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ABSTRACT: To facilitate the triage of hits from small molecule screens, we have used various AI/
ML techniques and experimentally observed data sets to build models aimed at predicting colloidal
aggregation of small organic molecules in aqueous solution. We have found that Naiv̈e Bayesian and
deep neural networks outperform logistic regression, recursive partitioning tree, support vector
machine, and random forest techniques by having the lowest balanced error rate (BER) for the test
set. Derived predictive classification models consistently and successfully discriminated aggregator
molecules from nonaggregator hits. An analysis of molecular descriptors in favor of colloidal
aggregation confirms previous observations (hydrophobicity, molecular weight, and solubility) in
addition to undescribed molecular descriptors such as the fraction of sp3 carbon atoms (Fsp3), and
electrotopological state of hydroxyl groups (ES_Sum_sOH). Naiv̈e Bayesian modeling and scaffold
tree analysis have revealed chemical features/scaffolds contributing the most to colloidal aggregation
and nonaggregation, respectively. These results highlight the importance of scaffolds with high Fsp3
values in promoting nonaggregation. Matched molecular pair analysis (MMPA) has also deciphered
context-dependent substitutions, which can be used to design nonaggregator molecules. We found that most matched molecular
pairs have a neutral effect on aggregation propensity. We have prospectively applied our predictive models to assist in chemical
library triage for optimal plate selection diversity and purchase for high throughput screening (HTS) in drug discovery projects.

1. INTRODUCTION
It is well known that at micromolar and submicromolar
concentrations, various organic molecules, including some
marketed drugs, can form colloidal aggregates.1−3 Such a state,
which is intermediate between true solution and precipitate,
can result in nonspecific assay effects through sequestration,
denaturation, or conformational change of the target protein.
Colloidal aggregation is, unfortunately, and undoubtedly a real
challenge to drug discovery and development. A more
thorough understanding of the interplay between various
physicochemical properties and molecular features akin to
colloidal aggregation is important not only for molecular
design and hit optimization but also for measuring bioactivity
in cell culture, drug formulation, drug delivery, triage of HTS
hits, the purchase of external chemical libraries to enrich
compound collections, and the design of DNA-encoded
libraries.
In response to the Covid-19 pandemic, drug repositioning

has been widely used to search for antiviral drugs with
therapeutic value for SARS CoV-2 targets.4−8 Recently,
O’Donnell et al.9 have investigated the role of colloidal
aggregation as a source of false positives and artifacts in drug
repurposing studies. They found that some of the hits
identified through biochemical assays can act as colloidal
aggregators at the concentrations used for screening, typically
in the micromolar range. This result clearly suggests that an
understanding of molecular properties and chemical features
driving colloidal aggregation may help in preselecting a more

appropriate chemical library for interrogation. Thus, we
propose that AI/ML models might be useful to proactively
predict the propensity of molecules to form colloidal
aggregates, thereby reducing the number of screening artifacts
and nonspecific effects.
During the last two decades, numerous computational

studies aimed at predicting colloidal aggregation have been
reported. Seidler et al.10 used Cerius211 descriptors to build a
recursive partitioning (RP) model from a training set of 111
compounds, out of which 47 were aggregators and 64 were
not. This model scored very well on the training set, with an
accuracy of 94% but with a reduced accuracy of 79% on the
test set of 75 drug molecules. Feng et al.12 subsequently built
RP, random forest (RF), and Naiv̈e Bayesian (NB) models
from a training set of 732 compounds. Once validated against a
random test set of 298 compounds, these models predicted
aggregation at a true positive rate of 77% (RP), 60% (RF),
23% (initial NB), and 74% (refined NB). Corresponding
misclassification rates for these models were 26% (RP), 11%
(RF), 26% (initial NB), and 20% (refined NB). Rao et al.13

used a data set comprised of 1319 aggregators and 128,325
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nonaggregators to build support vector machine (SVM), K-
nearest neighbors (KNN), and continuous kernel discrim-
ination (CKD) models aimed at classifying aggregators and
obtained a 5-fold cross-validation-derived sensitivity (also
referred to as true positive rate or recall) of 77.8, 71.6, and
74.7%, respectively. Irwin et al.14 used 2D chemical similarity
to known aggregators and lipophilicity (C log P > 3) to predict
colloidal aggregation. They prospectively found that a total of
18 molecules with Tanimoto coefficients between 0.85 and
0.99 to known aggregators indeed aggregated at relevant
concentrations. Yang et al.15 have recently used a data set
comprised of 12,119 aggregators and 24,172 nonaggregators to
develop RP, RF, and extreme gradient boosting (XGBoost)
decision tree models with 5 sets of groups of molecular
descriptors. The best-derived model had an accuracy of 0.95
and 0.94 for the training and test sets, respectively. A recently
published review article discussed experimental methods for
the detection of colloidal aggregates and various computational
approaches, which provided additional information and
insight.16

Although several computational efforts have focused on
building predictive models for colloidal aggregation, there has
been no report to decipher matched molecular pairs between
aggregator and nonaggregator molecules. Enumeration of such
matched pairs could be beneficial for the design of small
molecules outside of the aggregator chemical space. It can also
help in hit and lead optimization to remove aggregation
features and include more desirable drug-like17−19 chemical
features. Moreover, many molecular descriptors related to
drug-likeness and compound developability have not been
used in previous modeling studies on colloidal aggregation.
Examples include the fraction of carbon atoms sp3 (Fsp3),20

the number of stereocenters,20 quantitative estimate of drug-
likeness (QED),21 and promiscuity-related descriptors such as
stereochemical complexity and shape complexity.22−25

In the present study, we have used AI/ML techniques such
as deep neural networks and logistic regression, which have not
yet been utilized so far to predict colloidal aggregation, coupled
with unexplored molecular descriptors relevant to reducing
drug attrition. We have built models with excellent perform-
ance metrics such as accuracy, precision, recall, and BER on
both the training and test sets. We have identified the
importance of molecular descriptors, chemical features, and
scaffolds promoting either aggregation or nonaggregation,
using various analytical approaches. Our results outperform
and are consistent with previous observations but also add new
insights. We also report our findings on molecular matched
pairs analysis, which can be applied in a context-dependent
manner. Application of the derived models in HTS hits triage
and compound acquisition has also been performed and
reported herein.

2. METHODS
2.1. Computational Model Building and Validation.

Exploratory data analysis and predictive analytics were
performed solely using BIOVIA Pipeline Pilot.26 The data
set was made of colloidal aggregators retrieved from the ZINC
Database,27 and from a published data set.15 Nonaggregator
molecules were retrieved from the Drug Central Database28

and the experimental drugs were retrieved from TTD
(Therapeutic Target Database).29 After filtering and removing
duplicate molecules, inorganic compounds, drugs known to be
aggregators,9 and those with ambiguous behavior, the total

number of the remaining compounds was 29,345. Training and
test sets were randomly selected to contain 70 and 30% of
compounds, respectively, and the total number of compounds
in the training and test sets were 20,572 and 8773, respectively.
MMPA was carried out within Pipeline Pilot, using one cut,

a minimum core size of 5, and a maximum fragment size of 10
heavy atoms. Colloidal aggregators and nonaggregator
molecules were respectively labeled 1 and 0. To build
classification models, the following molecular descriptors as
implemented within Pipeline Pilot, were used as independent
variables: molecular weight (MW), A log P, QED, Fsp3,
number of atoms, number of rings, number of aromatic
rings, number of rotatable bonds, number of hydrogen-bond
acceptors (HBAs), number of hydrogen-bond donors (HBDs),
(nitrogen count + oxygen count), molecular solubility, polar
surface area (PSA), molecular surface area, fractional PSA,
solvent-accessibility surface area, extended connectivity func-
tional class molecular fingerprints, up to six bonds (ECFP-6),
chi indices, Balaban, Wiener and Zagreb indices, Kappa shape
indices, subgraph counts, and electrotopological state keys. In
addition to using synthetic accessibility score (SAscore) as an
estimate of molecular complexity,30 we have used the number
of stereocenters, stereochemical complexity, and shape
complexity, defined as follows:

Num of stereo centers
(NumUnknownTrueStereoAtoms

NumTrueStereoAtoms)

=
+ (1)

where Num designates the number.

stereo chemical complexity (C /C )stereogenic total= (2)

where Cstereogenic and Ctotal denote the number of C atoms that
are stereogenic and the total number of C atoms, respectively.
To calculate the parameter Cstereogenic, we have used eq 1.

shape complexity (C / C Csp3 sp3 sp2= [ + ] (3)

where Csp3 and Csp2 denote the number of sp3- and sp2-
hybridized carbons atoms, respectively.
Classification models were built using Naiv̈e Bayesian,

random forest, recursive partitioning tree, support vector
machine, logistic regression, and deep neural network, based
on the above-mentioned molecular descriptors. All models
were built in Pipeline Pilot as well. For random forest models,
500 trees were used to build the ensemble. The number of
descriptors used for each tree in the forest was equal to the
square root of the total number of descriptors. To reduce bias
due to data set imbalance and to attempt to increase both
accuracy and speed, class sizes were equalized by creating a
random data set containing an approximately equal number of
aggregators and nonaggregators for each tree in the forest. For
the deep neural network, we used a sigmoidal activation
function for nodes in the network, 2 hidden layers, and 50
nodes per hidden layer. The maximum number of iterations for
network training was 5000. Momentum and learning rates
were 0.9 and 0.05, respectively. Both dropout fractions for
hidden layers and visible layers were 0.25. For logistic
regression model building, we used the glm (generalized linear
model) method in R, which performs a logistic regression
without bias correction. We also built two-class Bayesian
categorization models aimed at distinguishing nonaggregator
data records from aggregator records, using scaled probabilities
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derived from these record counts. The recursive partitioning
tree model was built using the following parameters: Maximum
tree depth:50, Gini as the split method, a weighting by class,
maximum knots per property equal to 50, both maximum
generic depth and maximum lookahead depth equal to 0, and a
minimum yes or no answers equal to 1. For the support vector
machine model, we used a C-classification type, a radial kernel,
a weighting method as uniform, and episillon equal to 0.1, and
the cost associated with training set error was set to 2.0.
To compare various models, the following performance

metrics were used: Receiver operating characteristic curve
(ROC AUC), accuracy, precision, recall, F1 score, and
misclassification error, which are derived from true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN) as follows:
ROC AUC = Area under the curve derived by plotting the

true positives rate vs the false positive rate.

accuracy (TP TN)/(TP TN FP FN)= + + + + (4)

precision TP/(TP FP)= + (5)

recall TP/(TP FN)= + (6)

F1score 2(precision recall)/(precision recall)= × + (7)

balanced error rate(BER)

0.5 (FP/(TN FP) FN/(FN TP))= × + + + (8)

misclassification error(aggregators): FN/(TP FN)+ (9)

misclassification error(nonaggregators): FP/(TN FP)+
(10)

Figure 1. Molecular descriptors important for colloidal aggregation, as derived from the random forest classification model. (A) Only the top-30
descriptors are shown. (B) After removal of highly correlated descriptors. (C) Pearson correlation heatmap of the top important descriptors shown
in panel (B).
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misclassification rate(MR): (FN FP)

/(TP TN FP FN)

+
+ + + (11)

2.2. Experimental Measurements by NMR Water-
LOGSY. Ninety-nine in-house compounds were tested
experimentally for the formation of colloidal aggregation
using NMR WaterLOGSY31 and saturation transfer difference
(STD) measurements. The NMR buffer was composed of 10
mM Na2HPO4, 154 mM NaCl, and 5% D2O, pH 7.4. The
concentration of the NMR samples was 200 μM compound in
buffer with 100 μM TSPA (internal reference), with a 160 μL
volume per 3 mm NMR tubes. NMR measurements were
performed using a Bruker 700 MHz spectrometer at 298 K
equipped with a cryoprobe. For each sample, a 1H 1D
spectrum (zgesgp, expt 5 min, NS 128), a WaterLOGSY
spectrum (ephogsypgno.2, expt 38 min, NS 512), and a STD
spectrum (stddiffesgp.3, expt 48 min, NS 512) were recorded.
For nonaggregating compounds with sufficient solubility in
aqueous solution, negative signals were detected in the
WaterLOGSY spectra and no signal was found in the STD
spectrum. However, if the compound forms colloidal
aggregates or micelles in the aqueous solution, in the
WaterLOGSY spectrum, no signal or even positive signals
were detected. In the corresponding STD spectrum, positive
signals were measured. These results indicate that the average
molecular weight of the compounds is significantly higher than
the monomeric, solubilized form, and therefore, the compound
forms aggregates or micelles in aqueous solution. Compounds
that were found insoluble and for which no NMR signal was
detected in the 1H 1D spectrum were not included in the
validation set. For 14 compounds, aggregation or micelle
formation was detected due to positive signals in the
WaterLOGSY and STD spectrum. The remaining 85
compounds were soluble and monomeric in solution since
the WaterLOGSY spectra showed negative signals.

3. RESULTS
3.1. Molecular Descriptors Important for Colloidal

Aggregation. We have applied random forest to decipher

among the large pool of descriptors described in Section 2
those important in discriminating colloidal aggregators from
molecules tending not to aggregate. Using all the descriptors,
we obtained a predictive model with a ROC score (out-of-bag
data) of 0.96 and a misclassification error rate of 10.3%. The
corresponding results for the test set were a ROC score of 0.89
and a balanced error rate of 11%. Results shown in Figure 1A
suggest that the following descriptors, as listed in decreasing
order of importance, contribute to colloidal aggregation:
ES_Sum_sOH, Fsp3, AlogP, LogD, Molecular_Weight, JY,
JX, Molecular_SASA, CHI_V_0, number of aromatic rings,
ES_Sum_sssCH, CHI_1, CHI_3_P, Molecular_PolarSurfa-
ceArea, CHI_3_C, molecular surface area, CHI_2, ES_Su-
m_aaCH, Wiener, Kappa_2, Kappa_1_AM, Molecular_Polar-
SASA, Kappa_2_AM, SC_0, CHI_0, ES_Sum_dO, Molec-
ular_FractionalPolarSurfaceArea, Kappa_3_AM, Zagreb, and
PHI. To avoid overfitting, we selected descriptors with an
absolute value of Pearson correlation coefficient of <0.90. In
the cases of pairs of highly correlated descriptors with the
absolute value of Pearson correlation coefficient ≥0.90, we
only retained the independent variable of the pair with the
highest contribution to the model as shown in Figure 1A. The
derived final list of independent variables used in the
subsequent model building was composed of the following:
Fsp3, ALogP, molecular weight, number of H-bond donors,
number of aromatic rings, Wiener index, ES_Sum_sOH,
ES_Sum_sssCH, ES_Sum_aaCH, molecular fractional polar
surface area, and JX. Their respective feature importance to the
random forest model is shown in Figure 1B, while their
correlation matrix heatmap is shown in Figure 1C. In another
scenario, from the pairs of highly correlated descriptors with
the absolute value of Pearson correlation coefficient ≥0.90, we
retained the independent variable with the highest correlation
with the colloidal aggregation activity. This second set of
features was composed of the following molecular descriptors:
Fsp3, A log P, PHI, number of aromatic rings, Wiener index,
ES_Sum_sOH, ES_Sum_sssCH, ES_Sum_aaCH, molecular
fractional polar solvent-accessibility surface area, and JX.
Models derived using either set of descriptors were compared

Figure 2. 3D plots of PCA components for the whole data set. Aggregators and nonaggregator molecules are colored red and blue, respectively.
Data points are shown as filled cubes. The larger the latter, the higher the Fsp3 value of the compound.
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via their performance metrics and the best-scoring models
were selected for further applications, as described below.
To further probe features that are important for aggregation,

we reduced the dimensional space of our molecular descriptor
sets by carrying out a principal component analysis. We found
that 3 components can cumulatively explain 98% of the
variance of our data set via a linear combination of the
following 4 molecular descriptors: Fsp3, molecular weight,
molecular solubility, and AlogP. This result highlights the
importance of Fsp3 and is consistent with previous studies that
showed the importance of molecular weight, hydrophobicity,
and solubility in discriminating aggregators.12−15 Figure 2
shows the PCA 3D plot which visualizes a grouping of
aggregators and nonaggregators into 2 clusters.
3.2. Performance Metrics of the Models. To confirm

whether our data sets could yield good predictive models with
a correct classification rate above 0.70, we have calculated the
modelability index (MODI).32 For binary classification data,
Golbraik et al. have demonstrated that a MODI ≥ 0.65
indicates that a data set is modelable. As shown in Table 1, we

found a MODI of 0.84, when we used descriptors identified as
both noncorrelating and important for aggregation classifica-
tion. We also found that adding ECFP-6 descriptors to this set
of important descriptors can improve the MODI to 0.92. Even
when ECFP-6 was the only descriptor used to build models,
the derived MODI of 0.92 is still high enough. Our finding that
these MODI values are well above the expected threshold
value of 0.65 suggests that our data sets will produce highly
performant predictive models.
Molecular descriptors that were found to be important to

classify colloidal aggregation as previously described, and
ECFP-6 fingerprints which yielded an excellent modelability
index were used to build models. As shown in Table 2, all
derived models are highly performant on the training set, as
judged by the following performance metrics: accuracy, roc
score, precision, recall, and F1 score, which are in the ranges
(0.86−0.99), (0.94−0.99), (0.88−0.99), (0.88−0.99), and
(0.88−0.99), respectively. Likewise, as shown in Table 3, all
derived models are highly performant on the test set, as
revealed by the following metrics: accuracy, roc score,
precision, recall, and F1 score, which are in the ranges
(0.83−0.90), (0.82−0.98), (0.86−0.94), (0.86−0.94), and

(0.86−0.94), respectively. We find that the recursive
partitioning tree, deep neural network, and Naiv̈e Bayesian
outperform the other models for the training set, achieving the
lowest values of BER of 0.005, 0.04, and 0.07, respectively. We
also found that the Naiv̈e Bayesian model followed by the deep
neural network model outperformed the other models for the
test set, achieving the lowest BER values of 0.08 and 0.10,
respectively. We then used a validation set consisting of an
internal data set of 99 compounds experimentally tested for
colloidal aggregation as described in the Section 2. Examples of
structures investigated in this study are listed in Figure 3.
Results shown in Table 4 indicate that all derived models are
still reasonably performant on the validation set, as judged by
the following performance metrics: accuracy, roc score,
precision, recall, and F1 score, which are in the ranges
(0.73−0.83), (0.57−0.76), (0.88−0.95), (0.79−0.86), and
(0.83−0.90), respectively. Although the precision of the
models is in the same ballpark for all three sets, the area
under the ROC curve and BER of the validation set exhibit the
lowest values (in the range 0.57−0.76) and the highest values
(in the range 0.24−0.43), respectively.
3.3. Structural Features Important for Colloidal

Aggregation. In the previous computational studies,
investigations aimed at deciphering structural features
responsible for colloidal aggregation were only reported for
Bemis-Murcko framework analysis.36 In the current study,
molecular features responsible for colloidal aggregation were
derived from a Bayesian categorization model built by using
ECFP-6 descriptors. Results shown in Figure 4A,4B indicate
that nonaggregators appear to be richer in sp3 carbon atoms
and poorer in the number of aromatic rings than aggregators.
The latter class of molecules appears to be rich in sulfur-
containing chemical moieties and aromatic heterocyclic
groups, as previously observed by Yang et al.15 Out of the
top-20 features that contribute to colloidal aggregation, we find
the following 12 features: B2, B3, B4, B8, B10, B11, B12, B13,
B14, B16, B17 and B18 contain at least one sulfur atom, as
shown in Figure 4B.

Table 1. Modelability Index Derived from the Training Set
and Molecular Descriptors Used for Model Building

molecular descriptors MODI
MODI_term
(nonaggregators)

MODI_term
(aggregators)

ECFP-6 0.92 0.94 0.90
important descriptors 0.84 0.86 0.82
ECFP-6 and important
descriptors

0.92 0.92 0.91

Table 2. Training Set Summary Statistics and Performance Metrics of the Models

model accuracy cross-validated ROC score precision recall F1 score BER

random forest 0.88 0.96 0.91 0.88 0.90 0.12
logistic regression 0.86 0.94 0.88 0.89 0.88 0.14
Bayesian 0.93 0.98 0.94 0.94 0.94 0.07
deep neural network 0.96 0.99 0.97 0.95 0.96 0.04
recursive partitioning tree 0.99 0.99 0.99 0.99 0.99 0.005
support vector machine 0.87 0.93 0.88 0.89 0.89 0.14

Table 3. Test Set Summary Statistics and Performance
Metrics of the Models

model accuracy
ROC
score precision recall

F1
score BER

random forest 0.87 0.95 0.91 0.88 0.89 0.13
logistic regression 0.85 0.85 0.88 0.87 0.88 0.15
Bayesian 0.93 0.98 0.94 0.94 0.94 0.08
deep neural
network

0.90 0.96 0.93 0.90 0.91 0.10

recursive
partitioning tree

0.83 0.82 0.86 0.86 0.86 0.18

support vector
machine

0.86 0.93 0.88 0.87 0.88 0.15
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To further investigate chemical features and scaffolds akin to
colloidal aggregation, we generated scaffold trees for the whole
data set. Input molecules were first trimmed to derive the
Burma’s−Murcko framework. Next, hierarchical ring scaffolds
were derived using the iterative ring trimming procedure which
yielded the hierarchical scaffold tree.37 Histograms visualizing
the distribution of the number of levels in the scaffold trees are
significantly different between the aggregator and non-
aggregator classes of molecules (Figure 5A,B). While the
number of levels in the scaffold tree appears to be normally
distributed for the colloidal aggregators, the corresponding

histogram obtained for the nonaggregator molecules appears to
be right-tailed with respect to the number of scaffold levels.
The most frequently observed scaffold trees (root level and
level 1) were derived in conjunction with Bemis−Murcko
scaffolds for both classes of molecules and are shown in Figure
5C−E and Supporting Information Table S1. A cutoff of 10
was used for the frequency. We find that at least 9 most
frequent scaffolds exclusively observed in aggregators contain a
sulfur atom (Figure 5C), while only 1 most frequent scaffold
exclusively observed in nonaggregators contains a sulfur atom
(Figure 5D). This result is consistent with the trend in content
of sulfur atoms observed in Figure 4A,B.
To compare the similarity and diversity of data sets, the

Jaccard/Tanimoto coefficient is one of the metrics commonly
used.38,39 It is defined as the ratio of the intersecting set to the
union set, as shown in the following equation

T
N

N N N
c

a b c
=

+ (12)

Where Na, Nb, and Nc denote the number of elements in data
set A, B, and C, respectively.
Thus, a calculation of the Jaccard/Tanimoto coefficient

between our current aggregators and nonaggregators data sets
yielded a value of 0.31, which suggests an overall good enough

Figure 3. Examples of compounds that were part of the validation set. These compounds were purchased from Mcule,33 Emolecules,34 and
Chembridge.35 Only compound 7 was an experimentally observed aggregator. All the remaining compounds were nonaggregators.

Table 4. Validation Set Summary Statistics and Performance
Metrics of the Models

model accuracy
ROC
score precision recall

F1
score BER

random forest 0.80 0.76 0.95 0.81 0.87 0.24
logistic regression 0.81 0.71 0.92 0.85 0.88 0.29
Bayesian 0.83 0.75 0.94 0.86 0.90 0.25
deep neural
network

0.77 0.70 0.91 0.81 0.86 0.34

recursive
partitioning tree

0.73 0.57 0.88 0.79 0.83 0.43

support vector
machine

0.77 0.69 0.92 0.80 0.86 0.31
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dissimilarity between scaffolds promoting colloidal aggregation
and those driving nonaggregation.
3.4. Matched Molecular Pair Analysis. To further

decipher the structural context of aggregation-promoting
chemical moieties, we have generated matched molecular
pair data and output the reaction representing the trans-
formation from fragment A to fragment B in each MMP. We
have primarily focused on the case where the matched
molecular pair contains a fragment that belongs to a
nonaggregator whereas the other fragment belongs to a
colloidal aggregator. A detailed list derived from matched
molecular pair analysis is shown in Supporting Table S2.
Examples of MMPs shown in Figure 6 illustrate that on a
phenyl 1,3-thiazole amide scaffold, replacing a pyridine side

chain with bromofuran results in turning on aggregation
properties (MMP shown in a green rounded rectangle).
Likewise, on the benzylamide 1,3,4-thiadiazole scaffold,
replacing the hydrogen atom on the thiadiazole ring with
furan promotes aggregation (MMP shown in a blue rounded
rectangle).
Furthermore, we have analyzed all the changes in

aggregation propensity caused by the MMP transformations.
All the occurrences of unique transformations from sub-
structure A to substructure B in different pairs of molecules are
merged to calculate the percentage of times each trans-
formation increased, decreased, or had no effect on the
aggregation. MMP transformations with frequency of occur-
rence ≥50, and their effect on the aggregation (same

Figure 4. Chemical features are shown with their score, as derived from Naiv̈e Bayesian. (A) Top features favorable for nonaggregation. (B) Top
features promoting colloidal aggregation.
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Figure 5. continued
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propensity, increased propensity, or decreased propensity) are
shown in Table 5, sorted with respect to percent increase. We
have found that while the vast majority of MMP trans-
formations have a neutral effect on aggregation propensity, the
following MMP transformations: [H] ≫ [O−], [H] ≫ [N
+](�O)[O−], and N ≫ [H], promote colloidal aggregation
with a top three increase of 2.8, 2.6, and 1.1%, respectively.
Besides, the following MMP transformations: C(�O)C ≫
[H], C ≫ O, and C(�O)[O−] ≫ [H], promote non-
aggregation with a top three decrease of 2.5, 1.9, and 1.6%.
3.4.1. Application to Chemical Library Triage for Plate

Selection and Purchase. To increase the probability of finding
hit molecules in one of our internal drug discovery programs,
we have aimed at selecting compound plates with high
information content that could be purchased and used in a

high throughput screening assay. Therefore, we have utilized
predictive models discussed herein to virtually analyze 2
commercially available chemical libraries from a commercial
vendor. The content of these libraries and their novelty as
compared to our internal Sanofi Corporate Database are
described in Table 6. Drug-like property distributions of both
libraries are shown in Figure 7A,B.
We have used the deep neural network model to annotate

molecules predicted to be aggregators with a probability ≥80%,
in addition to using various structural alert filters. Examples
include HTS, risky, and reactive filters as described and
implemented within Pipeline Pilot, nasty40 and PAINS41 filters.
Results shown in Table 7 indicate that the model predicts a
reasonable propensity for colloidal aggregation of 16 and 28%
for the prefiltered and unfiltered libraries, respectively. We

Figure 5. Scaffold Tree and Bemis−Murcko scaffolds derived from the current data set. Panels (A) and (B): Distribution of the number of levels in
the scaffold trees for (A) nonaggregators and (B) colloidal aggregators. Panels (C) through (E): Scaffold Tree (root level and level 1) and Bemis−
Murcko scaffolds most frequently common to (C) colloidal aggregators only, (D) nonaggregators only, and (E) both nonaggregators and
aggregator molecules. (F) Box plot of Fsp3 for scaffolds frequently observed in aggregators only, nonaggregators only, and in both classes of
molecules. (D) shows that the scaffolds most frequently present in nonaggregators are sp3 carbon atom-rich molecules. This observation is
corroborated by (F), which shows the trend in Fsp3 values for each group of scaffolds. Results are consistent with the increased number of sp3
carbon atoms in the nonaggregator molecules as compared to aggregators, as can also be seen from the bigger size of their filled-cube data points
shown in Figure 2, Figure 4A as compared to Figure 4B, and (D) in comparison to (C). Examination of (E) suggests that most used aromatic rings
such as phenyl, pyridine, pyrimidine, and indole are frequently found in both classes of molecules. Interestingly, cyclohexyl and piperidine scaffolds,
which are commonly used aliphatic bioiosteres for phenyl and pyridine, are also listed among the most frequent scaffolds present in both
aggregators and nonaggregators. In our data set, we found 249 scaffolds specific to aggregators, 327 scaffolds specific to nonaggregators, and 135
nonspecific scaffolds (i.e., common to both classes of molecules), with frequency >10.
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finally selected plates from both libraries, using a multi-
objective Pareto optimization42−44 aimed at minimizing the
probability for aggregation and maximizing both molecular
diversity and drug-likeness. The latter was calculated using a
Bayesian model built using drug-likeness descriptors and
molecular fingerprints. The areas under the ROC curves
obtained for a training set of 11805 molecules and a test set of
11891 molecules are 0.98 and 0.95, respectively. The
corresponding ROC curves are shown in Figure 7C,D.

4. DISCUSSION
Numerous computational studies aimed at predicting colloidal
aggregation have been carried out in the last two decades.
Previous studies have used Machine Learning techniques
including Recursive portioning, Naiv̈e Bayesian, Support
Vector Machine, random forest, Extreme Gradient Boosting
Decision Trees, K-nearest neighbors, continuous kernel
discrimination, principal component analysis, and 2D
Tanimoto similarity. Among these techniques, we have chosen
to use Naiv̈e Bayesian, random forest, recursive partitioning
tree, support vector machine, and PCA techniques. In addition,
we explored the use of logistic regression and deep neural
networks. We have found that the latter approach and Naiv̈e
Bayesian outperformed other techniques by yielding the lowest
BER values for the test set (0.10 and 0.08, respectively), as
shown in Table 3. We also found that Recursive Partitioning
Tree outperforms all of the other models uniquely for the
training set (Table 2) but scores worst for both the test and
validation sets (Tables 3 and 4). In comparison, the models are
less performant on the internal validation set, as shown in
Table 4. Encouragingly, we obtained an excellent precision
metric on the validation set compared to that derived for the

training and test sets (within the range 0.88−0.95).
Furthermore, we have investigated for the first time the use
of the modelability index as a flag prior to modeling a colloidal
aggregation data set. We found that although the data set was
assembled from heterogeneous sources, once coupled to the
set of judiciously selected descriptors, it yielded excellent
values of modelability index for binary classification (up to
0.94, Table 1). Encouragingly, this predicted efficient
modelability index was further validated by the summary
statistics of the performance metrics (Tables 2 and 3) which
showed an accuracy of up to 0.96 and 0.93 for the training and
test set, respectively.
To decipher physicochemical properties that drive aggrega-

tion, we have utilized most of the molecular descriptors used in
previous studies, as a control experiment to validate our
models by reproducing known results. We have found that
lipophilicity and molecular weight indeed drive small molecule
aggregation, as previously shown in the literature.16 In
addition, we have used the following descriptors known to
be important for drug developability: Fsp3, number of
stereocenters, QED, and molecular complexity. We also
included ES_Sum_sOH as a descriptor. Interestingly, our
results on important descriptors as derived from random forest
(Figure 1A,B) and PCA (Figure 2) reveal that Fsp3 (but not
QED) strongly contributes to predicting colloidal aggregation,
and independently confirms the importance of previously
identified descriptors such as ALogP and molecular weight.
That Fsp3 is an important feature for predicting aggregation is
consistent with studies by Lovering et al.20 which showed a
strong correlation between this descriptor and experimentally
observed solubility, a well-known important property for drug
discovery and development. An increase in Fsp3 confers a

Figure 6. Examples of MMPs that increase the propensity for molecular aggregation. For each of the 12 triplets of fragments, the common core is
the leftmost, followed by R groups promoting nonaggregation and those promoting aggregation in the context of the given scaffold, respectively.
MMPs involving the phenyl thiazole amide scaffold and the benzylamide thiadiazole core are shown embedded in a green rounded rectangle and a
blue rounded rectangle, respectively.
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three-dimensional context to a molecule, thereby allowing it to
escape from aromatic “flat land” which is prone to aggregate
via π−π interactions. Figure 8 shows that aggregators exhibit
198 outliers, whereas the nonaggregators exhibit none. It also
indicates that overall, aggregators exhibit lower values of Fsp3
than nonaggregators with the median values for aggregators
and nonaggregators being 0.18 and 0.36, respectively. This
result strikingly agrees with the finding by Life Chemicals

according to which the mean Fsp3 increases from 0.36 for 2.2
million molecules in the drug discovery stage and up to 0.47
for 1179 approved drugs.45 Kombo et al.25 also reported that
∼84% of marketed drugs had Fsp3 > 0.42. Detailed
descriptions of investigations on Fsp3, including chemical
strategies explored in order to improve it, have also been
reported.46,47

Daniel Heller and collaborators have recently shown that
aromatic groups and hydrogen-bond acceptors/donors are
essential for nanoaggregate formation.48,49 Our results reported
herein are strikingly consistent with their findings since we
have found that ES_sum_sOH, Fsp3, the number of aromatic
rings, ES_Sum_aaCH (electrotopological state of aromatic
carbon atoms), and the number of H-Bond donors are among
the most important descriptors which contribute to aggrega-
tion, as shown in Figure 1A,B. ES_Sum_sOH in essence
combines both the electronegativity character and the
topological environment of a single-bonded OH group in a

Table 5. Changes in Activity Due to MMP Transformations

MP transformation frequency percent neutral percent increase percent decrease

[H] ≫ [O−] 72 95.8 2.8 1.4
[H] ≫ [N+](�O)[O−] 115 97.4 2.6 0
N ≫ [H] 94 97.9 1.1 1.1
Br ≫ [H] 196 99 0.5 0.5
C ≫ Cl 209 99.5 0.5 0
C ≫ OC 196 99.5 0.5 0
CCC ≫ [H] 186 99.5 0.5 0
O ≫ [H] 452 99.1 0.2 0.7
C ≫ CC 566 99.8 0.2 0
C ≫ [H] 1895 99.6 0.1 0.3
C(�O)C ≫ [H] 80 97.5 0 2.5
OC ≫ [O−] 50 98 0 2
C ≫ O 54 98.1 0 1.9
C(�O)[O−] ≫ [H] 125 98.4 0 1.6
Cl ≫ OC 123 98.4 0 1.6
Br ≫ OC 61 98.4 0 1.6
C#N ≫ [H] 65 98.5 0 1.5
Br ≫ Cl 128 99.2 0 0.8
OC ≫ [H] 535 99.3 0 0.7
CC ≫ [H] 466 99.8 0 0.2
Cl ≫ [H] 463 99.8 0 0.2
F ≫ [H] 402 100 0 0
C ≫ CCC 299 100 0 0
CC ≫ CCC 276 100 0 0
C ≫ F 149 100 0 0
Cl ≫ F 147 100 0 0
O ≫ OC 133 100 0 0
F ≫ OC 123 100 0 0
C ≫ C(C)C 90 100 0 0
C(C)C ≫ CC 85 100 0 0
Br ≫ C 77 100 0 0
C ≫ CO 71 100 0 0
OC ≫ OCC 68 100 0 0
C(C)C ≫ [H] 64 100 0 0
C ≫ C(�O)[O−] 57 100 0 0
Br ≫ F 57 100 0 0
CC(�O)[O−] ≫ [H] 56 100 0 0
C(C)C ≫ CCC 55 100 0 0
CO ≫ [H] 53 100 0 0
c1cccnc1 ≫ c1ccncc1 52 100 0 0
C(�O)[O−] ≫ CC(�O)[O−] 50 100 0 0

Table 6. Vendor Libraries Content

library

total
number
of

samples

total
number
of plates

number of
compounds
per plate

novelty with respect to
sanofi corporate
database (%)

Lib A 234 240 732 320 100
Lib B 298 284 938 267−320 99
target
library to
purchase

163 200 510 320 100
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molecule.50 This undoubtedly conveys a physicochemical
meaning and interpretation to the “number of OH groups”
which was previously identified to be important for predicting
aggregation.15 Our results also further support the findings
derived by Shamay et al.51 from quantitative structure-
nanoparticle assembly prediction (QSNAP) studies, which
showed that electrotopological molecular descriptors are
excellent predictive indicators of the nanoassembly and
nanoparticle size. Our finding that the Wiener index, a
topological descriptor related to molecular branching, is also
of significant importance in contributing to aggregation

prediction, as it appears to be consistent with molecular
complexity, which is expressed by Fsp3.

Figure 7. Drug-likeness property distributions and receiver-operated characteristic (ROC) curves. (A) Library A data set property distribution. (B)
Library B data set property distribution. (C) ROC curve for the drug-likeness model training set. (D) ROC curve for drug likeness model test set.

Table 7. Summary of Undesirable Chemical Moieties and
Aggregation Prediction Results

structural alerts Lib A Lib B total percent

HTS filters 374 1470 1844 0.35
RISKY 6845 20,630 27,475 5.16
REACTIVE 167 47 214 0.04
NASTY 532 522 1054 0.20
PAINS 895 42 937 0.18
aggregator (prefiltered library) 17,930 18,758 36,688 16.0
aggregator (unfiltered whole
library)

6088 140,454 146,542 28.0

Figure 8. Box plot of Fsp3 for nonaggregators vs aggregators, using
the training set.
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Moreover, Heller and collaborators48,49 have demonstrated
that nanoaggregate formation can be predicted entirely using
drug fragment substructures, which supports our finding that
fragments with high propensity to promote aggregation can be
clearly distinguished from their counterparts that do not
promote aggregation, as shown in Figure 4A,B, 5C,D and
Supporting Information Table S1. Interestingly, they have also
shown that the colloidal nanoaggregation properties of the
phenoxylphenyl scaffold and its phenoxypyridine analogue can
be readily turned on and off depending on the incorporation of
regioisomeric substitutions. In accordance with their results,
we have found that the phenoxylphenyl fragment is frequently
observed in both colloidal aggregator and nonaggregator
molecules, as shown in Figure 5E (bottom row and third
column). We have used Naiv̈e Bayesian to derive the molecular
features that drive colloidal aggregation. Furthermore, we have
extracted scaffold tree (root and level 1) and Bemis−Murcko
scaffolds to better understand the structural difference between
aggregators and nonaggregators. Our results have also
confirmed previous findings that sulfur-containing five-
membered heterocyclic rings appear to promote aggregation
as well as uncovered new findings such as the predominant
presence of aromatic scaffolds frequently used in medicinal
chemistry (and their bioisosteric replacement) in both classes
of molecules.
Matched molecular pairs shown in Figure 6 clearly indicate

that using the same scaffold, the substituent with more
aromatic character tends to promote aggregation. This result
agrees with the finding by Chen et al. according to which
aromaticity tends to increase nanoaggregation propensity.48

Furthermore, a survey of all the derived matched molecular
pairs is shown both in the main text of this manuscript and in
Supporting Information suggests that aggregators are more
enriched in hydrogen-bond acceptor/donors pairs and
aromatic rings than are their counterparts nonaggregators, as
shown in Figure 9A,B. Together with our above-mentioned
findings that ES_sum_sOH significantly contributes to
colloidal aggregation via the electrostatic contribution of
hydrogen-bond donation and that richness in sp3-rich carbon
atoms contributes to nonaggregation, our results indicate that
intermolecular π−π interactions and hydrogen-bond inter-
actions are the main drivers of colloidal aggregation. These
results agree with recent observations made by Heller and co-
workers.48 Our results on MMPs between aggregators and
nonaggregators can be exploited by medicinal chemists in lead
optimization of a chemical series whenever a need to rid a
compound from colloidal aggregation properties arises.
In a stable colloidal suspension, particles are separated due

to repulsive molecular interactions. Particle aggregation can be
induced by adding salt to an otherwise stable colloidal
suspension. We have found that colloidal aggregation is linked
to the presence of aromatic heterocycles mainly involved in π-
stacking, hydrogen bonding, and polar interactions. These
aromatic heterocyclic compounds can be involved in hydro-
phobic interactions between themselves and cation-π inter-
actions with the positive charge of the salt. Just like
hydrophobic interactions between apolar moieties are
promoted in water to maximize stronger water−water
hydrogen bonding and polar interactions, it appears that in
the presence of a salt, hydrophobic, π-stacking, and hydrogen
bonding interactions between substituted aromatic hetero-
cycles are increased, thereby favoring aggregation and
maximizing stronger salt-bridge and cation-π interactions

involving the salt ions. Whereas electron-donating substituents
promote cation- π interactions, electron-withdrawing groups in
compounds can change the sign of the aromatic ring
quadrupole and promote anion-π interactions between the
salt anion and the substituted heterocycle. That the latter
aggregation-prone moieties have been found to frequently
contain sulfur appears to be consistent with the larger size of
the sulfur atom. A detailed matched molecular pairs analysis
has suggested that most of the derived transformations (one
cut) do not affect the activity, as shown in Table 5. The top-10
most frequent transformations which are 100% neutral in
changing the activity are as follows, F ≫ [H], C ≫ CCC, CC
≫ CCC, C ≫ F, Cl ≫ F, O ≫ OC, F ≫ OC, C ≫ C(C)C,
C(C)C ≫ CC, and Br ≫ C. In a hit or lead optimization
campaign where structural modifications can negatively affect
the DMPK properties of a compound of interest, such
transformations with 100% neutrality toward aggregation
activity can be of significant interest, provided that the
biological activity at the protein target is not negatively
perturbed. Interestingly, the MMP transformation [H] ≫ [N
+](�O)[O−] which has a 2.7% increase in aggregation
activity involves a nitro group, a structural alert or a
toxicophore commonly avoided during SAR campaign,
regardless of its historical use in drugs.52 Thus, in addition

Figure 9. Box plots of molecular properties of MMPs derived between
nonaggregators (activity = 0) and colloidal aggregators (activity = 1).
(A) Case of the sum of the numbers of hydrogen-bond donors and
hydrogen-bond acceptors. (B) Case of the number of aromatic rings.
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to its well-known property as an agent causing mutagenicity
and genotoxicity, a nitro functional group can be an
aggregation-promoting agent when attached to a phenyl
group, as exemplified in a few transformations (Supporting
Information Table S2).
We have prospectively applied our aggregation models in

contributing to facilitate a selection of 510 plates rich in diverse
drug-like molecules, devoid of undesirable structural alerts, and
less likely to aggregate in solution, thereby avoiding
compounds prone to be frequent hitters and to interfere
with the assay itself. To probe whether the filtering of the 2
commercial libraries by using our aggregation model
significantly affects the chemical coverage of the infiltrated
libraries, we have quantified the chemical diversity of these
libraries prior to and after the filtering process, using their total
number of fingerprint features divided by the total number of
molecules, as implemented within Pipeline Pilot. We have
found that prior to filtering with the structural alerts described
in Table 7, Lib B and Lib A consisted of 1.284 and 1.975
fingerprint features per molecule, respectively. After carrying
out all the filtering including the use of aggregation model, Lib
B and Lib A, resulted in 2.58 and 1.96 fingerprint features per
molecule, respectively. This marginal change in the chemical
space coverage testifies that these chemical libraries were
indeed fairly curated at the design stage. Indeed, this fact
agrees with the distributions of drug-like properties for these
libraries, as shown in Figure 7A,B. Moreover, that these
libraries were full of novel molecules as compared to our
internal compound archive and the data set already screened in
the project, was pleasing. Finally, some of the aggregation
models previously developed and published have been made
available to the scientific community via web servers. Even
though such models can readily be accessible, their usage by
industrial researchers is limited if not precluded due to
intellectual property protection issues. This reiterates the need
for building internal, proprietary aggregation models.
We have described new modeling and data analysis in this

article, previously never described in any computational studies
of colloidal aggregation. To build models, we determined and
used the following molecular descriptors related to drug
developability: Fsp3, QED, number of stereocenters, stereo-
chemical complexity, shape complexity, and synthetic accessi-
bility score. We utilized Deep Neural Network and Logistic
Regression as classification algorithms. Furthermore, we have
used large-scale automated MMPA53 to explore structural
context-dependence of colloidal aggregation, scaffold trees to
describe and analyze scaffolds, and exploited Naiv̈e Bayesian to
derive good and bad chemical features akin to aggregation.
Whereas previous studies have focused on solely using the
Bemis−Murcko scaffold to decipher features important for
nonaggregation and colloidal aggregation, we have used both
Bemis−Murcko and scaffold tree approaches to also determine
molecular features commonly found in both classes of
molecules. Furthermore, we illustrated how AI/ML models
aimed at predicting colloidal aggregation can be deployed and
applied in triaging compounds to be purchased for HTS
campaigns in a drug discovery setting. This multifaceted, novel
approach toward understanding colloidal aggregation has
allowed us to determine important contributors discussed
herein, with the fraction of sp3 carbon atoms emerging for the
first time as the most important determinant molecular
descriptors.

Our computational studies described herein have solely
focused on using AI/ML techniques that are based on
molecular descriptors due to their inherent ease of
interpretability and explainability, which encourages the
medicinal chemistry community to prospectively apply the
derived models and the SAR lessons learned from them.
Alternative methods being intensively developed and used to
predict molecular properties and biological activity are well
documented under the umbrella of Deep QSAR (for recent
and excellent reviews, see Tropsha et al.54 and Xu55). Examples
of alternative featurization schemes of molecules, coupled with
various deep learning architectures include molecular image
recognition-based convoluted neural networks (CNN), mo-
lecular graph-based convoluted networks (GCN), smiles
strings-based natural language processing (NLP) mechanisms
such as recurrent network (RNN) and long short-term
memory network (LSTM), etc. In a continuing effort to
increase the accuracy of AI/ML models aimed at predicting
colloidal aggregation, we are actively investigating some of the
above-mentioned algorithms, and our results will be reported
elsewhere.

5. CONCLUSIONS
To select small molecules with favorable screening properties,
we have used various AI/ML techniques aimed at predicting
colloidal aggregation. We have found that derived predictive
classification models consistently and successfully discriminate
aggregator molecules from their nonaggregator counterparts
and outperform previous studies with existing models. In
addition to identifying key molecular descriptors that influence
aggregation, we have deciphered structural features that (a)
influence aggregation in general; by using not only Bemis−
Murcko framework analysis, but also scaffold tree and Naiv̈e
Bayesian aimed at detecting good and bad features; (b)
influence aggregation in specific contexts by carrying out a
detailed matched molecular pair analysis; and (c) are common
to both aggregators and nonaggregators and thereby rendering
difficult the task of predicting and discriminating colloidal
aggregators from their nonaggregator counterparts. An analysis
of the molecular descriptors responsible for colloidal
aggregation suggested that the fraction of sp3 carbon atoms,
ES_sum_sOH, A log P, and molecular weight make the
strongest impact. Fingerprints-based Naiv̈e Bayesian, scaffold
tree analysis, and MMPA have revealed good and bad chemical
features/scaffolds contributing the most to colloidal aggrega-
tion. Not only does MMPA show that context-dependent
substitutions can assist in removing colloidal aggregators but it
also suggests molecular transformations that are neutral with
respect to promoting aggregation. We have illustrated how the
use of AI/ML techniques to predict colloidal aggregation can
assist both hit finding and lead optimization efforts in drug
discovery and development settings.
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Files for the training set, test set, and examples of Pipeline Pilot
protocols used to build predictive models aimed at
reproducing data submitted for publication to this journal
are provided in the attached file Updated-Zip-File-for-MS.zip.
Parameters used for models building are amply listed in
Section 2 of the manuscript. Furthermore, the word file named
“README_ROADMAP_FILE.docs” which is included in the
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ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02886
ACS Omega 2024, 9, 28691−28706

28704

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02886/suppl_file/ao4c02886_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02886/suppl_file/ao4c02886_si_002.xlsx
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Pipeline Pilot learners and components used in the manuscript,
and examples of derived output files.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c02886.

Most frequently observed scaffold trees (root level and
level 1) were derived in conjunction with Bemis−
Murcko scaffolds for both classes of molecules are
shown in Table S1 (XLSX)
A detailed list derived from matched molecular pair
analysis is shown in (Table S2) (XLSX)
Training set, test set, output examples, pipeline pilot
components and protocols (ZIP)
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