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Abstract

Motivation: A sequencing-based genomic assay such as ChIP-seq outputs a real-valued signal for each position in
the genome that measures the strength of activity at that position. Most genomic signals lack the property of vari-
ance stabilization. That is, a difference between 0 and 100 reads usually has a very different statistical importance
from a difference between 1000 and 1100 reads. A statistical model such as a negative binomial distribution can ac-
count for this pattern, but learning these models is computationally challenging. Therefore, many applications—
including imputation and segmentation and genome annotation (SAGA)—instead use Gaussian models and use a
transformation such as log or inverse hyperbolic sine (asinh) to stabilize variance.

Results: We show here that existing transformations do not fully stabilize variance in genomic datasets. To solve
this issue, we propose VSS, a method that produces variance-stabilized signals for sequencing-based genomic sig-
nals. VSS learns the empirical relationship between the mean and variance of a given signal dataset and produces
transformed signals that normalize for this dependence. We show that VSS successfully stabilizes variance and that
doing so improves downstream applications such as SAGA. VSS will eliminate the need for downstream methods
to implement complex mean–variance relationship models, and will enable genomic signals to be easily understood
by eye.

Availability and implementation: https://github.com/faezeh-bayat/VSS

Contact: maxwl@sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequencing-based assays can measure many types of genomic bio-
chemical activity, including transcription factor (TF) binding, his-
tone modifications and chromatin accessibility. These assays work
by extracting DNA fragments from a sample that exhibit the desired
type of activity, sequencing the fragments to produce sequencing
reads and mapping each read to the genome. Each of these assays
produces a genomic signal—i.e. a signal that has a value for each
base pair in the genome. Examples include ChIP-seq measurements
of TF binding or histone modification and measurements of chroma-
tin accessibility from DNase-seq, FAIRE-seq or ATAC-seq. The nat-
ural unit of sequencing-based assays is the read count: the number
of reads that mapped to a given position in the genome (after
extending and shifting; see Section 2).

Read counts of genomic assays have a nonuniform mean–vari-
ance relationship, meaning that variance of the data is a function of
the read counts, resulting in higher variance for higher read counts
and lower variance for lower read counts, which poses a challenge
to their analysis. This property means that, e.g. the difference in

read count between biosamples is a poor measure of the difference
in activity. For instance, a locus having 100 reads in one replicate
while 0 in the other is usually considered more significant than a
locus with 1100 reads in one replicate and 1000 reads in the other
one.

To handle this issue, most statistical models of genomic sig-
nals—such as those used in peak calling—model the mean–variance
relationship of read counts explicitly using, e.g. a negative binomial
distribution (Anders and Huber, 2010; Gierli�nski et al., 2015; Guo
et al., 2012; Hafemeister and Satija, 2019; Harmanci et al., 2014;
Love et al., 2014; Rashid et al., 2011; Ren and Kuan, 2019;
Whitaker, 1914; Xing et al., 2012; Zhang et al., 2008).

However, negative binomial models are challenging to imple-
ment and optimize, so many methods resort to Gaussian models.
Two prominent examples include segmentation and genome annota-
tion (SAGA) methods, such as Segway or IDEAS (Chan et al., 2018;
Hoffman et al., 2012a, 2012b; Zhang and Hardison, 2017; Zhang
et al., 2016), and imputation methods such as ChromImpute,
PREDICTD and Avocado (Durham et al., 2018; Ernst and Kellis,
2015; Schreiber et al., 2018). In the former example, many SAGA
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methods use a Gaussian distribution to model the distribution of
genomic signals given a certain annotation label (others binarize sig-
nal (Ernst and Kellis, 2012) or use a negative binomial read count
model (Mammana and Chung, 2015)). In the latter example, imput-
ation methods optimize a mean squared error (MSE) objective func-
tion, which is equivalent to log likelihood in a Gaussian model.
More generally, many other analyses use MSE to quantify the per-
formance of the functional genomic analysis, such as those that pre-
dict TF binding sites from sequencing data. All such methods suffer
from the issue of a nonuniform mean–variance relationship.

Most Gaussian-based methods employ a variance-stabilizing
transformation to handle the nonuniform mean–variance relation-
ship. They most commonly use the log or inverse hyperbolic sine
transformations (asinh), which have the formulae logðxþ cÞ for a
constant c (usually 1) and asinhðxÞ ¼ logðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

Þ, respectively
(Huber et al., 2002). (Note that in some cases users may use trans-
formations for purposes other than variance stabilization, such as
the use of log to measure order of magnitude.)

Variance-stabilizing transformations can also be beneficial for vis-
ualizing genomic signals. Note that Euclidean distance in a 2D plot
corresponds to the log likelihood of difference in a Gaussian model,
so a nonuniform mean–variance relationship complicates visualiza-
tion. Although researchers sometimes visualize raw signals, doing so
requires carefully choosing a maximum viewing range which is akin
to a crude linearþ flat transformation, as otherwise the viewing range
is dominated by a few outliers. For example, the UCSC genome
browser’s default built-in H3K27ac track by default has a maximum
viewing range of 100, whereas the track’s maximum value is 3851.

Despite the widespread use of log and asinh transformations to
stabilize variance, to our knowledge, no work has evaluated whether
they in fact do so. The use of these transformations assumes that the
signals have a specific mean–variance relationship (Section 2). Here,
we show that, for many genomic signals, this assumption is violated
and thus existing transformations do not fully stabilize variance
(Section 3). To solve this issue, we present VSS, a method that produ-
ces variance-stabilized genomic signals. VSS determines the empirical
mean–variance relationship of a genomic signal by comparing repli-
cates. It uses this empirical mean–variance relationship to produce a
transformation function that precisely stabilizes variance.

1.1 Related work
Three methods have been developed to correct biases in sequencing-
based genomic signals. First, fold enrichment (FE) measures a gen-
omic signal as the ratio of reads of the experiment to a control (such
as ChIP Input) (Hoffman et al., 2012b). Second, Poisson p-value
measures a signal as the log p-value of a Poisson distribution test
with a null hypothesis derived from a control distribution (Kundaje
et al., 2015). Third, S3norm (Xiang et al., 2020) normalizes a collec-
tion of datasets by matching their empirical sequencing depth and
signal–noise ratio. However, none of these methods stabilizes the
variance of the data (Section 3).

Many of the challenges mentioned here also exist for assays of
gene expression such as RNA-seq data (Anders and Huber, 2010;
Anders et al., 2013; Bullard et al., 2010; Conesa et al., 2016;
Hansen et al., 2012; Huber et al., 2002; Irizarry et al., 2003; Law
et al., 2014; Love et al., 2014; Risso et al., 2014; Robinson and
Oshlack, 2010; Wagner et al., 2012).

In particular, the voom method (Law et al., 2014) stabilizes vari-
ance of RNA-seq data. It does so by identifying the mean–variance
relationship of the data at the gene-level. It fits a gene-wise linear
model to calculate the residual standard deviation. Then, it fits a
LOWESS (locally weighted regression) to each residual standard de-
viation, which is a function of the average normalized values for
each gene to extract the mean–variance relation. Finally, it interpo-
lates the mentioned trend for predicting all normalized log-cpm val-
ues’ variances. However, voom does not apply to genomic signals
such as ChIP-seq and ATAC-seq. Unlike voom which stabilizes the
variance of the data at the gene-level, VSS aims to do so at the
whole-genome level. In particular, the LOWESS-based curve fitting

procedure used by voom does not scale to genome-scale data, so
VSS uses a weighted average followed by spline fit (Section 2).

2 Materials and methods

2.1 ChIP-seq data
We acquired ChIP-seq data from the ENCODE consortium (encodepro-
ject.org, Supplementary Section A) for the histone modification
H3K4me3 on 11 cell lines: GM12878, H1-hESC, HUVEC, K562,
NHLF, GM06990, HCPEpiC, AG09319, NHEK, HMEC and HSMM.
We also used histone modifications H3K36me3, H3K4me1, H3K27me3
and H3K9me3 on H1-hESC cell line. Histone modification H2AFZ was
used on cell lines NHEK and HSMM. In addition, we used histone modi-
fication H3K79me2 on NHEK, HSMM and HMEC cell lines. We also
used histone modification H3K9me3 on four cell lines: NHEK,
AG04450, HMEC and HSMM. Finally, H3K36me3 histone modifica-
tion was used on HMEC cell line. ENCODE accession number of these
assays is provided in the Supplementary Table S1. These ChIP-seq data-
sets were processed with a uniform pipeline (ENCODE Project
Consortium, 2012). Briefly, the ChIP-seq reads were mapped to the hg19
reference genome and reads were shifted and extended according to the
estimated fragment length to produce a read count for each genomic pos-
ition. As controls, ChIP-seq input experiments were performed by the
same labs. Two signals were produced: FE and log p-value. FE signal is
defined as the ratio of observed data over control (Hoffman et al.,
2012b). P-value signal is defined as the log p-value of a Poisson model
with a null distribution derived from the control (Kundaje et al., 2015).

2.2 RNA-seq data
For use in evaluation, we acquired RNA-seq datasets for each of the
cell types above from the Roadmap Epigenomics consortium
(Kundaje et al., 2015). These RNA-seq datasets were processed with
a uniform pipeline that produces a TPM (Transcripts Per Million)
value for each gene (Kundaje et al., 2015). To stabilize the variance
of these signals, we used an asinh transformation.

2.3 Identifying the mean–variance relationship
Our variance-stabilizing transformation depends on determining the
mean–variance relationship for the input dataset. We learn this rela-
tionship by using multiple replicates of the same experiment. We de-
fine two vectors, xðbaseÞ and xðauxÞ that capture replicated signals.
Specifically, for each distinct pair of replicates xðiÞ; xðjÞ where i 6¼ j,
we concatenate xðiÞ to xðbaseÞ and xðjÞ to xðauxÞ. Thus, xðbaseÞ and xðauxÞ

are each vectors of length NMðM� 1Þ, for M replicates and a gen-
ome of length N. Base-aux pairs

�
x
ðbaseÞ
i ; x

ðauxÞ
i

�
represent every pos-

sible pair of replicated signals (Fig. 1b).
Let the observed signal at position i be x

ðbaseÞ
i and x

ðauxÞ
i for the

base and auxiliary, respectively. Our model imagines that every pos-
ition i has an unknown distribution of sequencing reads for the given
assay xi, which has mean li ¼ meanðxiÞ. We further suppose that
there is a relationship rðlÞ between the mean and variance of these
distributions. That is, varðxiÞ ¼ rðliÞ2. We are interested in learning
rðlÞ. Observe that xi is an unbiased estimate of li, and that
ðxðbaseÞ

i � x
ðauxÞ
i Þ2 is an unbiased estimate of rðliÞ2. We use this ob-

servation to estimate the function rðlÞ as follows.
We first sort the NMðM� 1Þ genomic signals i 2

f1 . . . NMðM� 1Þg by the value of x
ðbaseÞ
i and define bins with b genom-

ic signals each.
Let Ij � f1 . . . NMðM� 1Þg be the set of positions in bin j. For

each bin j, we compute lj ¼ 1=b
P

i2Ij
x
ðauxÞ
i and

r2
j ¼ 1=b

P
i2Ij
ðxðauxÞ

i � ljÞ2. To increase the robustness of these
estimates, we smooth across bins by defining

r2
j ¼

Pjþw

i¼j�w

2�bjj�wj=br2
i

Pjþw

i¼j�w

2�bjj�wj=b
: (1)
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That is, we take the weighted average of 2wþ 1 bins centered
on j, where bin jþk has weight 2�bk=b. b is a bandwidth param-
eter—a high value of b means that weight is spread over many
bins, whereas a low value means that weight in concentrated on a
small number of bins. We define the window size w such that it
includes bins with weight at least 0.01; specifically,
w ¼ �b logð0:01Þ=b logð2Þ.

The choice of b and b forms a bias-variance trade-off. Larger val-
ues of b and b lead to more observations contributing to each esti-
mate rj and therefore result in a lower variance. In contrast, small
values of b and b lead to a very homogeneous set of positions Ij and
therefore less averaging across dissimilar positions.

Most genomic signals are zero-inflated. That is, a large fraction
of positions have zero signal. To account for this pattern, we defined

(a)

(b)

(c) (d)

Fig. 1. General schematic of the VSS method. (a) Replicate 1 versus replicate 2 signals in H3K4me3 HSMM before and after VSS transformation. Shaded area represents the

average variance in replicate 2 for a given value of replicate 1; variation in width of shaded region indicates a nonuniform mean–variance relationship. (b) VSS uses two or

more replicates to learn the empirical mean–variance relationship of the input data. For M replicates, VSS defines base and auxiliary vectors according to all MðM� 1Þ possible

combinations of the replicates. Then, it identifies the mean–variance relationship by computing the bin-wise mean and standard deviation from auxiliary vector. (c) Learned

mean–variance relationships for several datasets. Horizontal and vertical axes denote mean and standard deviation, respectively. Note that the mean–variance relationship dif-

fers across datasets, indicating that each requires a different transformation. (d) Learned transformation functions. Horizontal and vertical axes indicate input and output val-

ues, respectively

VSS: variance-stabilized signals 4385



a separate bin for zero-signal positions I0 ¼ fijxðbaseÞ
i ¼ 0g and

defined r0 and l0 as above. We used this zero bin for raw and FE
signals, but not log Poisson p-value (LPPV), which are not zero-
inflated.

We used a smoothing spline to fit an estimated mean–variance
curve r̂ðxÞ. A smoothing spline estimator implements a regularized
regression over the natural spline basis. We fit a function r̂ðlÞ using
the estimated values of rj. The spline coefficients w are selected to

minimize ð1� pÞ
X

j

wjðr j � r̂ðljÞÞ2 þ p

ð
d2r̂ðlÞ

dx2

� �2

dx;

where l and r are a set of observations obtained from mean–vari-
ance data points. Variables r̂ðlÞ, w and p represent smooth spline
curve, weight coefficients and smoothing parameter, respectively.
The variable p parameter varies between ð0;1� such that p¼0
results in a cubic spline with no smoothing, and when p approaches
zero the result is a linear function.

To find the optimum value of spar parameter (p), first the smooth.s-
pline function is called by activating the cross-validation in the smooth.s-
pline (CV¼TRUE). Following the cross-validation procedure, spar
parameter is returned as the smoothing factor. We identified the optimal
curve using the R function call smooth.spline(means, sigmas, spar¼p).

We examined a number of methods for identifying the mean–
variance relation from multiple replicates. We discussed the details
of the examined approaches in the Supplementary Section E.

We performed a hyperparameter search to choose b and b
(Supplementary Figs S1 and S2), using the log likelihood and variance-in-
stability metrics (defined below). We chose b ¼ 103 and b ¼ 105 for
zero-inflated signals (raw and FE) and b ¼ 107 and b ¼ 103 for nonzero-
inflated signals (LPPV). Note that in all of the evaluations, VSS models
are trained on chromosome 22 and tested on chromosome 21.

2.4 Calculating variance-stabilized signals
Having learned the mean–variance relationship, we compute VSS
using the variance-stabilizing transformation (Durbin et al., 2002)

tðxÞ ¼
ðx

0

1

r̂ðuÞ du; (2)

where x is an untransformed signal and r̂ðuÞ is the learned standard
deviation for a signal with mean u. This transformation is guaran-
teed to be variance-stabilizing; i.e. varðtðxiÞÞ is constant for all gen-
omic positions i.

2.5 Alternative transformations
To attempt to stabilize the variance, existing methods usually apply
either a log or arcsinh transformation. These transformations are
used because they are variance-stabilizing for certain mean–variance
relationships (Bartlett, 1947). Specifically, logðxÞ is variance-
stabilizing when rðlÞ ¼ sl for some constant s, and arcsinhðxÞ is
variance-stabilizing when rðlÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
(Box, 1953). In the

experiments below, we compare to both existing units under both
existing transformations. We evaluated the performance log with a
general linear transformation (logðaxþ bÞ). We found that doing so
did not improve results (Supplementary Section C), so we focused
on the standard offset logðxþ 1Þ.

2.6 Variance quality-of-fit evaluation
A transformation implicitly assumes that a dataset has a specific
mean–variance relationship. The assumed variance ~rðuÞ for a given
value u equals the inverse of the derivative of the transformation
(Section 2.4)

~rtðuÞ ¼
1

d
du tðuÞ

: (3)

As noted above, a log(xþ1) transformation implicitly assumes
the mean–variance relationship ~rðlÞ ¼ lþ 1 and the arcsinh(x)

transformation assumes the mean–variance relationship
~rðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
.

To measure the quality-of-fit of an assumed mean–variance rela-
tionship, we evaluated the data log likelihood under the assumed ~r.

Specifically, the log likelihood of a given dataset is defined as

X
i

log NðxðauxÞ
i jl ¼ x

ðbaseÞ
i ; r ¼ r̂ðxðbaseÞ

i ÞÞ: (4)

A Gaussian distribution appears in this expression because that
is the max-entropy distribution with a specific mean and variance.
This value is maximized when the inferred variance equals the vari-
ance of the data.

2.7 Variance-instability evaluation
To evaluate whether a given transformation achieves a uniform
mean–variance relationship, we defined the following variance-in-
stability metric. Let tðxðbaseÞ

i Þ and tðxðauxÞ
i Þ be the transformed signals

at the ith genomic position. Using the binning approach described
above, we divided genomic positions to B bins of increasing value of
tðxðbaseÞ

i Þ, where each bin is of size b¼10 000.
Let vj be the mean squared difference between replicates for posi-

tions in bin j,

vj ¼
X
i2binj

�
tðxðbaseÞ

i Þ � tðxðauxÞ
i Þ

�2

: (5)

Let r1 and r2 be the standard deviation of tðxðbaseÞÞ and tðxðauxÞÞ,
respectively. We define the variance-instability metric as the scaled
variance of vj across bins,

variance� instabilityðtÞ ¼ 1

r2
1r

2
2

varðv1:BÞ:

The 1
r2

1
r2

2

factor normalizes for the variance of the transformed
signal; without this factor, t(x) and atðxÞ (for a constant a) have dif-
ferent variance instability. Signals with unstable variance will have
large values of the variance-instability metric.

2.8 Segmentation and genome annotation (SAGA)

evaluation
As described above, SAGA algorithms are sensitive to the mean–
variance relationship in the input datasets. SAGA algorithms take as
input a collection of signals for a given biosample. They partition
the genome and assign a label to each segment such that positions
with the same label have similar patterns in the input datasets.
SAGA algorithms are widely used to integrate datasets and annotate
regulatory elements.

To evaluate the quality of annotations produced by signals under
a given transformation, we defined the following SAGA metric.
Following previous work (Zhang and Hardison, 2017), we quanti-
fied quality of an SAGA annotation according to the strength of the
relationship between the annotation of a genic region with that
gene’s expression.

Specifically, for a collection of signals from a given biosample,
we used the SAGA algorithm Segway (Hoffman et al., 2012a) to
produce an annotation. This annotation assigns one of k integer
labels li 2 f1::kg to each genomic position i. We defined features for
each gene as follows. We divided each genic region into 20 bins by
dividing the transcribed region into 10 equally spaced bins and
defining five 1 kb bins upstream of the transcription start site (TSS)
and downstream of the transcription termination site (TTS), respect-
ively. We defined features fb;k for each bin b as a one-hot encoding
of the majority label in each bin. That is, this process associates each
gene with a vector of 20k features.

We trained an Extreme Gradient Boosting (XGBoost) regression
model to predict a gene’s RNA-seq expression (Section 2.8) value
from this vector of features. We trained a regression model on a ma-
trix containing all genes in a chromosome. As features, we used a
one-hot encoding feature vector that indicates 1 in the correspond-
ing position of the predicted label and 0 elsewhere. For each bin, we
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considered the majority feature vector as a representation of that
bin’s annotation. We used the coefficient of determination (r2) to
quantify the predictive power of this regressor.

For each transformation method, we used four different values
k ¼ f3; 5;10; 15g for number of the labels to be predicted by anno-
tation. We considered four biosamples: H1-hESC, NHEK, HSMM
and HMEC. We used all available replicated histone modification
data for each biosample: We used H3K36me3, H3K4me3,
H3K9me3, H3K27me3 and H3K4me1 for H1-hESC. We used
H2AFZ, H3K4me3, H3K9me3 and H3K79me2 for NHEK. We
used H2AFZ, H3K4me3, H3K9me3 and H3K79me2 for HSMM.
We used H3K36me3, H3K4me3, H3K9me3 and H3K79me2 for
HMEC.

3 Results

3.1 Genomic signals are not variance-stabilized
To evaluate whether existing units for genomic signals have stable
variance, we computed the mean–variance relationship for a number
of existing datasets (Fig. 1c). As we expected, we found that the vari-
ance has a strong dependence on the mean; genomic positions with
low signals experience little variance across replicates, whereas posi-
tions with high signals experience much larger variance (Fig. 1c).
Moreover, the relationship does not match that expected by the

currently used logðxþ 1Þ and asinhðxÞ transformations. For ex-
ample, the former transformation assumes a linear relationship
(Section 2). The observed mean–variance relationship does not pre-
cisely match the relationships assumed by either transformation,
indicating that neither of these transformations is fully variance-
stabilizing (Fig. 1c).

The observation that existing transformations are not variance-
stabilizing was confirmed when we quantified this fit (Fig. 2). To
measure the accuracy of a variance estimate, we used the log likeli-
hood of a given mean–variance relationship estimate, which is maxi-
mized when the inferred variance equals the variance of the data
(Section 2). As expected, we found that a uniform variance model
implied by using untransformed signals had a poor likelihood (aver-
age log density of –1.9), reflecting nonuniform variance (Fig. 2b,
panel FE). We found that the variance estimates from the logðxþ 1Þ
and asinhðxÞ, where x is the FE signal, greatly improved the likeli-
hood (average log density of –1.3 and –1.5, respectively). However,
we found that mean–variance relationship learned by VSS had much
better likelihood (average log density –1.2) than either transform-
ation, indicating that the learned curve successfully models the
mean–variance relationship of the data (Fig. 2b, panel FE). We
found that VSS’s mean–variance fit was also better than log or asinh
when using either raw reads or LPPV as the base units (Fig. 2b).

Moreover, we found that the mean–variance relationship differs
greatly between experiments. For many histone modification ChIP-seq

(a)

(b)

Fig. 2. (a) Goodness of fit to the mean–variance relationship derived from FE signals, LPPV and raw signals (Raw), measured by Gaussian log likelihood (Section 2). Lower val-

ues of negative log likelihood indicate better fit. Log likelihood was computed on chromosome 21; VSS’s mean–variance relationship was trained on chromosome 22. (b) Same

as (a), but averaged across datasets for FE signals, LPPV and raw signals (Raw)

VSS: variance-stabilized signals 4387



experiments like H3K4me3 in HSMM, a log transformation yields
nearly optimal fit, indicating that the data have a nearly linear mean–
variance relationship (Fig. 2a, panel FE). However, other experiments
like H3K4me3 in GM12878 and H2AFZ in NHEK, have a very

nonlinear mean–variance relationship (Fig. 2a, panel FE). In fact, for
some experiments, a log or asinh transformation has worse fit than no
transformation, indicating that these transformations actually destabil-
ize the variance (Fig. 2a, panel FE). Future work should investigate

(a)

(b)

(c)

Fig. 3. Variance instability of transformed signals. (a) Each point corresponds to a bin, where binning is defined according to replicate 1 value (Section 2). Horizontal axis indi-

cates binning index. Vertical axis indicates squared difference of values between replicates in H3K9me3 NHEK (SSD (Sum of squared differences) depends on the scale of the

data). The flat line on the left half of each plot corresponds to positions where xðbaseÞ ¼ 0. Signals with stable variance show a flat (constant) trend on this plot; a trend (increas-

ing or decreasing) indicates unstable variance. (b) Variance-instability score on FE signals, LPPV and raw signals (Raw) (Section 2). Lower values indicate more stable variance.

(c) Same as (b), but averaged across experiments on FE signals, LPPV and raw signals (Raw). VSS’s mean–variance relationship was trained on chromosome 22 and variance-

instability score was computed on chromosome 21. We omitted the variance-instability value for untransformed signals because its value would distort the vertical axis (mean

of 601, 117 and 1877 across experiments for FE signals, LPPV and raw signals, respectively)

4388 F.Bayat and M.Libbrecht



what properties of an experiment determine its mean–variance relation-
ship. The mean–variance relationship learned by VSS correctly captures
these differences, as indicated by its good likelihood on all datasets.
These differences indicate that it is necessary to learn a separate mean–
variance relationship for each dataset, rather than applying a single
transformation (such as log or asinh) to every dataset.

3.2 Differences between replicates are stabilized after

transformation
To measure whether a given transformation stabilizes variance in a
given signal dataset, we defined the variance-instability metric
(Section 2.7). This metric measures the degree to which differences
between replicates vary for different magnitude of signal. In other
words, this metric quantifies the consistency of the variance of mean
squared between-replicate differences, among bins which divide the
signal values in equally spaced groups. A lower value of the
variance-instability metric indicates that the transformation has
been successful in stabilizing the variance of the dataset. We found
that signals transformed using VSS have better (lower variance-in-
stability score) variance stability than either untransformed signals
or signals after alternative transformations (Fig. 3).

FE signals transformed by either log(xþ1) and asinh(x) had an
average of 1.8 variance instability, whereas VSS have instability of
1.5 (Fig. 3c, panel FE).

Changing the offset of the log transformation—logðaxþ bÞ—did
not substantially improve results for any choice of a or b
(Supplementary Figs S3 and S4). This indicates that VSS units have
more consistent signals among different replicates of an experiment
(Fig. 3b and c). This pattern also holds when using Raw or LPPV as
the base signal (Fig. 3, panels LPPV and Raw).

To investigate the sensitivity of VSS’s results to experiment qual-
ity, we evaluated its results on experiments with varying quality
according to ENCODE’s quality scores (Supplementary Section F).
We found that results were similar across different quality scores
(Supplementary Fig. S8).

3.3 VSS improve SAGA algorithms
To evaluate the efficacy of transformed signals as input to Gaussian
models, we use SAGA as an example. SAGA algorithms are widely
used to integrate genomic datasets and annotate genomic regulatory
elements (Chan et al., 2018; Hoffman et al., 2012a, 2012b; Zhang
and Hardison, 2017; Zhang et al., 2016). Following previous work

ns

ns

****

**

**

****

ns

**

****

Fold enrichment (FE) log Poisson p value (LPPV) Raw signals (Raw)

No 
tra

ns
.

as
inh

(x
)

log
(x

+B
)

VSS

No 
tra

ns
.

as
inh

(x
)

log
(x

+B
)

VSS

No 
tra

ns
.

as
inh

(x
)

log
(x

+B
)

VSS

0.00

0.25

0.50

0.75

Signal transformation methods

F
ra

ct
io

n
 o

f 
va

ri
an

ce
 in

 g
en

e 
ex

p
re

ss
io

n
 e

xp
la

in
ed

 b
y 

an
n

o
ta

ti
o

n
 (

r2
)

Transformation.methods No trans. asinh(x) log(x+B) VSS

Fold enrichment (FE) log Poisson p value (LPPV) Raw signals (Raw)

4 8 12 4 8 12 4 8 12
0.2

0.3

0.4

0.5

0.6

Number of features (K)

F
ra

ct
io

n
 o

f 
va

ri
an

ce
 in

 g
en

e 
ex

p
re

ss
io

n
 e

xp
la

in
ed

 b
y 

an
n

o
ta

ti
o

n
 (

r2
)

Transformation.methods No trans. asinh(x) log(x+B) VSS

(a)

(b)
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(Libbrecht et al., 2019; Zhang et al., 2016), we evaluated the quality
of an annotation by the correlation between the label of a gene body
and whether that gene is expressed as measured by RNA-seq
(Section 2). We evaluated this correlation across multiple cell types
and model initializations (Section 2). We believe that high-quality
input signals will lead to a high-quality annotation.

We used the SAGA algorithm Segway (Hoffman et al., 2012a)
annotation for this analysis.

We found that using variance-stabilized signals from VSS
improves annotations produced by SAGA algorithms (Fig. 4). As
had been previously observed (Hoffman et al., 2012a), using nonsta-
bilized FE signal results in poor performance (mean r2¼0.47, Fig.
4). To account for this, Segway recommends using an asinh trans-
form; doing so substantially improves performance (mean r2¼0.57,
Fig. 4). VSS produces similar results to asinh on FE data (mean
r2¼0.57, p¼0.28). However, VSS outperforms asinh when using
LPPV as the base signals (p¼0.0064, paired one-sided Wilcoxon
signed rank test). Likewise, VSS outperforms a log transformation
for LPPV and raw signals (p¼0.0031 and p¼0.0009, respectively).
This improvement likely results from the fact that VSS stabilizes
variance in all cases, whereas asinh does so only when datasets hap-
pen to have a specific mean–variance relationship.

4 Discussion

In this manuscript, we proposed VSS, a method that produces units
for sequencing-based genomic signals that have the desirable prop-
erty of variance stability. We found that the transformations that
are currently used to stabilize variance—logðxþ 1Þ and asinhðxÞ—
do not fully do so. In fact, we found that the mean–variance rela-
tionship of genomic signals varies greatly between datasets, indicat-
ing that no single transformation can be applied to all datasets
uniformly. Instead, variance stability requires a method such as VSS
that empirically determines the experiment-specific mean–variance
relationship.

We showed that VSS successfully stabilizes variance in genomic
datasets. Further, we found that using variance-stabilized data
improves the performance of Gaussian models such as SAGA.

Variance-stabilized signals will aid in all downstream applications of
genomic signals. In particular, they are valuable for three reasons. First,
VSS allow downstream methods to use MSE loss or Gaussian likelihood
distributions, which are much easier to optimize than the existing practice
of implementing a model that accounts for the mean–variance relation-
ship. This will improve tasks that currently use Gaussian models, such as
chromatin state annotation and imputation.

Second, VSS can be easily analyzed by eye because the viewer does
not need to take the mean–variance relationship into account when visu-
ally inspecting the data. For example, when viewing genomic signals in a
genome browser, variance-unstable signals often exhibit high peaks that
swamp the vertical axis and flatten other variations in signal
(Supplementary Fig. S5). Existing methods for handling this problem—
using a log/asinh transform or cutting off the vertical axis—can also be ef-
fective, but they lack the principled basis of VSS.

Third, VSS overcomes the problems that other signal transform-
ation methods like log transformation may cause. When transform-
ing genomic signals, a trade-off must be considered. One must (i)
reduce outlier spikes in signals so they do not dominate analysis
while (ii) avoiding overly amplifying background noise. VSS pro-
vides a principled way to make this trade-off; it reduces signals by
exactly the amount needed to stabilize variance.

A key limitation of VSS is that it requires the availability of repli-
cated data. A fruitful direction for future work might aim to remove
this dependence, e.g. by training a consensus transformation to
apply across non-replicated data. Another direction for resolving
this issue may be to use the autocorrelation in the genome, as neigh-
boring positions in a replicate, can be considered as pseudo-
replicates of one another. Doing so would eliminate the need for
multiple replicates for identifying the mean–variance relationship, as
this trend can be identified from a single replicate.

A related limitation is that VSS relies heavily on the comparabil-
ity of its input replicates. For example, if a pair of replicates exhibits
completely irreproducible peaks or there are (e.g.) batch effects be-
tween the replicates, VSS will estimate extremely high variance over-
all, leading to very low-magnitude signals.

Moreover, it would be beneficial to investigate if VSS can stabil-
ize the variance between different experiments. This task would be
specifically useful in the downstream analyses in which selecting a
region as significant depends on the between-replicates-variance.
Future work may focus on figuring out if one can use the same
mean–variance relationship trained on one experiment to get the
VSS for different samples.

Another related issue concerns standardizing dynamic range of dif-
ferent experiments. VSS has not been designed to address this issue it-
self. However, a user can use VSS as part of a pipeline with cross-
experiment normalization methods such as S3norm (Xiang et al., 2020)
to stabilize both variance and standardize dynamic range.
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