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No civilisation can be sound or stable which has at its base 
this mass of stunted life.

Poverty, Seebohm Rowntree, 1900.

It must first, however, be generally believed with Sydenham, 
that our chronic maladies are of our own making.

Thomas Beddoes, 1800.

Introduction
Meat transitions have been a feature of human history. Ever 
since the evolution of agriculture, there have been marked vari-
ances of meat intake between rich and poor nations and indi-
viduals within social classes, and therefore, oscillations of key 
components such as nicotinamide that when severely deficient 
causes pellagra.1–5 Nicotinamide and its derivatives nicotina-
mide adenine dinucleotide (NAD) and reduced nicotinamide 
adenine dinucleotide (NAD(H)) are intrinsic to mitochondrial 
function, and levels can be high, optimal, or low: these can 
involve manageable change through homeostasis or use of 
symbionts (or when short-lived, can be a beneficial hormetic 
shock). However, if nicotinamide supplies are very low, this can 
lead to energy decline with loss of high-energy molecules and 
disease often through protein modifications – as is seen with 
pellagra and similar to those seen with some mitochondrial and 
other mutations.6,7 Nicotinamide adenine dinucleotide is an 
important ‘food signal’ to all organisms and, often mediated by 

serotonin, has defining effects on development, circadian 
rhythms, gene regulation through chromatin remodelling, and 
reproductive and other behaviour.8,9 NADH as a cofactor per-
forms more than 500 key dehydrogenase and other reactions, 
excluding NAD reactions that are important to metabolism, 
(stem-cell) development, repair, and longevity, but then is con-
sumed – so it requires constant replenishment ultimately from 
dietary precursors.10

Much has been written about modern maladaptations rela-
tive to our long hunter-gatherer days. These mismatches usu-
ally concentrate on loss of fibre or excessive sugar or fructose or 
gluten in recent affluent diets.5,11–23 We argue that a high risk 
of too little nicotinamide may be the most important difference 
between diets in the past 10 000 years and those in the 
Palaeolithic. During that long time, as we (co)evolved much of 
our nutrigenome, microbiome, and ‘meat cultures’, variances 
were usually ‘feasts or famines’ (or fatal as meat then provided 
most of the calories) rather than chronic shortages over life-
times. The first Neolithic agricultural revolution and the sec-
ond ‘Green revolution’ 50 years ago may have, as an unintended 
consequence, reduced meat and micronutrients for those in 
poverty. Both revolutions increased cereal availability reducing 
hunger but not the ‘hidden hunger’ of micronutrient deficiency 
in something of a ‘Faustian’ bargain.24

Nicotinamide’s approximate concentrations in foods are 
shown in Table 1.25,26 Milk contains average amounts of 
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nicotinamide but high amounts of the potent nicotinamide 
riboside. Culturally acquired cooking methods ‘nixtamalisation’ 
can improve availability of nicotinamide from the bound form 
niacytin: the microbiome can contribute as many bacterial 
symbionts can synthesise nicotinamide, though, whether they 
share all this with other bacteria that cannot, or, with the host 
is unclear in man, though, must happen in ruminants. The syn-
thetic pathway from tryptophan is inefficient but can supply 
1 mg of niacin for 60 mg of tryptophan depending on other 
factors including pyridoxine and iron or zinc availability and 
high-fat or leucine diets. Tryptophan is sourced largely from 
animal products boosting the importance of meat, eggs, and 
milk. Cereals particularly maize barely increase post-prandial 
levels of tryptophan, and transport across the blood-brain bar-
rier can be reduced by other amino acids complicating effects 
on mood and cognition.27–32

‘Meatification’ of the diet doubled meat intake in the United 
Kingdom between 1850 and 1960 and has overall increased by 
2-fold average intake from 20 to 40 kg per annum per person in 
1960 to double that in 2010 (as has nicotinamide intake) and is 
predicted to rise to 50 kg per annum.33,34 The extremes are 
striking at 120 kg per annum per person as an average in many 

rich countries (who also obtain nicotinamide as mandated sup-
plements and manufacturer’s additives) but 20 kg per annum 
per person in many poor countries with many individuals eat-
ing negligible amounts that have to affect a society’s health and 
industriousness.35,36

Such individuals must be at risk of the classic meat defi-
ciency disorder particularly when on a poor monophagic cereal 
diet (usually maize), known as pellagra. Pellagrins can have a 
diagnostic rash ‘Casal necklace’ triggered by sunlight. The rash, 
however, is not always present or characteristic (often diag-
nosed as eczema) – ‘pellagra sine pellagra’.37 Other cardinal 
features of pellagra such as gut infections and neurodevelop-
mental and neuropsychiatric syndromes and an inability to deal 
with stress or an absence of allergies are non-specific, so the 
diagnosis is bound to be missed (Figure 1). There is no easy 
biochemical test.

Hypotheses
We will argue that nobody ever systematically checked that 
pellagra was eliminated globally (dietary supplementation 
mainly happened in rich countries). Pellagra may be common 
and misdiagnosed masquerading as ‘environmental enteropa-
thy’, poor cognition, eczema, or general ill health and a lack of 
well-being or poor homeostasis when under environmental 
stress with shortened lives.38,39

We also argue that environmental insults from trauma, 
hypoxia, toxins, stress, or mutations (such as in mitochondrial 
or DNA-repair genes) may require either lifetime or temporary 
higher doses than normally recommended (15 mg/d).

Controversially, we suggest that many people in rich coun-
tries may be on too high a dose. A hyper-vitaminosis B3 state 
may be common and, like pellagra, have a wide phenotype that 
includes the metabolic syndrome, several cancers, and some 
degenerative or neuro-behavioural disorders.40

Furthermore, we propose that the transition from diseases 
of poverty to diseases of affluence is due to switching the dose 
of meat/nicotinamide too fast and too far.41,42 The most recent 
version of the ‘hygiene hypothesis’ concentrates on reductions 
in symbiotic/commensal biome diversity acquired early in 
development, not cleanliness during childhood and common 
pathogens.43–46 We will discuss how a biochemical switch away 
from the need to produce nicotinamide ‘in house’ from trypto-
phan, and the related reduced metabolic need for gut symbi-
onts or tuberculosis (TB) on a better diet so that they are no 
longer ‘welcomed’ by the immune system is a more plausible 
explanation for the loss of microbial ‘old friends’. This switch of 
microbiomes reduces tolerogenic instruction to the immune 
system further encouraging it to over-react to otherwise irrel-
evant foreign proteins or self-proteins.47

Biochemical Background
We summarise NAD metabolism in a diagrammatic form 
(Figures 2 to 4). Nicotinamide adenine dinucleotide has 3 
related precursor vitamins – nicotinamide, nicotinic acid, and 

Table 1. Main sources of nicotinamide are animal products.

Red meat 100  

Chicken 70  

Fish 50  

Peanuts 100  

Coffee 50  

Beans 10  

Barley 20 Processed/polished cereals = much 
less. Less may also be available in 
cereals as it is biologically bound and 
so dependent on cooking methods

Wheat 15

Rice 10

Potato 10

Sorghum 10

Soybean 10

Maize 8

Vegetables 2–6

Fruits 4–8

Brewer’s yeast 120

Approximate nicotinamide in foods (mg/100 g). Supplementation is statutory in 
many developed countries. Manufacturers add considerably more to cereals 
and other foodstuffs such as ‘high-energy’ drinks. Note that all cereals have low 
content, maize being the worst: processing and cooking can decrease content 
markedly with the exception of alkali preparation that increases availability. Daily 
recommended allowance is 15 mg/day – that can be corrected depending on 
estimated tryptophan intake.
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nicotinamide riboside – that have highly efficient synthetic and 
recycling ‘salvage’ pathways and one ‘detoxification’ pathway 
using nicotinamide N-methyltransferase (NNMT).48–54 There 
is an important backup nicotinamide/NAD ‘de novo’ synthetic 
pathway from the essential amino acid tryptophan.55 This 
pathway is crucial to our story as it is closely linked with immu-
nologic tolerance and intolerance.

Nicotinamide adenine dinucleotide, the central redox co-
enzyme in cellular metabolism, functions as a hydride group 

acceptor forming NADH with concomitant oxidation of 
metabolites derived from carbohydrates, amino acids, and fats. 
Gluconeogenesis, oxidative phosphorylation, ketogenesis, 
detoxification, and lipogenesis require reduced cofactors 
NADH and reduced nicotinamide adenine dinucleotide phos-
phate (NADPH). Nicotinamide adenine dinucleotide is the 
consumed substrate of poly(ADP-ribose) polymerases 
(PARPs), sirtuins (SIRTs), and cyclic adenosine diphosphate 
(ADP) synthetases. Nicotinamide adenine dinucleotide and 

Figure 1. Pellagra has a very wide phenotype. The parallel with diseases of ageing are striking. NAD/NADH/nicotinamide imbalances may be the 

treatable underlying common factor to many common diseases whether from dietary deficiency or excess or varying needs from genetic mutation, toxic, 

anoxic, or other external stresses. NAD indicates nicotinamide adenine dinucleotide.

Figure 2. Diet supplies nicotinamide, nicotinic acid, and nicotinamide riboside as well as the essential amino acid tryptophan. Tryptophan can be 

degraded to synthesise nicotinamide when there is dietary stress by the kynurenine ‘de novo’ ‘immune tolerance’ pathway. Symbionts, whether in gut or 

TB, are a backup source as is ‘autocarnivory’. Salvage pathways are extensive and efficient to conserve NAD/nicotinamide as NAD consumers mean that 

there is a continuous need for replenishment. Many are involved in repair and disease processes and ageing. Excess nicotinamide can be excreted after 

a methylation reaction by NNMT. NNMT, indicates nicotinamide N-methyltransferase; TB, tuberculosis.
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NAD/NADH ratios have been described as a master control-
ler of many physiological and repair activities and are 

themselves under circadian control with much cross-talk with 
multiple nutrient pathways, whether carbon, nitrogen, or 

Figure 3. NAD is central to metabolism and the energy supply. NAD determines cell fates during development. NAD links to the epigenome and genomic 

expression means close interactions with our environment that in turn supplies NAD. 

Figure 4. Nicotinamide/NAD and tryptophan metabolism are linked by the ‘de novo’ pathway. All these pathways have been implicated in diseases of 

ageing and mechanisms such as proteotoxicity, and, interventions such as caloric restriction, resveratrol, parabiosis and metformin. 
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phosphate sensing. Despite extensive recycling, cell stresses 
that include ageing, toxins, and over-nutrition activate NAD 
consumption and alongside growth requirements mean that 
there is a continuous need for a dietary or microbiomic source 
of NAD precursors.56–58

The close relationship between man and meat/milk-provid-
ing animals is not surprising. Nicotinamide adenine dinucleo-
tide metabolism is also integral to plant primary energy 
acquisition from the sun on which all animals depend. Plants 
also use NAD-dependent oxidative bursts to ward off micro-
bial attack.59 Other deterrants from herbivore attack involve 
nicotinamide-nicotine metabolism; this is interesting as both 
nicotine and other stress compounds, such as salicylate and res-
veratrol, affect our NAD metabolism in both a medicinal and 
hormetic sense (Figure 5).

Some hindgut symbionts produce nicotinic acid (that they 
share) as does TB60–62 (Figure 6).63–65 We have argued that when 
meat sources are good and shortages short-lived, TB acts as a 
symbiont farmed for its nicotinamide. The relationship with clas-
sic pathogens is different. Many have evolved to be consumers of 
host NAD, and many of their toxins directly affect NAD con-
sumer pathways66–74 (Figure 7). If the host is moderately deficient 
in nicotinamide/NAD in the first place, they will be less resilient 
– if severe, the pathogen may not have enough to survive perhaps 
explaining the paradoxical relationship between nutrition and 
infection when very poor nutrition can be protective.75

Nicotinamide adenine dinucleotide pathways have been 
heavily implicated in ageing and many diseases from the 
neurological to retinal disease to cancer and can restore stem 
cells.73,76–103 Recent evidence fits with the very wide pheno-
type of disease seen with pellagra. The cellular response to 
NAD deficiency (and excesses) across cell lines is heteroge-
neous and may explain these broad phenotypes suggesting 
that NAD/NADH upsets might be a common underlying 
cause of many diseases.104

Pathways – Over- and Under-Nutrition
Over- and under-nutrition are bad for health as demon-
strated by ‘Waaler’ curves for height, weight, and mortal-
ity.105 We propose that they share pathways that intersect 
with symbionts buffering poor diet and both relate to nico-
tinamide metabolism (Figure 8). Butyrate (and nicotinic 
acid) are generated by gut symbionts that include 
Lactobacillus or Bif idobacteria or Clostridia sp that ferment 
fibre and other otherwise indigestible complex carbohy-
drates and are in high concentration in the colon.90,106–110 
Butyrate is an endogenous ligand active on the G protein–
coupled GPR109A nicotinic acid receptor (expressed on 
macrophages, dendritic and epithelial cells, and adipocytes); 
this sends non-redundant signals via interleukins that affect 
T-cell differentiation favouring Tregs over helper T cells 
when the diet is poor as does nicotinamide from the diet 
when it is rich.90,111–118 This signal from the ‘niacin receptor’ 
reduces inflammation and carcinogenesis and has indepen-
dently been proposed as a factor in mediating and perhaps 
moderating diet and disease transitions91,119

Figure 5. Plant and human metabolisms have active and overlapping reactions involving nicotine and nicotinamide. Stress molecules such as nicotine, 

salicylate, and resveratrol have medicinal and hormetic actions in man.

Figure 6. A designer symbiont. TB produces nicotinic acid but cannot 

recycle it to NAD so excretes it to a ‘welcoming’ host that ‘farms’ the 

organism at some risk of dysbiosis if the dietary dose of nicotinamide is 

too low. Nicotinamide is a natural and its analogues are some of the 

artificial anti-tuberculous agents. NAD indicates nicotinamide adenine 

dinucleotide; TB, tuberculosis.
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There is much supportive evidence of differences between 
the microbiome on rich, poor, and traditional hunter-gatherer 
diets and that the tryptophan pathway is involved in states of 
malnutrition (or rare but illustrative genetic defects that affect 
nutrition).120–122 Reliance on the microbiome could mean that 
those on a poor diet are at risk of broad-spectrum antibiotics 
temporarily eliminating symbionts and triggering clinical nic-
otinamide deficiency – pellagra (as can happen with anti-
tuberculous therapy).123,124

Although many factors have been shown to alter traffic in 
the ‘de novo’ pathway, particularly infectious diseases, it is 

important to remember that its primary purpose is the produc-
tion of nicotinamide/NAD from tryptophan when the diet is 
inadequate (Figure 9). The consequences are immune tolerance 
to some useful symbionts. Immune tolerance is mediated by an 
effect on the balance between Tregs and T17 helper cells – also 
the target for steroids and many modern immune therapies or 
artificial infection with helminths. Kynurenine-derived toxins 
drive auto-carnivory that also releases NAD and tryptophan at 
the longer term cost of organ damage. The host will be more 
prone to pathogens, so there will be other severe downsides for 
the individual.78,125–130 On a high-nicotinamide diet, 

Figure 7. Infections and host NAD metabolism are intertwined. Many pathogens evolved to consume host NAD or their toxins lead to host NAD depletion. 

If the host is NAD deficient, this will exacerbate virulence and death rates. If severely deficient, there may not be enough NAD to allow the pathogen to 

replicate. Symbionts, by contrast, can improve host NAD levels. 

Figure 8. Low-meat/high-fibre diets lead to symbionts that increase nicotinamide levels or produce butyrate. Butyrate is an agonist at the nicotinic acid 

receptor as well as having epigenetic effects. Both butyrate and nicotinic acid will affect the T-cell balances and immunologic tolerance.
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the opposite may be occurring with immune intolerance to 
normally harmless antigens.131–135 Although induction of 
indoleamine 2,3-dioxygenase (IDO) has been described para-
doxically (on our theory) in some of these inflammatory or 
cancerous conditions, there is a difference between a predispos-
ing endo-phenotype and one that is being influenced as the 
disease develops: we would argue that IDO induction can be 
compensatory (Figure 10).136–151

We will now look at some data from the United Kingdom, 
1850 to 1950, and across the contemporary world comparing 
states of under- and over-nutrition and diseases and health 
markers that are likely to be related to nicotinamide dose, as 
many are components of pellagra.

Methods
All meat data were collected from ‘Eating meat: evolution, pat-
terns, and consequences’ by Smil152 and The Atlas of Food Who 
Eats What, Where, and Why by Millstone and Lang.153 IQ and 
literacy data were from ‘Some British pioneers of social medicine’ 
by Greenwood154 and ‘National IQS predict differences in 
scholoastic achievement in 67 countries’ Lynn et al.155 Tuberculosis 
data were collected from McKeown156 and the Institute for 
Health Metrics and Evaluation’s Global Burden of Disease 

(GBD) (2013).157 The Parkinson disease (PD) data were taken 
from Duvoisin and Schweitzer158 and the Institute for Health 
Metrics and Evaluation GBD (2013) (http://www.healthdata.
org/gbd). All disease data had been corrected for age structure of 
populations. Cancer data were derived from ‘Mortality in England 
and Wales from 1848 to 1947’ by Logan159 and the Institute for 
Health Metrics and Evaluation’s GBD (2013). Diabetes data 
were taken from The Health of Adult Britain 1841-1994 by 
Charlton and Murphey160 and from the Institute for Health 
Metrics and Evaluation’s GBD (2013). Life expectancy data were 
from ‘Ecological public health: the 21st century’s big idea?’ by 
Rayner and Lang161 and The Atlas of Health: Mapping the 
Challenges and Causes of Disease by O’Donovan.162 Height data 
sets were from Galton’s midparent height revisited by Cole.163

Statistics

Exploratory analysis was conducted on these data to identify 
relationships between meat consumption and other variables 
by conducting scatterplots. The correlation between meat con-
sumption and other variables was analysed using the Pearson 
correlation coefficient. All statistics were conducted using 
SPSS (version 21).

Figure 9. The key switch is the kynurenine ‘de novo’ pathway. When dietary supplies of nicotinamide/NAD are not sufficient, there is Treg-induced 

tolerance for metabolically useful symbionts but dangers to individual health from dysbioses or pathogens. However, when dietary nicotinamide is 

high, there is immune intolerance with too few Tregs and an excess of pro-inflammatory T17 cells and many diseases of modernity. Many 

immunologic therapies from steroids to recent T-cell–targeted approaches or artificial infection try to correct this imbalance. Prevention might be 

more effective and safer. 

http://www.healthdata.org/gbd
http://www.healthdata.org/gbd
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Results
In summary, and in round terms in the United Kingdom between 
1850 and 1900, death rates per million with both sexes com-
bined are as follows: for TB (before any treatment) halved from 
7000 to 3500, for dysentery fell by 9/10ths from 150 to 15, 
whereas cancer (before much effect from smoking, at least in 
women) increased by 2.5-fold from 700 to 1700, and diabetes 
increased 4-fold from 50 to 200. The incidence of Parkinson’s 
disease rose markedly having only been described in 1817. 
During this period, meat intake almost doubled. Measures of 
cognitive and physical health such as literacy rates increased as 
did height. Contemporary data comparing these conditions with 
average meat intake across countries support these correlations.

More specifically, the reduction in deaths from diarrhoea 
between 1850 and 1950 in the United Kingdom trended with 
the rise in meat intake (P = .085) (Figure 11).

Across the world today, deaths from diarrhoeal diseases cor-
relate strongly with meat consumption P > .0001 (Figure 12).

Literacy rates in the United Kingdom between 1850 and 
1900 correlated with the rise in meat consumption P > .001 
(Figure 13).

In the contemporary world across nations, literacy rates cor-
relate strongly with meat consumption P > .001 (Figure 14).

Measured IQ correlates with meat consumption currently 
across countries P > .001 (Figure 15).

Between 1870 and 1970, boys height increased and corre-
lates with meat intake (P > .001) as does height across nations 
currently (P > .001) (Figures 16 and 17).

Between 1850 and 1970, also between 1850 and 1950 (before 
any drug treatment), TB rates fell dramatically and this correlates 

Figure 10. Predisposing phenotype for inflammatory disease driven by high nicotinamide in diet leads to reduced IDO activity. The more immediate triggers to 

these diseases and the disease process itself may sometimes lead to the apparent paradox of induced IDO as a compensation that may exacerbate or mitigate 

the disease. Lack of early infections or allergens may be ultimate causes but can act later as proximate triggers. IDO indicates indoleamine 2,3-dioxygenase.

Figure 11. Diarrhoea plotted against meat intake in the United Kingdom, 

1850-1950 (r = −0.642; P = .085).

Figure 12. Diarrhoea plotted against meat intake in the contemporary 

world across nations (r = −0.508; P < .0001).
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with increased meat intake (P > .001). The decline in TB did not 
happen at the same time even within Europe and was also delayed 
in other industrial nations such as Japan where improvements in 
diet particularly of meat were also delayed.164 Reverses are well 
described under famine conditions165,166 (Figure 18).

This correlation is true across countries today where meat 
consumption correlates strongly with deaths from TB 
(P > .0001) (Figure 19).

Diabetes deaths rose between 1850 and 1950 and correlate 
with meat intake (P > .05) as they do across the world today 
(P > .001) (Figures 20 and 21).

Cancer rates were increasing in both sexes in the United 
Kingdom from 1850 to 1900 before there was much effect 

from smoking (and none in women) and correlate with meat 
intake (P > .0001) as they do across the contemporary world 
(P > .0001) (Figures 22 and 23).

Rates for the Parkinson disease were increasing between 
1850 and 1960 (P > .001) and correlate with meat intake as they 
do across the world today (P > .0001) (Figures 24 and 25).

The Allergy Epidemic, 1870-Till Now
The recent rise and exact timing of the rise in hay fever and 
allergic/auto-immune disease are less well-documented 

Figure 13. Literacy rates plotted against meat consumption in the United 

Kingdom, 1850-1900 (r = −0.988; P < .001).

Figure 14. Literacy rates plotted against meat consumption in the 

contemporary world across nations (r = 0.531; P < .001).

Figure 15. IQ plotted against meat consumption in the contemporary 

world across nations (r = 0.538; P < .001).

Figure 16. Increased height correlates strongly with higher meat intake 

(r = 0.934; P < .001).

Figure 17. Increased height correlates strongly with higher meat intake 

(r = 0.635; P < .001).

Figure 18. Tuberculosis plotted against meat consumption in the United 

Kingdom, 1850-1920, before there was any drug therapy (r = −0.958; 

P < .001).
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numerically – although the facts are not in dispute and aver-
age meat intake has also doubled again between 1960 and 
now, so if they were strong correlations would be obtained.34 
Apart from a very few references in ancient literature, allergy 
first in the form of hay fever was first described in the mid-
19th century exactly at the time the TB epidemic was abating 
in both the United Kingdom and in the United States.167–170 
Observers at the time described these conditions and noted 
that they were on the increase, to begin with among the fash-
ionable wealthy. Allergic disease had been unknown in previ-
ous generations (much as they are still unknown in poor 
African villages today). Increases are being recorded in coun-
tries that are getting richer or have had the economic benefits 

of European re-unification.171–180 Proximate triggers such as 
grass and ragweed pollen were noted early on, but they do not 
contain new antigens even if some became more prevalent. 
Rather paradoxically avoiding the allergen can make matters 
worse, as recently demonstrated for peanut allergy, so treating 
the proximate allergen as the actual or preventable cause is 
problematic.181

Figure 19. Tuberculosis plotted against meat consumption in the 

contemporary world across nations (r = −0.545; P < .0001).

Figure 20. Diabetes plotted against meat consumption in the United 

Kingdom, 1850-1950 (r = 0.756; P < .05).

Figure 21. Diabetes plotted against meat consumption in the 

contemporary world across nations (r = 0.247; P < .001).

Figure 22. Cancer death rates plotted against meat consumption 

1850-1950 (r = 0.981409; P < .0001).

Figure 23. Cancer death rates plotted against meat consumption in the 

contemporary world across nations (r = 0.667; P < .0001).

Figure 24. Parkinson disease plotted against meat consumption 

1850-1900 (r = 0.842; P < .001).
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The ultimate cause of the epidemic has been linked by  
others to the decline of TB using evidence from BCG vacci-
nation and inverse associations with tuberculin responses  
or other infections.182–185 Current maps of the incidence  
of infections such as helminths and TB are diametrically 
opposed to incidences of allergic and auto-immune diseases186 
(Figure 26). Reduction in helminth infection, as with TB, is 
also associated with relief from poverty and poor diet with 
limited overall impact of antibiotics at least at a population 
level: as animal parasites, their interaction with host nicoti-
namide status and biochemistry could be either positive or  
negative but has not been studied.187–191

A reasonable proposition as to timing of the allergy epi-
demic in the northwest is shown192 (Figure 27). Not only 
numbers but also diversity of auto-immune disease continues 
to radiate.193 Links with NAD metabolism through CD38 
and allergen/pollen NADPH oxidases have been made; the 
latter links in to oxidative stress and T-cell imbalances that 
could cause allergic disease but only if Tregs were unbalanced 
in the first place, prior to exposure to the immediate extrinsic 
signal.194–200 High tryptophan levels and low IDO activity 
have also been recorded in allergic disease whether asthma or 
food allergies.201–203 In addition, the modern outbreak of 
depression appears, despite cross-cultural issues to be a fea-
ture of diseases of affluence, and may influence many of the 
others and can clearly be related to disturbed tryptophan and 
serotonin pathways.204,205 The commonest cause of infertility 
– polycystic ovary syndrome – is also far commoner in devel-
oped economies and has been related to the metabolic syn-
drome and auto-immune disease; this is relevant to the 
argument we make in our companion article about increasing 
infertility in high-meat economies.206

Questions
We now ask a series of questions to further explore and try and 
convince readers that the dose of vitamin B3 is a significant 
health issue and that deficiencies and perhaps excesses are 
commoner than is usually supposed.

Question 1a: was pellagra conquered or is it still 
endemic in some poor meat areas?

The short answer is that nobody has checked systematically at a 
clinical or biochemical level. The few studies done in high-risk 
populations such as refugees in war-torn Africa suggest that it 
may be common but rarely diagnosed.207–211 Pellagra may be 
treated inadvertently in alcoholics while restoring thiamine lev-
els with multivitamins for Wernicke encephalopathy.212–215 
Indeed, it may genuinely be difficult to separate nicotinamide 
deficiency from deficits of other micronutrients as seen with 
tropical neuropathies; even when there are putative (cyanogenic 
or amino acid) toxins involved, nicotinamide deficiency could 
play a part in degenerative diseases when on poor monophagic 
plant diets such as those described on Guam as well as Lathyrism 
and Konzo.216–219 Some of these conditions including pellagra, 
like scurvy in the past, can get considered to be ‘badges of dis-
honour’ (even though captains Columbus and Cook were prob-
ably affected) or wilful self-neglect rather than due to chronic 
food shortages obfuscating calls to action.220

Pellagra happens to those on a very low-meat/milk and 
maize diet, so many in Africa and Asia must be at risk. The 
rash is photosensitive, so may not be present as often in those 
with pigmented skin – earlier epidemics were mainly in poor 
whites. Diarrhoea and poor mental development are endemic. 
Kwashiorkor, when first described, was felt by some to be a 
form of pellagra, but the argument was initially lost to the 
proponents of calorie or protein deficiency.221–224 The renamed 
‘environmental enteropathy’ with gut dysbioses, cognitive 
impairment, and later ‘epigenetic’ metabolic syndromes may 
have a closer relationship with a ‘new version’ of pellagra than 
is generally appreciated.225,226 Pellagra may be masquerading 
as general ill health and shortened lives with lower than 
expected IQ and exacerbate both TB and human immunode-
ficiency virus.227–229

Question 1b: was pellagra sine pellagra conquered 
or is it still a common cause of poor intellectual 
development or premature ageing including 
dementia?

Before the biochemistry and treatment of pellagra were sorted 
out in the 1940s, it was pointed out that lack of meat in diet 
had profound effects on health and height, and the clinical 
manifestations went outside the classic pellagra pheno-
type.230,231 This view was criticised by vegetarian groups 
(including Gandhi). We now realise that there is a world of 
difference between an economically driven poor monophagic 
vegetarian diet and a voluntary vegetarian diet of good quality 
that often includes some animal products and supplements – so 
the latter has few dangers and some advantages.232

During the American and earlier European epidemics of 
pellagra, often in families with other members diagnosed, 
there were many with poor physical and mental development. 
Indeed, a high proportion of both blacks and ‘white trash’ in 

Figure 25. Parkinson disease plotted against meat consumption in the 

contemporary world across nations (r = 0.842; P < .0001).
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the Southern states may have been affected. The average IQ of 
Confederate recruits was in the ‘moron’ category and that was 
not true for the richer Union recruits. The correlations we now 
see between IQ/literacy and meat intake may represent nicoti-
namide deficiency. The dramatic changes in IQ known as the 
‘Flynn effect’ as countries become more prosperous may reflect 
increased nicotinamide intake and a better brain in the first 
place more capable of learning from a better educational sys-
tem and less prone to dementia.233–235 Indeed, there is already 
considerable evidence that nicotinamide could prevent or  
benefit Alzheimer’s disease and has a role in serious neuropsy-
chiatric disease such as schizophrenia and post-traumatic 
dementia..236–248 Increased longevity could also represent 
improving nicotinamide dosage. This is supported by pellagra 
causing premature ageing and dementia and evidence that 
NAD levels fall with age given that NAD consumers, whether 
SIRTs or PARPs, are largely responsible for ageing and repair 
mechanisms249 (Figure 28).

Question 2: is there a strict recommended dose of 
nicotinamide or do some people with some genetic 
mutations require a personalised dosage and do some others 
temporarily need a boost in their dosage when under stress?

The recommended daily dose of nicotinamide of around 
15 mg/day was a reasonable informed ‘guesstimate’ designed to 

avoid or treat pellagra. However, there are examples of increased 
needs under some mutational circumstances, such as those 
causing muscular dystrophy or optic atrophy.250–252 The same 
may be true of DNA-repair or metabolic defects such as those 
causing ataxia-telangiectasia, Friedreich ataxia, defects in glu-
tamine synthetase, and some cancers.253–256 Other diseases such 
as Huntington’s are known to have a disturbed ‘de novo’ path-
way and an intervention with nicotinamide could work.257,258

It has been known for a long time that the dose needs to be 
increased in patients with the carcinoid or Hartnup syndrome 
who shunt tryptophan to increased serotonin synthesis or have 
a tryptophan transport defect.259,260 If there is genotoxic stress 
such as that from chemicals or drugs, sunlight, or even emo-
tional stress, it would be expected that the extra NAD con-
sumption would be easier to support if the dietary dosage was 
high. There is emerging evidence that nicotinamide dosage 
can be (neuro)protective under a wide range of environmental 
insults whether traumatic, anoxic, or toxic suggesting that pro-
phylactic boosting of the dosage or treating soon after the 
insult may reduce cell damage in a number of organs, 

Figure 26. Incidence of helminth infestation and tuberculosis is diametrically opposed with incidence of autoimmune disorders now. In 1850, this map 

would have looked more homogeneous.

Figure 27. The rapid and sequential rise of allergic and auto-immune 

disease in the United Kingdom is shown. During this period, meat intake 

on average doubled again, so if accurate figures were available for the 

new diseases, strong correlations would be apparent. Incidence and 

severity may be stabilising for some such as asthma (as is meat intake).

Figure 28. A summary of how poor diet can interact with the microbiome 

and with internal stresses such as mutations and with external stresses. 

These can all contribute to a single NAD endo-phenotype with multiple 

clinical phenotypes. NAD indicates nicotinamide adenine dinucleotide.
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including the brain.96,104,236,261–290 Many diseases where the 
environmental trigger is not known may have an NAD-
deficient endo-phenotype. This is suggested by the extraordi-
narily varied phenotype of pellagra where a wide range of 
dementias and neuropsychiatric conditions was described 
including mimics of Creutzfeldt-Jakob disease, PD, motor 
neuron disease, multiple sclerosis (MS), and cerebellar syn-
dromes alongside migraine and epilepsy. Evidence for such a 
deficit is already strong for some, such as prion diseases, where 
there is phenotypic overlap with pellagra.291,292

Question 3: was the change in dosage of 
nicotinamide the transition factor converting 
diseases of poverty to diseases of affluence? Did this 
lead to the loss of ‘old friends’ such as TB allowing 
a poorly educated immune system to become 
overactive?

Nicotinamide adenine dinucleotide status is probably crucial 
to the poor resistance to pathogens seen in poor countries. 
Many pathogens or their toxins target the host’s NAD sys-
tem by disrupting NAD consumer pathways, or by secreting 
NAD glycohydrolase, break down the host’s NAD levels.293 
We have also argued that TB and some gut symbionts origi-
nally co-evolved to supply nicotinic acid. Such symbionts 
become dysbiotic and behave as pathogens when the diet is 
low in meat for protracted periods of time, or if driven to 
mutate using antibiotics. Nicotinamide was the first anti-
tuberculous antibiotic discovered. The largely spontaneous 
disappearance of TB as countries and diets become richer 
becomes less of a mystery and is less likely to be related to 
better hygiene. There are, indeed, good examples of 

improving sanitation improving water-borne infection such 
as cholera but having little impact on other infections, until 
diet and particularly meat intake is addressed.294 In one 
famous example, improved sanitation caused an increase in 
mortality as the increased rents led to a decline in food qual-
ity.295 A famous other example was rebuilding barracks to no 
effect on TB rates until the meat intake was increased, and of 
course, TB becomes rampant during many famines.296

It is notable that TB sanatoria were not closed but were 
transformed into sanatoria for allergies that first became a 
problem for the rich on rich diets.15,297–303 A ‘nicotinamide 
switch’ towards the evolutionary norm of a high-meat diet 
could be responsible for the switch from TB and other chronic 
infections, now co-evolved to affect the development of the 
immune system, to a poorly educated overactive immune sys-
tem responding to normally innocuous antigens.81,304–310 The 
biochemical nature of this switch was outlined earlier (Figure 
9). The speed at which the switch is turned could be important, 
with the highest risk within a lifetime or a generation or two 
for disease of affluence – thereafter, immune adaptations and a 
different starting point of the microbiome may occur compat-
ible with little evidence that hunter-gatherers had auto-
immune/allergic disease (trauma leading to shorter lifespans 
may have spared them later onset diseases).

The spread and origin of the obesity epidemic is interesting 
regarding this as modern maps of the epidemic and obesity, 
diabetes, and stroke ‘belts’ are strikingly similar to maps of pel-
lagra a century ago suggesting that the switch can manifest 
over several generation raising future discussion over ‘thrifty’ 
(and in other contexts ‘non-thrifty’) nicotinamide-related gen-
otypes and phenotypes and developmental plasticity having 
effects on later disease compatible with the known involvement 

Figure 29. US map illustrates the obesity epidemic and a diabetic belt. The distribution is almost exactly the same as maps of pellagra a century ago. 

Has the change from very low levels of nicotinamide to high levels been the crucial inter- and intra-generational change rather than calories or allergens?
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of nicotinamide, butyrate, and methyl groups in epigenetic 
modifications 311–316 (Figure 29).

Question 4: over and above a rash of immune 
diseases has the dose of nicotinamide become so high 
that there is an unrecognised hyper-vitaminosis B3 
syndrome?

Nicotinamide is widely viewed as having little serious toxicity 
at least in the short term.317,318 We suggested nicotinamide 
toxicity as a causative factor for the Parkinson’s disease, the 
metabolic syndrome, and some cancers based on direct or indi-
rect measure of high levels of NNMT.53,83,319–333 Too low a dose 
and nicotinamide can be protective for cancers and Parkinson’s, 
so we are proposing a double-edged dosage effect.333 As an 
inducible enzyme, a logical culprit for NNMT overexpression 
is the dose of nicotinamide – even if other factors such as 
caloric restriction, stress, and exercise play their part.334,335 
Background genetic variation in levels may reflect exposure in 
earlier generations – certainly, this is true of species as the 
enzyme is not expressed in herbivores.336 Our original hypoth-
esis for PD was that N-methylnicotinamide resembled the 
dopaminergic toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine) and so may be toxic at high levels even though 
beneficial at lower levels. Part of the jigsaw may be that the 
nicotinamide dose upsets the microbiome that in turn contrib-
utes to the proteotoxicity and affects the nicotinic acid recep-
tor.337 Other metabolites may be nephrotoxic.338

Several other plausible mechanisms for nicotinamide tox-
icity exist whether from excessive inhibition of NAD con-
sumers such as SIRTs or PARPs or consumption of valuable 
methyl groups depleting the methylome and the epigenome 
(Figure 30). Recent evidence shows that nicotinamide pro-
motes adipogenesis probably via SIRT inhibition and adipo-
genic proteins (eg, peroxisome proliferator–activated receptor 
gamma and FABP4 [fatty acid–binding protein 4]) and is 
associated with neonatal adiposity – with surprisingly little 
need for excessive calories or fats.339–342

Question 5: how hard would it be to moderate 
the dose of nicotinamide worldwide or personalise 
dosages?

As dietary manipulations go reducing, the dosage would be 
easy as supplements could be reduced in rich countries with 
no behavioural change necessary. Reducing meat intake may 
also be fairly painless, even if nicotinamide like nicotine has 
some addictive qualities, as it is now practised by the ‘healthy 
wealthy’.

Increasing the dose to those really at risk would also be rela-
tively easy and not very expensive if talking about supplements 
or biofortification of crops. More meat, however, is not as easy 
as it is expensive but may be necessary if nicotinamide is not 
the only factor necessary or is actually dangerous on its own as 
it is a drain on methyl groups. Redistributing meat from those 
eating too much to those eating too little would improve the 
health of both the groups.

Conclusions
Hypo- (subclinical/misdiagnosed pellagra) and hyper-vita-
minosis B3 (nicotinamide overload) may both be far com-
moner than has been supposed and have equally wide 
phenotypes transcending many conventional clinically con-
venient disease categories. The transition from populations of 
low to high intake may explain the extraordinary shifts within 
single generations from Rowntree’s ‘stunted life’ with chronic 
diarrhoeal infections and TB and disproportionally high 
death rates from pathogens – to non-communicable diseases. 
Non-communicable diseases include multiple and expanding 
allergic, inflammatory, and auto-immune diseases along with 
the metabolic syndrome, many cancers and neuropsychiatric 
disease, but in the context of longer lives. Geography per se 
has little to do with these phenomena as they track much 
more closely with poverty and affluence and therefore meat 
intake.343–345 Even the term ‘tropical diseases’ is a misnomer 
as many of these infections were common in Victorian 
England and the pellagra-prone southeastern American 
states a century ago.

Much current effort in rich countries is for personalised 
precision and genetic medicine usually for people who already 
have contracted often rare diseases. Understanding these dis-
ease transitions may be less eye-catching but offers more 
potential for low-tech population-based preventive approaches. 
Personalised NAD-related medicine can be nutritional, rather 
than glitzy genetic manipulation, as several genetic diseases 
may be due to genes that originally evolved at times of nicoti-
namide luxury or thrift.

Predicted tidal waves of dementia may be preventable (too 
little nicotinamide) as may some neuropsychiatric disease, dia-
betes and the metabolic syndrome, some cancers, and Parkinson’s 
disease (too much).346 Nicotinamide overload may not work 
alone but with other hyper-vitaminosis or deficiency states. One 
example might be high nicotinamide but low vitamin D in MS 

Figure 30. The presence of a detoxification pathway suggests that 

nicotinamide can be toxic. A balance may have been required as NAD 

consumers evolved to be an important control mechanism that both 

needs a supply of NAD from nicotinamide and whose enzyme activity is 

affected by nicotinamide. 
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compatible with the known epidemiology and genetics impli-
cating little sun but a lot of meat and known involvement of the 
‘de novo’ pathway.347–349 It will have been partly iatrogenic if 
increasing the dose of nicotinamide with supplements also 
affects caloric hunger and obesity levels and other diseases 
where NNMT induction has been demonstrated.350,351

Phenotypic diversity may be explained by individual varia-
tion whether genetic or from previous environmental exposure 
and in differential sensitivity of cell types to NAD upsets. 
Homeostatic responses that fail or have a longer term price 
whether auto-carnivory, use of symbionts, or inflammatory or 
cancerous tissue that over-express NNMT or NAD consumer 
enzymes or induction of IDO, may also be responsible for clin-
ical heterogeneity. New phenotypes may be occurring. Predicted 
Armageddon as antibiotics rapidly become ineffective from 
multi-drug resistance may be due to not dealing with the fun-
damental nutritional cause. Antibiotics are a strategy that 

encourages mutations and emergent pathogens. Better NAD 
status will reduce the need for broad-spectrum antibiotics by 
reducing virulence. Reliance on symbionts (including TB) also 
means that antibiotic use could trigger pellagra that will prob-
ably not be recognised or treated.352–356 When symbionts are 
relied on too heavily, ‘blooming’ in the gut can lead to dysbiosis 
and pathogen evolution relevant to ‘environmental enteropathy’ 
that may be ‘new version’ pellagra88,347,357 (Figure 31).

All our questions could be answered definitively. The vari-
ances in environmental exposure could be analysed in more 
detail epidemiologically and not just using meat intake as a 
surrogate. Clinical assessments sensitive to the possibility of 
pellagra in at-risk groups could be made. Joint clinical and 
biochemical assessments are the likely way forward closely 
followed by interventional studies.358,359 Biochemical meas-
ures have been available for a long time measuring trypto-
phan levels, or urinary N-methylnicotinamide excretion or 
NNMT levels are enough to confirm pellagra (or nicotina-
mide overload) but have rarely been used in the field. 
Metabolomics could make this more practical. Direct meas-
urement of NAD/NADH or NAD/NADP (nicotinamide 
adenine dinucleotide phosphate) (known as the ‘niacin num-
ber’) ratios could be further developed. Laboratory studies 
could explore nicotinamide overload further as it has been 
assumed that NNMT or high N-methylnicotinamide levels 
are a marker or reaction rather than directly involved in cau-
sation.360 The long lifetime nature of this toxicity with doses 
only 2 to 4 times the upper recommended range would need 
to be recognised in the experimental design (Figure 32).

Moderating the dose of nicotinamide to begin with would 
be easier than most dietary manipulations as supplementation 
is happening where it is least needed in rich countries.361 
Supplementation should be targeted at some 2 billion who are 
already known to be micronutrient deficient (iron, zinc, iodine, 
vitamin A, and folate) including the one-fifth of children who 
are physically or cognitively stunted. The cost has been shown 
to be low relative to the benefits (16-fold) either at an indi-
vidual level where many are robbed of future earnings or by 
population – malnutrition loses 10% of gross domestic product 

Figure 31. An optimal dose of nicotinamide is suggested with trouble at 

the extremes. Transgenerational effects may be marked. Dysbioses that 

begin under these circumstances could put the affluent at risk. Within 

generation effects may be mismatches between early and late life 

exposure with poor nicotinamide in early life predisposing to the 

metabolic syndrome later if the dose increases. TB indicates 

tuberculosis; PD, Parkinson disease.

Figure 32. Nicotinamide overdosage is unlikely to be working alone. It may act in concert with other excess dietary factors known to be involved with 

ageing and pathological pathways and may take many years to express toxicity.
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in many parts of Africa and Asia.362–367 Meat subsidies or 
vouchers or conditional cash transfer systems as part of a meat 
‘entitlement’ reducing meat insecurity would make sense as 
nicotinamide is unlikely to be the only fortification factor 
involved. Adding nicotinamide to diet without methyl groups 
could be problematic as they would be lost as excesses of nico-
tinamide are excreted.

Systems need to be developed that nourish rather than feed, 
and sometimes this means more meat not less and should be 
driven by evidence not ideology.361 At first glance, there is a big 
environmental price to pay for more equitable meat intake. 
Access is as much of an issue as lack of available meat, so redis-
tribution would mitigate many ecological effects. When com-
bined with the demographic argument we made in the 
accompanying article, this may all have to be addressed objec-
tively – unnecessary transgenerational disease or high popula-
tion density is the greater ecological danger to future generations. 
The diet instinctively followed by the ‘healthy-wealthy’ may be 
a win-win diet improving health and human capital and be 
environmentally sustainable (Figure 33).368 In addition, the 
wealthy who make more effort to exercise in safe environments 
and virtual hunting as sport, and consequently control weight, 
may be overcoming not so much evolutionary tendencies to 
gain weight preparing for famines (thrifty genotypes and phe-
notypes) but to overcome a fear of exercise as it was previously 
linked to danger from predators (Figure 34).369–371

Learning from history could help developing countries 
avoid the trap of the Western diet with lack of exercise and 
meat intake ‘overshoots’. There is little sign of such wisdom 
currently as ‘the double burden’ in developing countries reflects 
a break down in the Engel law whereby poor-to-moderate 
wealth transitions classically increased the absolute (but not 

the proportional) amount of income spent on food increasing 
meat intake.372 This economic transition is now more likely to 
lead to increased ‘empty calories’ from ultra-processed foods 
such as sugar-sweetened nicotinamide-enhanced drinks driv-
ing the apparent paradox of diseases of poverty and the meta-
bolic syndrome co-existing in developing countries and 
sometimes in the same individual.
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