF1a, ORF1b, Spike protein, and ORF8)

showed common mutations with Omicron (Tables 1 and 2, Figure 2).

The unique “R346K” mutation possessed by sub‐lineage BA1.1 is

shared with VOI mu (Tables 1 and 2).

F IGURE 3 Venn diagram showing shared and unique mutations in the genomes of Omicron lineages BA.1, BA.2, and BA.3

RAJPAL ET AL. | 3525



2.2.3 | Comparison of genomic mutational profile of
Omicron (BA.1) versus other VUMs (Eta, Iota, and
Kappa)

VUMs Eta, Iota, and Kappa viral genomes showed a total of 23,

and 18 for each mutation (Figure 2, Tables 1 and 2). Six (Eta;

Spike protein, ORF8), Four (Iota; ORF1b, Spike protein, and

ORF8), and five (Kappa; ORF1b, Spike protein, and ORF8)

mutations were shared between the analyzed VUMs with

Omicron BA.1 variant.

A comparison of the number of incurred mutations in various

genomic regions in the 10 analyzed SARS‐CoV‐2 VOCs. VOIs and

VUMs are shown in figure 4B. Further, the present whole‐genome

mutation analysis of 10 SARS‐CoV‐2 VOCs, VOIs, and VUMs

indicates that Omicron BA.1 shares maximum (10) mutation with

VOC Alpha variant followed by 8 (VOI Mu) and 7 each with VOCs

Gamma, Delta and VOI Lambda (Figure 2).

2.2.4 | Comparison of spike mutations of Omicron
(BA.1) versus other VOCs, VOIs, and VUMs

The Omicron spike protein has 1270 AAs as compared to 1271 AAs

in the Delta variant and 1273 AAs in the ancestral Wuhan‐Hu‐1

F IGURE 4 (A) Number of mutations recorded in different genomic regions of SARS‐CoV‐2 Omicron lineages BA.1, BA. 2, BA.3, and
sub‐lineage BA.1.1. (B) Number of mutations recorded in different genomic regions of VOCs (Alpha, Beta, Gamma, Delta, and Omicron BA.1);
VOIs (Lambda and Mu); and VUMs (Eta, Iota, and Kappa) of SARS‐CoV‐2
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TABLE 1 Total genomic mutations recorded in SARS‐CoV‐2 VOCs (Alpha, Beta, Gamma, Delta, Omicron BA.1, BA. 1.1, BA. 2, and BA.3),
VOIs (Lambda and Mu) and VUMs (Eta, Iota, and Kappa)

S. No.
Variant name (WHO and PANGO
lineage) Mutations

1. VOC Alpha (B.1.1.7) [ORF1a]T1001I, A1708D, I2230T, 3675/3677del; [ORF1b] P314L; [S] P9L, H69del, V70del, V483F,
E484K, F486I, Q498R, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H; [ORF8] Q27*,
R52I, Y73C, S84L; [ORF8] S84L; [N] D3L, R203K, G204R, S235F

2. VOC Beta (B.1.351) [ORF1a]T265I, K1655N, K3353R, 3675/3677del; [ORF1b] P314L; [S] S13I, D80A, D215G, L242del,
A243del, L244del, K417N, E484K, N501Y, D614G, A701V, A879S; [ORF3a] Q57H, S171L; [E]
P71L; [ORF8] S84L; [ORF8] S84L; [N] T205I

3. VOC Gamma (P.1) [ORF1a]S1188L, K1795Q, 3675/3677del, [ORF1b] P314L, E1264D; [S] L18F, T20N, P26S, R78M,

D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V1176F; [ORF3a] S253P; [ORF8]
S84L, E92K; [ORF8] S84L; [N] P80R, R203K, G204R

4. VOC Delta (B.1.617.2) [ORF1b]P314L, G662S, P1000L; [S] T19R, T95I, G142D, E156G, F157del, R158del, L452R, T478K,

R567I, D614G, H655Y, P681R, D950N, T1117I; [ORF3a] S26L; [M] I82T; [ORF7a] V82A, T120I;
[ORF8] S84L, 119/120del; [ORF8] S84L; [N] D63G, R203M, D377Y

5. VOC Omicron BA.1 (B.1.1.529) [ORF1a]K856R, S2083del, L2084I, A2710T, T3255I, P3395H, 3674/3676del, I3758V; [ORF1b]
P314L, I1566V; [S] A67V, H69del, V70del, T95I, G142D, V143del, Y144del, Y145del, N211I,
L212del, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K,

E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K,
D796Y, N856K, Q954H, N969K, L981F; [E] T9I; [M] D3G, Q19E, A63T; [ORF8] S84L; [N] P13L,
31/33del, R203K, G204R

6. VOC Omicron BA.1.1 [ORF1a]K856R, S2083del, L2084I, A2710T, T3255I, P3395H, 3674/3676del, I3758V; [ORF1b]
P314L, I1566V; [S] A67V, 69/70del, T95I, G142D, 143/145del, N211I, L212del, ins214EPE,
G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R,
G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K,

Q954H, N969K, L981F; [E] T9I; [M] D3G, Q19E, A63T; [ORF8] S84L; [N] P13L, 31/33del, R203K,
G204R

7. VOC Omicron BA.2 [ORF1a]S135R, T842I, G1307S, L3027F, T3090I, L3201F, T3255I, P3395H, 3675/3677del; [ORF1b]
P314L, R1315C, I1566V, T2163I; [S] T19I, L24S, 25/27del, G142D, V213G, G339D, S371F,
S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R,

N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K; [ORF3a] T223I;
[E] T9I; [M] Q19E, A63T; [ORF6] D61L; [ORF8] S84L; [N] P13L, 31/33del, R203K, G204R, S413R

8. VOC Omicron BA.3 [ORF1a]S153R, G1307S, T3090I, T3255I, P3395H, A3657V, 3675/3677del; [ORF1b] P314L, I1566V;
[S] A67V, H69del, V70del, T95I, G142D, V143del, Y144del, Y145del, N211I, L212del, G339D,
S371F, S373P, S375F, D405N, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, Q498R,
N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K; [ORF3a] T223I;
[E] T9I; [M] Q19E, A63T; [ORF8] S84L; [N] P13L, 31/33del, R203K, G204R, S413R

9. VOI Lambda (C.37) [ORF1a]T1246I, P2287S, F2387V, L3201P, T3255I, G3278S, 3675/3677del; [ORF1b] P314L; [S]
G75V, T76I, R246del, S247del, Y248del, L249del, T250del, P251del, G252del, D253N, L452R,
F490S, D614G, T859N; [ORF8] S84L; [N] P13L, R203K, G204R, G214C

10. VOI Mu (B.1.621) [ORF1a]T1055A, T1538I, T3255I, Q3729R; [ORF1b] P314L, P1342S; [S] T95I, ins143T, Y144S,
Y145N, R346K, K417N, E484K, N501Y, D614G, P681H; [ORF3a] Q57H, 256/257del; [ORF8]
T11K, P38S, S67F, S84L; [N] T205I

11. VUM Eta (B.1.525) [ORF1a]T2007I, 3675/3677del; [ORF1b] P314F; [S] Q52R, A67V, H69del, V70del, Y144del, E484K,

D614G, Q677H, F888L; [E] L21F; [M] I82T; [ORF6] 2/3del; [ORF8] S84L; [N] S2Y, 3/3del, A12G,
T205I

12. VUM Iota (B.1.526) [ORF1a]T265I, L3201P, 3675/3677del; [ORF1b] P314L, Q1011H; [S] L5F, T95I, W152C, L452R,

D614G, A701V, V1177L; [ORF3a] P42L, Q57H; [ORF8] T11I, S84L

13. VUM Kappa (B.1.617.1) [ORF1a]T1567I, T3646A; [ORF1b] P314L, M1352I, K2310R; [S] T95I, G142D, E154K, L452R, E484Q,
D614G, P681R, Q1071H; [ORF3a] S26L; [ORF7a] V82A; [ORF8] S84L; [N] R203M, D377Y

Abbreviations: PANGO, phylogenetic assignment of named global outbreak lineages; WHO, World Health Organization.
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strain,20 indicating that the evolution of spike in the novel variants is

accompanied with loss of sequences.

The Omicron variant shares many spike mutations with other

VOCs, VOIs, and VUMs of SARS‐CoV‐2 (Figure 2 and Table 2). Eight

BA.1 and BA.2 common mutations (G142D, K417N, T478K, Q498R,

N501Y, D614G, H655Y, and P681H) and three BA.1 mutations

(H69del, V70del, and T95I) overlap the other four VOCs (Alpha, Beta,

Gamma, and Delta). Likewise, five BA.1 and BA.2 common mutations

(G142D, K417N, N501Y, D614G, and P681H) and five BA.1

mutations (A67V, H69del, V70del, T95I, and Y144del) overlap the

VOIs (Lambda, Mu) and VUMs (Eta, Iota, and Kappa).

2.3 | Functional characterization of omicron spike
mutations

The characteristics properties of each of the SARS‐CoV‐2 variants

are due to the specific set of mutations contained in their genome.

For instance, due to their characteristic mutations, VOCs Alpha and

Delta showed higher transmission rates and spread globally and

VOCs Alpha and Beta were discovered to be resistant to neutralizing

antibodies, thereby, affecting the effectiveness of vaccines.21,22

Many of Omicron spike mutations that overlap with other VOCs have

been previously characterized to confer increased transmissibility and

higher antibody escape.23

Mutations K417N, T478K, N501Y, D614G, and others have

been found to be associated with reinfection, partial resistance to

vaccines and increased transmissibility.5,24 S1/S2 cleavage site

mutations H655Y, N679K, and P681H result in increased S1/S2

furin cleavage and facilitate efficient viral entry into the host.25

While, S477N, Q498R, and N501Y mutations affect the ACE‐2

binding affinity, S477N and E484A are responsible for immune

evasion.20,26 Further, K317T/N, L452R, Y453F, S477N, E484K, and

N501Y mutations were shown to evade neutralization by 11 of the

13 analyzed monoclonal antibodies (mAbs).27 Multiple substitutions

have been observed at 477 (S477G, S477N, and S477R) and 484

positions (E484A, E484D, and E484K) in the spike protein of various

variants with all the resulting variants showing resistance towards

convalescent sera.23,24 N439K has been observed to enhance the

binding affinity with ACE2 receptor and to neutralize the activity of

monoclonal and polyclonal antibodies in people who recovered from

infection.23,28

Omicron Spike protein (all three lineages) carries ten deletion

mutations (L24del, P25del, P26del, H69del, V70del, V143del,

Y144del, Y145del, N211del, and L212del) in its NTD. Deletion

mutation Y144del has been observed to modulate the effects of

neutralizing antibodies.22,29 N211del is unique to Omicron and might

be responsible for enhanced transmissibility. The PRRA spike

insertion mutation in S1/S2 cleavage site has been responsible for

the introduction of a polybasic furin cleavage site.30 Insertion

mutation ins214EPE was found to be identical to the sequence

TMEM245 in the human genome or ORF S in the human coronavirus

hCoV‐229E, suggesting a human origin for Omicron.15 Further, Miller

et al.31 showed that Omicron eludes immune response due to

mutations in its RBD as well as in classes 1, 3, and 4 antibody

epitopes. In this context, the most significant immune escape spike

RBD mutations that have been listed include K417N/T, N439K,

L452R, Y453F, S477N, E484K, and N501Y.9

Omicron mutations Q493 and Q498 have been shown to have

enhanced binding affinity to mACE2 and are related to infectivity in

animals, especially mice.32 Similarly, Sun et al.11 also showed that 5

key Omicron spike mutations K417, E484, Q493, Q498, and N501

have also been observed in A‐501‐MA‐30 strain isolated from Mouse

lung tissue. These observations strongly suggest that progenitor of

Omicron may have jumped from humans to mice and after rapidly

accumulating mutations in mice, it jumped back to humans in a

reverse zoonotic cycle, indicating an inter‐species evolutionary

trajectory for Omicron.11,12,33

Reports have also shown that mutations at the ACE2‐RBD

interface modulate the RBD‐ACE2 binding affinities. By conducting

atomistic molecular dynamics simulations between ACE2 receptor

and RBD of Spike protein, it has been shown that Omicron RBD binds

more strongly to human ACE protein as compared to the ancestral

virus.34 In contrary, a comparison between the receptor‐binding

ability between Delta, Omicron variant, and ancestral virus using MD

simulation and Elisa bioassay showed a much weaker receptor

binding of Omicron as compared to Delta variant while its receptor

binding affinity was comparable with the ancestral wild type SARS‐

CoV‐2.32 The binding affinity of human ACE2 receptor and RBD of

Omicron and other VOCs was analyzed to show that ACE‐2 binding

affinity to the RBD was lower in Omicron as compared to Beta and

Delta variants indicating that receptor binding affinity is not driving

omicron evolution.35 Rather, significant reduction in antibody titers

against the Omicron RBD as compared to ancestral SARS‐CoV‐2 RBD

suggest that neutralizing antibodies play an important role in the

immune escape shown by Omicron.

Genetic variation in viral genes not only leads to the emergence

of novel variants but also has direct implications in viral pathogenesis

especially if mutations involve the RBD. Preliminary reports have

shown that the Omicron variant shows a more than 10‐fold increase

in virus infectivity than the Delta variant.36 The identification of

various mutations in SARS‐CoV‐2 viral genomes, especially the novel

mutations in Omicron and their functional characterization is

important as it can guide future research prioritization to develop

antiviral strategies to contain the spread of the virus.

3 | ORIGIN OF OMICRON VARIANT

The origin of the Omicron has been highly contested in the scientific

community.6,11,12,37,38 The likely modes of origin that have been

proposed include (i) reverse zoonosis‐human to animal and then animal

to human transmission, (ii) from an immunocompromised person

treated with antiviral drugs and antibodies, (iii) cryptic spread and

circulation in a population with insufficient viral surveillance, sequenc-

ing, and vaccination, (iv) recombination arising due to co‐infection by
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more than one circulating strains or seasonal coronaviruses like or

HCoV‐229E, and (v) template switching using genomes of coinfecting

viruses or from prevalent templates in the host.2,11–15

SARS‐CoV‐2 like any other virus has evolved by induction of

novel mutations in its genome. The fate of newly emerged mutations

largely depends on recombination, epistasis, pervasive, episodic, and

directional selection.4,11–15 The mutations conferring a competitive

advantage to the virus in terms of enhanced viral replication or

transmission and immune escape get positively selected and increase

in frequency resulting in the establishment of novel lineages carrying

these mutations as the dominant variants. Many such viral genomic

sites like ORF 1ab, ORF3a, ORF8, and N protein gene among others

have been identified that undergo positive selection and might have

favored divergence of virus and emergence of novel variants by

diversifying or directional selection, epistatic interactions, and even

founder's effect.2

Omicron's mutational landscape of nearly 60 mutations includes

37 mutations in the spike protein (three times more than reported for

other variants) out of which 30 are nonsynonymous mutations

(Figures 1 and 2). Sixteen codon sites harboring these mutations have

been evolving under positive selection4 (represented with an asterisk

in Figure 1). Omicron genome shows a 4‐times higher fraction of

positively selected sites than all of the SARS‐CoV‐2 spike genes that

have ever shown positive selection.4

Based on the sequencing data available from across the world,

molecular prints in preoutbreak and postoutbreak sequences point to

three major/plausible pathways to explain the emergence and

predominance of the Omicron variant:

(a). Silent/cryptic spread—Even though 7.5 million sequences are

available in the GISAID database, several regions across the

world may not be represented due to poor surveillance,

economic conditions, and social and personal choices. These

are potential areas where accumulation and selection of

mutations could have happened and remained undetected till

they spread.

(b). Single host (long infection)—Hosts with chronic infections

(immunocompromised patients) provide a metabolic milieu to

the adapting virus to accumulate mutations under severe stress.

This mechanism though seems unlikely as the virus prefers to

switch hosts rather than continue adapting to extensive changes

in one host.

(c). Host jumping and adaptation—This is a plausible pathway where

the mouse or rat could pick the virus through contaminated

sewage and transmit it to the wild or caged animals in zoos (as

several animals like wild leopard, hyenas in the zoos and pets as

well have been found to be affected). This provided an

opportunity for the virus to accumulate substantial mutations

and with multiple intergenic interactions, selection of a wide

corpus of mutations could be achieved.

Further, Omicron lineages BA.1 and BA.2 are distinct with

respect to the incurred mutations and are more widespread as

compared to BA.3. This implies that mutations occurred, were

selected for in the specific environments and then diversified and

adapted leading to the speculation that diversifying and directional

selection, genome shuffling or widespread recombination or a

combination of the above could have led to the emergence of

Omicron lineages at nearly the same time and simultaneously with

the Delta.

4 | PHYLOGENETIC RELATIONSHIP OF
OMICRON WITH OTHER SARS‐COV‐2
VOCS, VOIS, AND VUMS

As shown in Figure 2, the Omicron variant shares many mutations

with other VOCs and VOIs of SARS‐CoV‐2. Eight BA.1 and BA.2

common spike mutations (G142D, K417N, T478K, Q498R, N501Y,

D614G, H655Y, and P681H) and three BA.1 mutations (H69del,

V70del, and T95I) overlap the other four VOCs (Alpha, Beta, Gamma,

and Delta). Likewise, five BA.1 and BA.2 common spike mutations

(G142D, K417N, N501Y, D614G, and P681H) and five BA.1 spike

mutations (A67V, H69del, V70del, T95I, and Y144del) overlap the

five VOIs and VUMs (Lambda, Mu, Eta, Iota, and Kappa). Phyloge-

nomic relationship of Omicron with the other circulating SARS‐CoV‐2

variants has also been worked out. While, Bansal and Kumar13 have

indicated that Omicron has phylogenetically diverged into a distinct

group other than Delta and rather shares a common ancestry with

VOI Lambda, Sun et al.11 suggested that Omicron formed a

monophyletic group with Gamma variant as a sister group initially

and then both diverged in the mid‐2020. They have supported its

origin in a reverse zoonotic cycle with mouse as the most probable

intermediate host.39 Genome analysis has indicated that the Omicron

variant initially evolved from 20B clade and later diverged to form

two subclades,40 while Kandeel et al.41 have reported a separate new

monophyletic clade for Omicron with some relatedness to Alpha

variant.

5 | DIAGNOSTIC TESTING OF SARS‐COV‐
2 VARIANT OMICRON

Rapid and accurate detection of SARS‐CoV‐2 is the first step in the

effective management of Covid‐19. A number of diagnostic tests

including nucleic acid amplification tests (NAATs), antibody and

protein‐based detection, have received emergency use authorization

(EUA) from Food And Drug Administration (FDA).42–44

5.1 | NAATs

NAATs target the SARS‐CoV‐2 genome and serve as a sensitive,

precise and most widely used diagnostic test. The assays' targets

include regions in one or more of the E (Envelope), RdRP (RNA

dependent RNA polymerase), N (Nucleocapsid), S (Spike protein) and
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ORF1 genes. At least two independent targets on the viral genome

constitute an optimal NAAT assay and are performed using real‐time

reverse transcriptase PCR (rRT‐PCR).45 rRT‐PCR uses naso‐

pharyngeal or oeso‐pharyngeal fluids taken from nasal or throat

swabs. The process involves isolation of viral RNA which is reverse‐

transcribed to synthesize a complementary DNA that is amplified by

a Taq DNA polymerase with primers targeted at RdRp, E, S, and N

genes that are amplified with a fluorogenic probe by PCR. The rRT‐

PCR can quantify the viral load as well which is represented as a cycle

threshold (CT) value. CT value refers to the number of cycles post

which the virus can be detected. The more the CT value lesser is the

viral load in the body and vice versa. A CT value less than 40 is

considered clinically positive.44 Many rRT‐PCR assays have been

commercialized and have automated sample processing including

RNA extraction, amplification and reporting1 and are being used with

rapid turnaround in regions with limited laboratory capacity.

Besides rRT‐PCR assay, reverse transcription loop‐mediated

isothermal amplification (RT‐LAMP), clustered regularly interspersed

short palindromic sequences (CRISPR) based assays, molecular

microarrays and next‐generation sequencing are under development

or being commercialized.44

5.2 | Rapid diagnostic tests (RDTs) based on the
detection of viral antigens

Rapid diagnostic assays have been developed to detect the presence

of viral antigens46 and/or antibodies. Most of the RDTs are based on

lateral flow immunoassays (LFIs), and are less sensitive than NAATs.

The advantages of antigen‐based tests, however, are their low cost

and rapid turnaround time. They also allow for repeat testing to

quickly identify viral infections. For the antigen detecting rapid assay,

viral antigen from the respiratory tract samples of infected individuals

binds to antibodies adsorbed on a paper strip. Antigens are detected

in acute or early infections where the virus is actively replicating.46

5.3 | Serological tests for antibody detection

Unlike NAATS and RDTs for antigens that are based on virus

detection, serological or antibody tests are used to detect a recent or

prior SARS‐CoV‐2 infection. They help in broad‐based surveillance of

Covid‐19, and evaluating the immunity resulting from a previous

infection or vaccination. Quantitative determination of antibodies

with the passage of time helps in ascertaining the duration of

vaccine‐derived protection. Serological tests are taken as additional

diagnostics especially in cases who are strongly suspected to have

Covid‐19 but where NAAT and RDT for antigens tests have produced

false negatives.

Serological antibody detection is based on measuring the binding

antibodies viz. total immunoglobulins (Ig), IgA, IgG, and IgM in the

blood of infected individuals by enzyme‐linked sorbent assay (ELISA),

LFI, and chemiluminescence immunoassay. ELISA‐based IgG and IgM

antibody assays have more than 95% specificity for Covid‐19

diagnosis.46

The above diagnostic methods can be used to detect all the

circulating VOCs of SARS‐CoV‐2. Like the other SARS‐CoV‐2

variants, Omicron also uses the same ACE2 receptor in alliance with

the host's transmembrane serine protease 2 surface protein used as a

primer for entry into the human host.47 In addition to above

mentioned diagnostic assays, the Omicron variant shows S‐gene

Target failure (SGTF) due to spike amino acid 69–70 deletion that is

absent in Delta and other variants. Therefore, failure in S gene

amplification in a widely used PCR test (Thermofisher, TaqPath) can

be used to identify the Omicron variant.48

6 | ROLE OF VACCINATION PROGRAM IN
MITIGATING COVID‐19

Public health and infection control measures have been supported

hand‐in‐hand by the development of vaccines for the management of

this pandemic. Vaccines' development has been fast‐tracked at an

unprecedented time frame, given EUA by FDA and more than 10

billion vaccine doses (March 1st, 2022) have been administered

across 184 countries with about 52% of the world population now

being fully vaccinated.49 Covid‐19 vaccination program has been the

world's largest vaccination drive rolled out to contain the spread of

the pandemic, offer protection against severe illness and restrict

hospitalization and deaths. Vaccines evoke the immune system

responses to produce humoral/cellular immunity and to trigger

immunological memory to contain the viral spread. As on March

1st, 2022, 147 vaccines were under various phases of clinical trials,

while 195 vaccines were under preclinical development phase. Ten

vaccines belonging to either protein subunits, recombinant subunits,

adenovirus‐based vectors, messenger RNA or even inactivated whole

SARS‐CoV‐2 virus have been approved for use by WHO as on March

1st, 2022.49 Various approved vaccines in these categories include (i)

Protein subunit vaccines (NVX‐CoV2373 ‐Novavax; Covovax‐ Serum

Institute of India, Novavax formulation) (ii) messenger RNA (mRNA)

vaccines (mRNA‐1273‐ Spikevax, Moderna; BNT162b2‐Pfizer‐

BioNTech, Comirnaty) (iii) nonreplicating viral vector vaccines

(Ad26.COV2.S—Janssen, Johnson and Johnson; AZD 1222/

ChAdOx1‐S nCoV‐19‐Vaxzevria, Oxford/AstraZeneca; Covishield—

Serum Institute of India, AstraZeneca formulation) and (iv) Whole

inactivated virus vaccines (BBV152—Covaxin, Bharat Biotech;

Coronavac—Sinovac and BBIBP‐CorV, Verocell, Sinopharm, Beijing).

Highest doses (approx 22%) with 65%–85% efficacy have been

administered with CoronaVac (Sinovac) followed by BNT162b2/

mRNA‐1273 with 90%–95% efficacy, ChAdOx1 nCoV‐19 with

65%–80% efficacy, BBIBP‐CorV (Sinopharm) with 65%–80% efficacy

and other vaccines.49–51

Though, the EMA and FDA has approved 48 different vaccination

regimens that vary from country to country, in general, administration of

two doses (except a single dose in Ad26.COV2.S) of the same

(homologous) vaccine constitutes a primary vaccine schedule. Booster

RAJPAL ET AL. | 3533



doses were included in the primary vaccination regime when waning of

immunity was seen with Beta and Delta variants with the passage of

time52 and especially after the emergence and rapid spread of Omicron

variant with mutations that could reduce the neutralizing antibodies and

result in immune evasion.6,13

6.1 | Efficacy of the existing repertoire of vaccines
against Omicron

Due to the presence of many mutations with known immune evasion

potential in Omicron genome, data on neutralization of Omicron,

vaccine effectiveness (VE) and immunogenicity comparisons by

convalescent and other vaccine sera in homologous prime or

homologous/heterologous prime‐boost settings has been released

by many research groups from more than 25 different countr-

ies.9,20,22,26,53–76 A variety of neutralization assays and cell types

including in vitro pseudo virus, live virus and real‐life datasets have

been used in these studies.

Early estimates of VE from various countries indicate a

significantly reduced effectiveness of the existing vaccines in terms

of a decline in neutralizing antibodies produced against Omicron33

compared to Delta and the ancestral virus in two‐dose vaccinated

people, with or without a previous infection. The third booster dose

has been shown to raise the antibody levels and help in reversing the

declining trends of neutralizing antibodies but only to modest

levels49,59,65,74,77 that were observed to be significantly lower when

compared to Wuhan‐Hu‐1 virus or even Delta strain.

For instance, the VE of 2‐dose regime of BNT162b2 has been

shown to fall from original more than 90% against the original SARS‐

CoV‐2 virus to about 40% against Omicron in UK55 and 33% in South

Africa.78 Waning of immunity against Omicron within a few weeks of

two‐dose mRNA vaccination was observed in all age groups in Israel,79

and with either of CoronaVac/mRNA vaccines in Hongkong.20 With

four widely used Covid‐19 vaccines (BNT162b2, mRNA‐1273,

Ad26.COV2.S, and ChAdOx1) a strikingly high levels of neutralization

resistance against Omicron was observed in convalescent, two‐dose

vaccinated people in United States.67 The immune responses

generated in previous infection coupled with two‐dose vaccination

could not generate a sufficient titer to neutralize Omicron26 and

17–22‐fold fall in neutralization ability against Omicron was observed

in two‐dose vaccinated (ChAdOx1/BNT162b2)/convalescent indivi-

duals (Breakthrough infection). Convalescent + two‐dose vaccinated

(Hybrid immunity/Super immunity) individuals also showed 16‐fold

decline in neutralization ability.26 Similarly, a drastic reduction or even

absence of neutralization in two‐dose AZD1222/BNT162b2 vacci-

nated individuals against Omicron has been observed.60 VE of −38% to

−42% (between 120 and 239d) against Omicron was observed in

Canada after two‐doses of ChAdOx1/BNT162b2.57 A whole lot of

other reports from research groups across countries (China, Canada,

UAE, Denmark, India, Hongkong, Denmark, Russia, Sweden, Lebanon,

Australia, Chile, Israel, Germany, and many others) have observed

similar trends of significant waning (20–40‐fold) or even absence of

neutralization ability in two‐dose vaccinated individuals with passage

of time against the previous VOCs and Omicron.21,58,60‐62,64,66,80‐85

Therefore, a pressing need was felt for a third booster.86 Many reports

showed a reduction in rate of infection and severe illness after

administration of 3rd booster dose with mRNA BNT162b2 vaccine

initially in the United Kingdom, United States, Canada, Denmark,

Dominican Republic, and South Africa followed by many other

countries.56,57,60,61,67,71,80,81,85,87 Although, the 3rd booster jabs were

shown to reverse the waning immunity trend set in after the two‐dose

vaccination regime and provided protection from severe illness, they

could not protect against infections as only an incomplete neutraliza-

tion of SARS‐CoV‐2 variants especially Omicron could be achieved

even after boosting.

Nevertheless, booster vaccinations now have been administered

with both homologous as well as heterologous vaccines settings. In

general, mRNA vaccines have been shown to produce higher

neutralization titers than other vaccines. Further, several clinical/

cohort studies across laboratories in the world with different assays

and vaccine types have reported that heterologous prime‐boost

vaccinations produce incremental increase in immunogenicity to

neutralize Omicron variant better than homologous prime‐booster

strategies and enhance antibody and B cell and T cell mediated

responses.49,53,65,86,88–90 Many vaccine combinations have been

tested for tolerance and efficacy analysis in a heterologous prime‐

boost regime including inactivated virus vaccine + recombinant

protein vaccine/mRNA vaccine/adenovirus vector vaccine/protein

subunit vaccine or adeno‐virus vector vaccine +mRNA vac-

cines.22,51,54,57,68,69,71 Following combinations of the currently

approved vaccines have been included in the trials or cohort studies.

The studies have tested two‐doses of inactivated vaccines BBIBP‐

CorV or CoronaVac +mRNA vaccines BNT162b2 or mRNA‐

127351,69,71,91 adeno‐virus vector vaccine ChAdOx1 nCoV‐19/

Ad26.COV2.S +mRNA vaccine BNT162b2/mRNA 1273,63,72,89

Inactivated virus vaccine CoronaVac/BBIBP‐CorV + recombinant

protein vaccine ZF2001/NVSI‐06‐07,54 Inactivated virus vaccine

CoronaVac + adenovirus‐vector vaccine Convidecia54; Inactivated

vaccines BBIBP‐CorV + Protein subunit vaccine ZF2001,53 adenoviral

viral vector vaccine SputnikV + Sputnik Light Booster.59

All these tested heterologous prime‐boost vaccine combinations

were found to be well tolerated and produced folds‐increase in

immunogenic response against Omicron than the corresponding

homologous prime‐boost vaccine regimes. This mix and match

approach of vaccinations in heterologous prime‐boost vaccination

regime looks attractive as it appears to produce better VE than single

vaccine prime‐boost approach and can offer solutions to vaccine

supply chain issues. Further, it can also help people migrating to

different countries with different vaccination regimes.

Studies have also shown that SARS‐Cov‐2 infection before

vaccination boosted the immune response (Hybrid‐immunity).92 Also,

Infection after the vaccination (Break through infection) acted as a

booster against the current variant Omicron.66

An overall compilation of VE data from various countries showed

more than 19‐fold drop in titers in two‐dose vaccinated or
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convalescent sera as compared to approximately sevenfold drop in

the titers in sera from two‐dose vaccinated + boosted or two‐dose

vaccinated + infected individuals within a maximum of 6 months of

boosting.71 As evident, although, boosting by a third homologous or

heterologous vaccine dose reversed the decreasing trend of

neutralizing titers but the fold‐drop still was quite substantial.

It is obvious that absolute VE or neutralization data comparisons

might be skewed between the countries due to various variables in

the studies like methodology, considering symptomatic infection vs

any infection, product used for vaccination, time interval policies for

vaccinations, masking mandates, demographical differences in the

countries leading to difference in number of individuals with

vaccine induced or infection induced immunity, public health

measures like the duration of lockdowns and curfews and hence

the exposure level.93 However, the trends suggest a general

reduction in VE against Omicron variant in comparison to the original

SARS‐CoV‐2 and Delta variant.

In nutshell, the decline in the immunogenic potential against

Omicron even with this heterologous prime‐boost vaccination

strategy has been reported to be highly significant when compared

with the ancestral and Delta strains, thereby, raising concerns about

the long‐term sustenance of this boosted immunity.

7 | EFFICACY OF ANTIBODY BASED
THERAPEUTICS USED FOR SARS‐COV‐2
TREATMENT AGAINST OMICRON

Antibody‐based therapeutics for Covid‐19 include mAbs, polyclonal

antibodies and convalescent plasma. Since, spike protein has been

the target of these antibody based therapeutics, the mutations

incurred in Omicron spike could affect efficacy of these treatments. A

timely assessment of antibodies' efficacy against the evolving

variants is very important. Studies have been carried out to test the

neutralization of Omicron variant with the existing repertoire of

clinically approved therapeutic antibodies.63,82,94–96

For instance, Cameroni et al.80 have highlighted a major antigenic

shift and immune evasion potential of the Omicron variant. While, 26

out of the 29 tested mAbs were shown to lose their neutralizing

ability, mAbs S2K146, sarbecovirus mAbs sotrovimab, S2X259 and

S2H97 could neutralize Omicron. They correlated in vitro neutraliza-

tion of various mAbs that were directed at the RBM with the 10

incurred RBM mutations. The last three mAbs, interestingly, had their

recognition sites outside the RBM.

In yet another report, a staggering 85% escape by the tested

antibodies were shown by Omicron94 by studying the RBD escaping

profiles for 247 human anti‐RBD neutralizing antibodies (Nabs). The

analyzed Nabs were divided into six epitope groups (A‐F). Spike

mutations K417N, G446S, E484A, and Q493R were shown to be

responsible for escape by NAbs in group A‐D, which had overlapping

epitopes with ACE‐2 binding motif. Group E and Group F Nabs

were largely less affected. In nutshell, neutralization efficiency of

“LY‐CoV016/Ly‐CoV555,” “REGN10933/REGN10987,” “AZD1061/

AZD8895,” and “BRII‐196” showed significant reduction, while “VIR‐

7831” and “DXP‐604” showed lesser reduction. Further, a mixed

response was shown by Van Blargan et al.,96 when they tested a

panel of mAbs that are approved for clinical use to neutralize

Omicron variant. Several mAbs like LY‐CoV555 and LY‐CoV016

(Lilly); REGN10933 and REGN10987 (Regeneron); and CT‐P59

(Celltrion) did not show neutralizing ability against Omicron. While,

S309, the parent Mab of VIR‐7831 (sotrovimab), showed minimum

reduction, COV2‐2196 and COV2‐2130, the parent mAbs of

AZD8895 and AZD1061 (AstraZeneca), showed approximately 12‐

fold reduction in the neutralization ability.

In an elaborate study conducted by Hoffman et al.,63 it was

shown that Omicron spike protein showed inhibition by only

sotrovimab and showed resistance towards all other 18 RBD and

NTD directed mAbs tested either individually or in combination.

Therefore, two frequently used antibody cocktails involving casir-

ivimab + imedevimab and etesevimab + bamlanvimab for Covid‐19

treatment are no more effective against Omicron. The study

highlighted the role of Omicron spike mutations G142D, V143del,

Y144del, Y145del, K417N, T478K, E484A Q493R, G496S, Q498R,

N501Y, and Y505H towards classes 1 and 2 mAbs. Similarly, the role

of four new spike mutations S371, N440K, G446S and Q493R in

Omicron variant in conferring antibody resistance against class I and

2 RBD antibodies was emphasized by Liu et al.95 In the same study,

classes 3 and 4 RBD monoclonal antibodies were also shown to have

developed substantial resistance. Complete loss of neutralization of

Omicron by casirivimab and imedevimab, press the need to develop

variant specific therapeutic mAbs.74 Omicron was observed to

escape neutralization with a cocktail of imdevimab, and casirivimab64

or the all the other tested Mabs (casirivimab, imdevimab, bamlani-

vimab, cilgavimab, and tixagevimab),26 and only sotrovimab was

observed to neutralize the virus.26,64 In a study by Imbrechts et al.,97

after testing various mAbs against all the five VOCs of SARS‐Cov‐2,

however, it was concluded that three mAbs including mAb 3B8 at

very low doses resulted in complete neutralization of Omicron

variant. Identification of more such mAbs can give confidence to

handle the continuously evolving novel variants in SARS‐CoV‐2.

In totality, the above initial reports of massive failure of the

existing repertoire of therapeutic antibody molecules raise high

concern present a vexing situation to perplex the policy makers and

scientific community who must now develop alternate strategies to

counter this virus.

8 | CONCLUSION

Omicron with an expanded mutational landscape has emerged as a

highly transmissible SARS‐CoV‐2 variant that harbors many muta-

tions showing positive selection. Besides the standard diagnostic

assays including NAATs, RDTs, and ELISA based antibody detection

assays, Omicron shows SGTF, which is used as an additional marker

to test its presence. The origin of Omicron is contentious and the

most plausible modes that could have led to the emergence of
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Omicron lineages at nearly the same time and/or simultaneously with

the Delta, include selection, genome shuffling or widespread

recombination or a combination of above. The emergence and

spread of the Omicron are due to its unique abilities that reside in the

mutational landscape/edited RNA genome that provides it the

flexibility for transmission. In this context, it is imperative to monitor

all viruses of this group as a collective surveillance. This will indicate

the likely cellular environments needed by the virus to generate

modified genomes and proteomes that help it to evolve. This

understanding might help in devising strategies to handle the

emergence of future SARS‐CoV‐2 variants.

Omicron has shown significant neutralization escape with the

existing vaccines and therapeutic antibodies. Although homologous/

heterologous prime‐boosted vaccination schedules, so far optimized

to three doses have shown neutralization of Omicron, albeit to fold‐

reductions, it is now important to watch the duration of this boosted

immunity. Future continued studies and data acquisition on the long‐

term immunity levels in boosted individuals, occurrence of reinfec-

tions or breakthrough infections, targeted cohorts studies in different

age groups (young and elderly), immunity levels (immunity compro-

mised group) is warranted. Whether, the neutralization escape of

Omicorn with the existing vaccines is due to the waning immunity or

the result of this novel variant is the most important question to

answer. Undoubtedly, vaccines need to be updated to be genetically

and antigenically close to the circulating viruses to provide adequate

protection. Multivalent vaccines utilizing antigens from different

VOCs can be an option as strain specific monovalent vaccines need

time to be produced with every evolving strain. Of course, a pan SAR‐

Cov‐2 variant proof vaccine will be the best option, if feasible.

Further, the initial reports of escape of Omicron from unboosted

vaccines and therapeutic monoclonal antibodies are disturbing. More

real world data on impact of reduced neutralization and increased

transmission and their correlation with rate of hospitalization and

mortality in the coming months will develop a better understanding

to clear the air if “Omicron is actually mild” and if our existing armor

of vaccines and therapeutic molecules is sufficient to provide

adequate protection. Since, the present vaccinations or therapeutics

have largely targeted the spike that now has now expanded its

mutational landscape, it is perhaps the time to reappropriate research

prioritization and possibly look at the more conserved parts of the

virus other than spike protein or tapping theT cell mediated immunity

for designing the next generation therapeutics and vaccines.
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