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A B S T R A C T   

Coronaviruses (CoVs) are a member of the Coronaviridae family with positive-sense single- stranded RNA. In 
recent years, the CoVs have become a global problem to public health. The immune responses (innate and 
adaptive immunity) are essential for elimination and clearance of CoVs infections, however, uncontrolled im-
mune responses can result in aggravating acute lung injury and significant immunopathology. Gaining profound 
understanding about the interaction between CoVs and the innate and adaptive immune systems could be a 
critical step in the field of treatment. In this review, we present an update on the host innate and adaptive 
immune responses against SARS-CoV, MERS-CoV and newly appeared SARS-CoV-2.   

1. Introduction 

In December 2019, Chinese health authorities identified unusual 
cases of patients with unknown pneumonia in Wuhan City, Hubei 
Province [1,2]. The clinical symptoms of patients included pyrexia, 
cough, fatigue, acute respiratory distress, reduced or normal white 
blood cells, lymphopenia, etc. [1,3]. Subsequent investigations revealed 
that the source of the disease was the seafood wholesale market at which 
a wide range of live or freshly animals (such as poultry, bats, and snakes) 
were slaughtered and sold [1,3]. As it turned out that most cases were 
directly associated with the Huanan seafood market (e.g. sales people or 
market managers), the local health authorities issued an epidemiolog-
ical warning and then the wet market was closed and disinfected on 1 
January 2020 [3]. 

The cause of this unknown disease was temporarily named as the 
new coronavirus-2019 (nCoV-2019) and unofficially referred to as the 
Wuhan coronavirus [2]. Genomic analysis of 2019-nCoV exhibited some 
genomic similarity (79.5 % of the genetic sequence) to the SARS-CoV 
that caused the 2002–2003 pandemic [2,4]. Then the virus renamed 
by the International Committee on Taxonomy of Viruses as SARS-CoV-2 
and WHO officially called this disease as coronavirus disease 2019 
(COVID-19) [2,5]. 

WHO announced the outbreak of COVID-19 as a global public health 
emergency on 30 January 2020, sixth after H1N1 (2009), polio (2014), 
Ebola in West Africa (2014), Zika (2016) and Ebola in the Democratic 
Republic of Congo (2019) [2]. COVID-19 has now been characterized as 
a pandemic. After that this disease was identified in Wuhan, China on 
December 2019, it has rapidly spread around the world, except a few 
small countries and islands. Due to the lack of vaccines and definitive 
treatment, the number of people dying of lab-confirmed COVID-19 are 
being increased and most of them are elderly people aged 65 years or 
more. This is probably due to the fact that they have weak immune 
system and reduced ability to repair the damaged cells [1,6]. 

The understanding of the structure of this novel virus and its inter-
action with immune system is important for the production of drugs and 
vaccines. Thus, this article aimed to review the current knowledge of the 
SARS-CoV-2, and present an update on the host innate and adaptive 
immune responses against SARS-CoV, MERS-CoV and newly appeared 
SARS-CoV-2. 

2. Origin, transmission and structure of SARS-CoV-2 

Although there was some initial speculation that SARS-CoV-2 is a 
laboratory construct and purposefully manipulated by humans, there is 
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not a shred of evidence to support such a theory [2]. Some scientists 
believe that the specific mutation found in the receptor-binding domain 
of the virus is quite different from what has been predicted based on the 
genetic systems. It seems currently impossible to prove or disprove 
theories about the origin of this virus [2,7]. However, what we can say 
without a doubt as to this disease is that it has originated from a Wuhan 
seafood wholesale market where wild animals (such as marmots, birds, 
rabbits, bats and snakes, etc) were sold. Scientists believe that 
SARS-CoV-2 most likely originated in bats, jumped from this animal to 
other animals, and then passed it to humans. Although bats are a 
probable source of this virus, some researchers say that humans are to 
blame for the spread of COVID-19 all over the world [2,3,8]. 

This novel virus, SARS-CoV-2, belongs to coronaviruses, which have 
the crown-like spikes on their surface (“Corona” is Latin for crown or 
halo) [2]. Based on genomic structure, coronaviruses are classified into 
four major subgroup, including alpha, beta, gamma, and delta. Alpha- 
and beta coronaviruses can infect mammals and cause some symptoms 
in pulmonary and gastrointestinal system in humans and other animals, 
while gamma, and delta coronaviruses usually infect birds [2,9]. There 
were only six discovered viruses to infect humans until December of 
2019. Four of them including HCoV-NL63, HCoV-229E, HCoV-OC43 and 
HKU1 usually cause mild respiratory symptoms similar to a common 
cold in immunocompetent people. The other two are SARS-CoV and 
MERS-CoV that are able to cause severe and fatal pulmonary infections, 
and have caused pandemics in 2002 and 2012, respectively [2]. Based 
on genomic sequencing, SARS-CoV shares 79.5 % sequence identity with 
SARS-CoV [4]. Moreover, it was found that similar to SARS-CoV, this 
new virus uses angiotensin-converting enzyme 2 receptor for cell entry. 
These receptors can be found in the in epithelium of lower respiratory 
tract of humans and regulate the cross-species transmission from snake 
to human as well as and human-to-human transmission [1,4]. 

SARS-CoV-2 is a spherical or pleomorphic enveloped particles that 
contain a positive-sense single-stranded RNA with the size of approxi-
mately 29.9 kb [1,10]. Among all known RNA viruses, coronaviruses 
have the largest genomes (26.4–31.7 kb) [1,11]. Like other coronavirus, 
this virus has at least six extra open reading frames (ORFs) in its genome. 
The first ORFs (ORF1a/b) are about two-thirds of the whole genome 
length and encode 16 nsps (nsp1-16). These ORFs produces two poly-
peptides, including p1a and pp1ab. One-third of the genome near the 
3′-terminus encodes four main structural proteins, including the nucle-
ocapsid, spike, envelope, and membrane proteins; the nucleocapsid 
protein holds the genome of the virus, and the three other proteins 
create the viral envelope [11,12]. The structure of coronavirus is shown 

in Fig. 1. The spike proteins, which cover the outer surface of 
SARS-CoV-2, play a key role in determining host cells and enable the 
virus to attach to and fuse with the membrane of them [1,11]. These 
proteins possess a variable receptor-binding domain (RBD) which bind 
to ACE-2 receptors found in the respiratory system, gastrointestinal 
tract, heart, and kidneys [1]. It seems that the RBD of SARS-CoV-2 is a 
mutated version of its most similar virus (RaTG13) and this mutation has 
drastically enhanced the RBD affinity to angiotensin-converting enzyme 
2 (ACE-2), especially in human lung cells [2,7]. After that this virus 
attaches to a host cell, the proteases within host cell begins to cut open 
the spike protein of the virus, exposing a fusion peptide. Then the RNA of 
virus is released into the cell and the cell is forced to produce more 
copies of the virus which are widely disseminated in the body to infect 
more cells [13]. This virus produces some virulence factors that are able 
to inhibit the immune response [14]. 

3. Pathogenesis and clinical manifestation 

People infected with SARS-CoV-2 have been reported a wide range of 
clinical symptoms– from mild illness to acute pneumonia. In general, 
COVID-19 can be studied in three stages: stage 1— asymptomatic state, 
stage 2— Upper airway responses, stage 3— hypoxia and progression to 
acute pneumonia [15,16]. At stage 1 (initial two days of infection), 
patients are asymptomatic but contagious. It seems that the inhaled 
virus binds to epithelial cells in the nasal cavity within two first days and 
begins replicating. This local proliferation of the virus is able to induce a 
limited innate immune response. Although the viral load is usually low 
during early days of infection, SARS-CoV-2 can be detected by nasal and 
throat swabs and this might be valuable for predicting the subsequent 
clinical course [15]. In the next few day (stage 2), the virus migrates 
down into the lower respiratory tract, and induces innate immune re-
sponses more and more. At stage 2, the clinical manifestations of 
COVID-19 disease can be clearly observed [15]. Some innate response 
cytokine (e.g. CXCL10) might be useful prognostic and predictive 
markers for subsequent infectivity and clinical course [17]. These pre-
dictive markers may also help physicians to decide whether patients 
need more aggressive monitoring or not [15]. Usually, more than 80 % 
of infected people have mild symptoms and should be monitored at 
home but nearly 20 % of them progress to stage 3 disease and even 
develop acute pneumonia. According to initial estimates, the mortality 
rate from COVID-19 in the general population is about 2%, but this 
varies noticeably in the elderly and people with underlying disease [15, 
16]. It should be noted that some of infected people are asymptomatic 

Fig. 1. Schematic structure of SARS-CoV-2. SARS-CoV-2 is a spherical or pleomorphic enveloped particles that contain a positive-sense single-stranded RNA with the 
size of approximately 29.9 kb. The nucleocapsid protein holds the genome of the virus, and the three other proteins, including spike, membrane and envelope 
proteins, create the viral envelope. 
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and not detected by health systems because these individuals do not go 
to hospitals and clinics to be examined by doctors. Thus, the fatality and 
morbidity rates need to be revised [15]. At stage 3, SARS-CoV-2 reaches 
the functional or gas exchange unit of the lung, which consists of alve-
olar ducts, alveolar sacs and alveoli [15,18]. It seems that this virus 
preferentially infects alveolar type 2 cells in comparison with other cells 
[19]. The propagation of the virus within type II cells and consequently 
the release of a large number of viral particles cause these cells to un-
dergo apoptosis and die [15]. Most researchers express their views 
concerning the pathobiology of COVID-19 on the assumption that 
SARS-CoV-2 enters the cell similar to SARS-CoV. Overall, there are 
critical gaps in current knowledge of the pathogenesis of COVID-19 that 
need to be discovered. 

4. Innate immune responses to coronavirus infection 

SARS-CoV-2 (COVID-19) is a concern for global public health due to 
the lack of efficacious therapeutic strategies and antiviral vaccine. 
Accumulated evidence showed that patients with COVID-19 have an 
immune response dysregulation which leads to the development of viral 
hyperinflammation [20]. Therefore, evaluating hyperinflammation in 
patients with COVID-19 using laboratory parameters helps to improve 
mortality [20]. In an study with 452 COVID-19 patients in Wuhan, 
increased neutrophil counts with higher neutrophil-to-lymphocyte ratio 
(NLR), increased inflammatory cytokines, i.e., interleukin (IL)-6 and 
tumor necrosis factor (TNF)-α, as well as reduced monocytes, eosino-
phils and basophils were reported [20,21]. In another report 41 
COVID-19 patients from Wuhan, it was demonstrated that increased 
levels of neutrophil in ICU vs non-ICU was statistically significant and 

may associate with disease severity and mortality [22]. However, more 
studies with high number of patients are needed for precise conclusion. 

While SARS-CoV-1 and SARS-CoV-2 mainly use human receptor- 
angiotensin converting enzyme II (ACE2) as a cellular entry receptor, 
MERS-CoV enters the cells using dipeptidyl peptidase 4 (DPP4) as a 
specific receptor [23,24]. ACE2 is presented in lung and gastrointestinal 
tract that contributed to tissue injury [25]. Damage to the lungs seems to 
occur by SARS-CoV destruction of macrophages, alveolar and bronchial 
epithelial cells [25]. However, other receptors may also be involved in 
the virus entering the cell. 

The innate immune cells express pathogen-recognition receptors 
(PRRs) to sense pathogen-associated molecular pattern (PAMP) that 
include C-type lectin receptors, NOD-like receptors (NLRs), RIG-I-like 
receptors (RLRs) and Toll-like receptors (TLRs) [26,27]. RNA viruses, 
such as coronavirus, are recognized by cytosolic and endosomal RNA 
sensors, including RIG-I and TLRs (TLR2, TLR3 and TLR7), respectively 
[28–30]. It is demonstrated that the activation of TLR3 with the 
polyinosinic-polycytidylic acid (poly I:C) can inhibits infection 
related-coronavirus [31]. RNA virus recognition by TLRs and RIG-1 re-
sults in the activation of the transcription factors, nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-kB) and interferon 
regulatory factor 3 (IRF3), leading to translocation into the nucleus, and 
inducing the expression of pro-inflammatory cytokines, chemokines and 
type I IFN [32]. Type 1 IFN production in monocytes/macrophages and 
dendritic cells is shown in details in Fig. 2. 

Type 1 INF is considered to be the first antiviral defensive line. Type I 
IFNs via IFNα/β receptor (IFNAR) activates the janus kinase (JAK), 
signal transducer and activator of transcription (STAT) signaling 
pathway [33,34]. Upon IFNAR signaling, JAK1 and TYK2 phosphorylate 

Fig. 2. Type 1 IFN production in monocytes/ 
macrophages and dendritic cells. TLR4 and 
TLR2 localize on the cell surface, and TLR3, 
TLR7 and TLR8 localize in the endosome. TLRs 
signaling initiate upon ligand binding. TLR2 
and TLR7/8 engagement induce formation of 
MyD88, IRAK1 and IRAK4. IRAKs then activate 
TRAF6 and TAK1. TAK1 leads to the activation 
of MAPKs and IKK complex consisting of 
NEMO, IKKα and IKKβ. The MAPK and IKK 
complex activation lead to AP-1 and NF-kB 
transcription factor activation, respectively. 
TLR7 and TLR8 can also induce IRF3 tran-
scription factor activation. TLR3 requires TRIF 
for IRF3 phosphorylation, which this adaptor 
protein interacts with IKKi, TBK1. TRAM is 
required for signal transduction from TLR4 to 
TRIF, and TRAP is required for signal trans-
duction from TLR4 to MyD88. Finally, tran-
scription factors move into the nucleus and 
stimulate gene expression. IRF3 and IRF7 
induce type 1 IFNs genes expression, and AP-1 
and NF-kB induce pro-inflammatory cytokines 
genes expression.   
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STAT1 and STAT2 molecules, which form a complex with interferon 
regulatory factor (IRF) 9 [33,34]. These complexes were entered into the 
nucleus to stimulate the transcription of IFN-stimulated genes (ISGs) and 
subsequently the expression of antiviral proteins [33,34]. A number of 
ISG products, including IFN-induced transmembrane (IFITMs) proteins 
1, 2, and 3, restrict infection mediated by the SARS-CoV [35,36]. 

However, highly pathogenic coronaviruses, SARS-CoV and MERS- 
CoV, employ various strategies to suppress the antiviral type 1 IFNs 
responses. Upon SARS-CoV and MERS-CoV infection, dendritic cells 
(DCs) and macrophages show low-level expression of IFN-α/β responses 
[37,38]. Using SARS-CoV-infected mice, it is demonstrated that the 
dysregulation of type I IFN induction is responsible for the lung immu-
nopathology [39]. During infection, while plasmacytoid dendritic cells 
(pDCs) are the major source of type I IFNs, various nonstructural pro-
teins of SARS-CoV modulate IFN responses in pDCs and other immune 
cells [37–39]. For SARS-CoV, non-structural proteins, including ORF6 
and nsp1, interfere with the IFN signaling through inhibiting the phos-
phorylation of STAT1 and subsequent STAT1 transport into the nucleus 
[40,41]. In MERS-CoV, the structural (such as M) and non-structural 
(such as ORF 4a, ORF 4b, and ORF 5) proteins are potent IFN antago-
nists [42]. It is revealed that the ORF4a protein counteract the antiviral 
effects of type 1 IFNs via inhibition of the transcription factors, IRF3/7 
and NF-kB, activity [35,42]. 

High serum levels of chemokine and cytokine in patients with severe 
cases of SARS-CoV or MERS-CoV infection suggesting that possible 
enhanced and dysregulated chemokine and cytokine responses could 
promote lung pathology. SARS-CoV infected-macrophages produce the 
chemokines such as chemokine C–C ligand 2 (CCL2)/monocyte 
chemotactic protein (MCP) 1 and C-X-C chemokine (CXCL10)/IFN- γ 
-inducible protein 10 (IP-10) [43]. The up-regulation of CCL7/MCP-3, 
CCL8/MCP-2 and CCL3/macrophage inflammatory protein (MIP)1α 
was also observed in SARS-CoV. These produced chemokines have 
chemotactic activity for macrophages [44]. 

MERS-CoV induces the expression of cytokines (TNF-α, IL-6, IL-12 
and IFN-γ), and chemokines (MCP-1/CCL-2, regulated on activated 
normal T-cell expressed (RANTES)/CCL-5, MIP-1α/CCL-3, IP-10/CXCL- 
10 and IL-8) in human macrophages [45]. The production of these in-
flammatory cytokines and chemokines could be an important factor in 
the MERS-related disease pathogenesis [45]. A increased cytokine pro-
file, including IL-2, IL-7, IFN- γ, IP-10, TNF-α, MIP-1 α and MCP-1, is also 
showed that is related with COVID-19 disease severity [46]. 

Furthermore, eosinophils and natural killer (NK) cells have antiviral 
activity. Eosinophils limit respiratory syncytial virus (RSV)induced lung 
disease through production of nitric oxide (NO) by nitric oxide synthase 
2 (NOS-2) [47]. NK cells express various receptors for MHC class I, 
which can either inhibit or activate cytokine production or 
cell-mediated cytotoxicity [48]. NKG2D (natural-killer group 2, member 
D) is one of activating receptor that enhances cytokine production, 
chemokine secretion and cytolytic activity of NK cells [49]. CXCL10 
induces innate immune responses, including NK cells, following viral 
infection [50]. Walsh et al. demonstrated that in mouse hepatitis virus 
(MHV)-CXCL10-infected mice, increased NK cell IFN-γ production 
within the brain occurs independently of NKG2D [49]. In the liver of 
MHV-infected mice, NKG2D signaling induces antiviral activity and 
control of the virus replication [49]. 

The exact role of innate immunity against COVID-19 is not fully 
understood. Given that individuals with underlying diseases are more 
susceptible than healthy people or young children to severe disease 
because of the low efficacy of innate immune response [19]. It could be 
postulated that innate immune responses play a critical role in the dis-
ease outcome. Furthermore, severe COVID-19 cases had elevated the 
levels of various innate cytokines, including granulocyte colony stimu-
lating factor, IP-10, TNF-α, MIP-1α and MCP-1 [46]. These laboratory 
findings suggested that increasing in pro-inflammatory cytokines may 
be correlated with disease progression, severity and death, so COVID-19 
is considered as a cytokine storm-mediated disease [51]. To initiate this 

complex process, a stimulus such as microbial pathogen damages the 
barrier sites such as lungs or gut [52]. The innate immune cells response 
to tissue damage or microbial invasion by the production of several 
cytokines, including IL-1, IL-6 and TNF [52,53]. These cytokines will 
induce T and NK cells production of pro-inflammatory cytokines, 
including IL-2, GM-CSF and IFN-γ [52,53]. This high levels of 
pro-inflammatory cytokines results in mobilization of various immune 
cells such as neutrophils, macrophages and T cells from the blood cir-
culation into the infected tissue that lead to diffuse alveolar damage, 
capillary damage, vascular barrier damage, multiorgan damage and 
ultimately death [54]. SARS and MERS are also cytokine 
storm-mediated disease, and the levels of pro-inflammatory cytokines in 
patients’ serum were increased similar to COVID-19 [55–57]. 

5. Adaptive immune responses to coronavirus 

T cells, CD4+ and CD8 + T cells play a critical antiviral role through 
promoting the secretion of pathogen-specific antibodies by inducing T- 
dependent B cells and killing the virus infected cells, respectively [58]. 
The importance of CD4 + T cells in controlling SARS-CoV replication 
and disease severity has been shown by using T-cell-deficient BALB/c 
mice [59]. It emphasizes the essential role of CD4 + T cells in primary 
SARS-CoV infection [59]. Although, virus-specific CD4 + T cells are 
important for complete virus clearance, virus-specific memory CD8 + T 
cells have significant role in host protection from lethal SARS-CoV 
infection by multiple cytokines (IFN-γ, TNF-α and IL-2) and cytolytic 
molecules (granzyme B) production [60]. In addition, memory CD8 T 
cell responses against SARS-CoV structural M and N proteins persist in 
recovered individuals up to 11 years with ability of proliferation and 
IFN-γ production even in the absence of the antigen [61], while, in 
COVID-19, total T cell counts, CD4 + and CD8 + T cells are significantly 
reduced [62]. COVID -19 consider as cytokine storm disease, as previ-
ously mentioned [46]. Diao et al. suggested that the cytokines including 
TNF-α, IL-6 and IL-10 may promote necrosis or apoptosis of T cells, and 
leads to their reduction [62]. A Bcl-2 homology domain 3 (BH3)-like 
region located in the C-terminal cytosolic domain of SARS-CoV E protein 
interacts with Bcl-xL and induce T-cell apoptosis [63]. MERS-CoV can 
also induces T cell apoptosis by promoting extrinsic and intrinsic 
apoptosis pathways [64]. Therefore, reduction of T cells induce viral 
survival and prolong the coronavirus-related infection. Additionally, the 
induction of T helper (Th) 17 cytokines, such as IL-17, has been reported 
in MERS-CoV [64]. These Th17 cytokine recruit monocytes and neu-
trophils to the site of inflammation or infection and activate other 
downstream chemokine and cytokine cascades, such as TNF-α, IL-1, 
IL-6, IL8, and MCP-1 [64]. In COVID-19, the number of CCR6+ Th17 
cells increases and promotes the cytokine storm, which results in pul-
monary edema and tissue damage [65]. Wu et al. suggested that 
Fedratinib (a JAK2 inhibitor) can prevents the production of Th17 
related cytokines, including IL-17 and IL-22, and reduces mortality of 
patients with COVID-19. A large amount of pathogenic Th1 cells are also 
seen in the lungs of COVID-19 patients, which causes lung dysfunction 
and quick mortality [23]. CD4 + T cells rapidly become pathogenic Th 1 
lymphocytes and produce granulocyte-colony stimulating factor 
(G-CSF) cytokine [23]. It is also showed that CD8 + T cells from ICU 
patients infected COVID-19 have higher GM-CSF expression compared 
to those from healthy controls and non-ICU patients [23]. GM-CSF in-
volves in the pathogenesis of COVID-19 infection and initiates tissue 
damage [23]. In addition, CD4 + T cells and CD8 + T cells from 
COVID-19 patients are functionally exhausted and express high levels of 
exhaustion markers including Tim-3 and PD-1 on cell surface [62]. 
Taken together, T cells are reduced and exhausted in coronavirus related 
diseases and can be associated with more severe symptoms or mortality. 

Humoral immunity is required for controlling CoVs infections, but 
little is known as yet about it. In SARS-CoV, antibody profile shows a 
typical pattern of IgM and IgG secretion [66]. The SARS-specific IgG 
antibodies can exist for a long time than IgM, indicating that IgG 
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antibodies play a protective role [66]. The innate and adaptive immune 
responses against Coronavirus infection is shown in Fig. 3. 

The convalescent plasma (CP) therapy, including neutralizing anti-
bodies, is not new, and previous evidences showed that the use of CP 
therapy could decrease mortality rates in patients with SARS, MERS, 
avian influenza A (H5N1) and Ebola [67]. However, in COVID-19, the 
efficacy and safety of CP therapy have not fully been known. Ye et al. 
reported outcomes of 6 COVID-19 patients who received 
ABO-compatible CP from recovery patient in Wuhan [68]. CP trans-
fusion in them led to a radiologic improvement and clearance of 
SARS-CoV-2 in the upper respiratory tract [68]. In addition, the 
anti-SARS-CoV-2 antibody titers increased after convalescent plasma 
therapy [68]. Furthermore, no serious adverse effects were reported 
during the treatment [68]. 

In a pilot study one dose of 200 mL CP transfusion increased 
lymphocyte counts and decreased C-reactive protein [69]. CP has also a 
therapeutic potential in critically ill patients with SARS-CoV-2 infection, 
which reduced viral load, improved chest imaging and decreased body 
temperature [70,71]. 

Although there is several studies which have indicated that CP 
therapy could improve laboratory parameters, radiologic and clinical 
features, but still CP transfusion risk, such as aggravating hyper-immune 
attacks is remaining [72,73]. Antibody-dependent enhancement (ADE) 
is an atypical immunological phenomenon where preexisting and 
non-neutralizing coronavirus-specific antibodies increase the pathology 
of SARS-COV-2 disease [74]. ADE is occurred by the engagement of Fcγ 
receptors (FcγRs) expressed on immune cells like macrophages, mono-
cytes and B cells and promote the virus uptake into cells [75]. This 
uptake enhance virus replication by these immune cells and ultimately 
leads to dysregulation of immune responses to COVID-19 and worsening 
clinical symptoms [76]. Therefore, the geographical discrepancy of 
disease severity can be explained by ADE [77]. In addition, several 
adverse reactions, including transfusion-related acute lung, fever, chills, 
anaphylactic reactions and hemolysis, have been reported [72]. How-
ever, overall success in CP therapy leads to the development and use of 
monoclonal antibodies. 

Recently, Jawhara et al. showed that passive immunotherapy with 

immune IgG antibodies combined with antiviral drugs will be effective 
against COVID-19 infection by boosting the immune responses [78]. 
Results from various studies have reported more than 20 kinds of 
monoclonal antibodies (mAbs) [57]. The spike glycoprotein is the best 
target for vaccine designs against coronaviruses [79]. The mAb m336 
competes with the receptor DPP4 for binding to the spike glycoproteins 
and inhibits infection with MERS-CoV [80]. Human mAb m336 reduces 
the viral titer in the respiratory tract [81]. Mice inoculated with Purified 
coronavirus spike protein nanoparticles produce high titer neutralizing 
antibodies against the homologous virus, but these antibodies have no 
cross-protection against the heterologous virus [79]. After MERS-CoV 
infection, marmosets treated with high hyperimmune plasma or the 
mAb m336 show a reduction in disease severity [81]. It is also demon-
strated that vaccination ferrets with recombinant modified vaccinia 
virus Ankara (rMVA) expressing the SARS-CoV spike glycoprotein can 
induce vigorous and rapid neutralizing antibody responses, however the 
strong inflammatory responses have been observed in liver tissue. 
Therefore, the expression of SARS-CoV spike protein is associated with 
enhanced hepatitis [82]. The combination of neutralizing mAbs CR3014 
and CR3022 targeting the receptor-binding domain (RBD) of SARS-CoV 
potentially control viral infection with a high level of safety and efficacy 
[83]. 

So far, no specific antiviral vaccines or drugs regime have been 
developed for SARA-CoV-2 [84]. However, passive immunotherapy 
could be an useful therapeutic option against the COVID-19 pandemic 
until effective and definitive treatment is found [85,86]. Tian et al. re-
ported that CR3022 mAb targeting the RBD of COVID-19 has the po-
tential to control the viral related disease [87]. Therefore, combinations 
of CR3022 with other neutralizing antibodies considered as a candidate 
in the treatment of the COVID-19 [87]. Wang et al. also showed that 
human 47D11 mAb binds to spike protein of SARS-CoV-2 and potently 
inhibits of virus infection [88]. Wu et al. reported four human-origin 
mAbs (H2, H4, B5 and B38,) from a convalescent patient, which all of 
mAbs showed neutralization abilities [89]. H4 and B38 complete block 
the binding between ACE2 and virus S-protein RBD [89]. In contrast, B5 
has partial competition, while H2 did not compete with the RBD-ACE2 
[89]. Given IL-6 plays a critical role in cytokine storm, IL-6 receptor 

Fig. 3. The innate and adaptive immune re-
sponses against coronavirus (CoV) infection. 
The induction of neutrophils, monocytes/mac-
rophages and dendritic cells results in produc-
tion of various pro-inflammatory cytokines 
which so-called “cytokine storm”. This process 
leads to lung immunopathology. Specific 
CD + Tcells, Th1 and Th17, may be activated 
and exacerbate lung injury. Cytotoxic T- 
lymphocyte (CTL) contributes to virus clear-
ance by lysis of infected cells. B cells produce 
virus specific antibodies and neutralize viruses.   
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antagonist tocilizumab may be an effective drug for the treatment of 
severe COVID-19 [90,91]. 

6. Conclusion 

The SARS-CoV was seen in 2002 and spread to 32 countries, then 
MERS-CoV caused problems in the world, and now, the SARS-CoV-2. 
Since CoVs induce serious infectious and spread rapidly, it has become 
a global threat to human health due to the lack of efficacious antiviral 
vaccine and drugs. In recent years, the role of innate and adaptive im-
mune responses to CoVs have been understood. Both immune responses 
induce virus clearance, inhibit virus replication and promote tissue 
repair. However, the immune responses also play an important role in 
SARS-related pathogenicity. As previously mentioned, the SARS-CoV-2 
is referred to as cytokine-mediated disease, therefore, in CoVs, it is 
critical to control immune and inflammatory responses. Until the deep 
understanding of the role of the immune cells, therapeutic strategies for 
the CoVs will be challenging. Achieving this goal is not impossible, and 
even significant achievements have been made in this area. For instance, 
using of interferon-inducing agents could regulate the host responses 
and reduce mortality of SARS-CoV-2, in which IFN-γ combination with 
type 1 IFN maximize the effects [92]. More researches are needed in 
order to achieve the better understanding of the immune responses to 
validate the best therapeutic interventions. 
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S. Baric, Toll-like receptor 3 signaling via TRIF contributes to a protective innate 
immune response to severe acute respiratory syndrome coronavirus infection, 
MBio. 6 (3) (2015) e00638–15. 

[31] L. Mazaleuskaya, R. Veltrop, N. Ikpeze, J. Martin-Garcia, S. Navas-Martin, 
Protective role of Toll-like receptor 3-induced type I interferon in murine 
coronavirus infection of macrophages, Viruses. 4 (5) (2012) 901–923. 

[32] A. Koop, I. Lepenies, O. Braum, P. Davarnia, G. Scherer, H. Fickenscher, 
D. Kabelitz, S. Adam-Klages, Novel splice variants of human IKKε negatively 
regulate IKKε-induced IRF3 and NF-kB activation, Eur. J. Immunol. 41 (1) (2011) 
224–234. 

[33] E. de Wit, N. van Doremalen, D. Falzarano, V. Munster, SARS and MERS: recent 
insights into emerging coronaviruses, Nat. Rev. Microbiol. 14 (8) (2016) 523. 

[34] A. Hosseini, T. Gharibi, F. Marofi, M. Javadian, Z. Babaloo, B. Baradaran, Janus 
kinase inhibitors: a therapeutic strategy for cancer and autoimmune diseases, 
J. Cell. Physiol. 239 (9) (2020). 

[35] E. Kindler, V. Thiel, F. Weber, Interaction of SARS and MERS coronaviruses with 
the antiviral interferon response, Adv. Virus Res., Elsevier (2016) 219–243. 

[36] I.-C. Huang, C.C. Bailey, J.L. Weyer, S.R. Radoshitzky, M.M. Becker, J.J. Chiang, A. 
L. Brass, A.A. Ahmed, X. Chi, L. Dong, Distinct patterns of IFITM-mediated 
restriction of filoviruses, SARS coronavirus, and influenza A virus, PLoS Pathog. 7 
(1) (2011) e1001258. 

[37] R. Channappanavar, S. Perlman, Pathogenic human coronavirus infections: causes 
and consequences of cytokine storm and immunopathology, Semin. 
Immunopathol. 39 (5) (2017) 529–539. 
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