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INTRODUCTION

In the search for reliable and, possibly, specific biomarkers for neuropsychiatric disorders, growing
evidence has demonstrated that biosynthesis of neuroactive steroids and the endocannabinoid
system are involved in the neuropathology of post-traumatic stress disorder (PTSD) and major
depressive disorder (Uzunova et al., 1998; Rasmusson et al., 2006; reviewed in Locci and Pinna,
2017a). Although, undisputable progress has been made to assess validity of biomarkers for
psychiatric disorders, the topic still remains underdeveloped as compared to other fields of
neuroscience (Fernandes et al., 2017). The diagnosis of psychiatric disorders still relies on subjective
measures centered on the DSM-5 criteria which have several shortcomings (Brewin et al., 2017).
Psychiatric conditions are poorly understood and there is a wide heterogeneity in how illness
manifests in several individuals. Furthermore, self-assessment of one’s own feelings can be biased,
ill-defined, and difficult, making psychological diagnoses unreliable and may lead to treatment
inefficacy. Biomarkers discovery would significantly improve treatment matching. Thus, searching
for potential biomarkers to guide precision medicine in the treatment of PTSD, and to increase
the success of clinical trials and prompt the development of novel and specific treatments, is
required. To aid this search, more sophisticated methodological tools and validated animal models
has also become essential to reliably correlate behavioral changes with neurochemical alterations
(reviewed in Ngounou Wetie et al., 2013). The overlap of symptoms and the comorbidity with
other psychiatric disorders such as major depressive disorder, anxiety spectrum disorders, and
even suicidal ideation (Franklin et al., 2017), suggest a bio-signature for PTSD should include
the relation of numerous biomarkers rather than having only a few (Locci and Pinna, 2017a). A
refined approach to more specifically “bio-define” PTSD can be to establish a biomarker axis or in
other words, to assess the relation of various biomarkers, which fluctuate in concert and correlate
uniquely with PTSD behavioral modifications. Insofar, a biomarker axis may provide a higher
accuracy in the diagnosis of the disorder with benefits for prediction in PTSD treatment response
and relapse (Locci et al., 2018; Pinna and Izumi, 2018). As a matter of fact, the “gold standard”
treatment for PTSD and depression, the selective serotonin reuptake inhibitors (SSRIs), improve
only half of the treatment-seeking patients and they are associated with severe side-effects (Golden
et al., 2002; Rush et al., 2006; Kemp et al., 2008; reviewed in Bernardy and Friedman, 2017). This
also suggests these psychiatric disorders are complex, multifaceted diseases arising from multiple
and diverse neurobiological backgrounds and therefore, symptoms may not always recapitulate to
a serotonergic deficit and administering an SSRI may not always improve symptoms. Unveiling
reliable biomarkers is also a necessity for patient stratification in treatment selection as well as
for drug development through clinical trials. The development of state-of-the-art technologies
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Pinna Biomarker Axis for PTSD

and methodological rigor are essential to allow for the discovery
of more reliable biomarkers in psychiatry. Employing the gas
chromatography-mass spectrometry (GC-MS) to achieve this
goal is highly innovative and provides reliable information based
on a powerful technology with high sensitivity and unsurpassed
structure selectivity (Uzunov et al., 1996; Pinna et al., 2000).
Hence, by applying the GC-MS measurements of neuroactive
steroids in serum, plasma, CSF and post-mortem brain, in the
past decade, we have shed light in the fundamental role of
neuroactive steroids in patients with neuropsychiatric disorders
(Rasmusson et al., 2006, 2017; Agis-Balboa et al., 2014; Pineles
et al., 2018; reviewed in Locci and Pinna, 2017a).

The biosynthesis of allopregnanolone, a positive allosteric
modulator of GABA’s action at GABAA receptors has been
found deficient in a number of neuropsychopathologies,
including epilepsy (e.g., PHDH19), major depression, PTSD,
perceived social isolation, post-partum depression, premenstrual
syndrome, and anorexia nervosa or obesity complicated by
anxiety and depression symptoms in women (Romeo et al., 1998;
Uzunova et al., 1998; Rasmusson et al., 2006, 2018; Nemeroff,
2008; Lovick, 2013; Trivisano et al., 2017; Dichtel et al., 2018;
Pineles et al., 2018). Therapeutic measures aimed at reinstating
normal allopregnanolone levels in deficient-patients correlates
with improved symptoms (Kanes et al., 2017). The question arises
as to whether allopregnanolone biosynthesis per se is a reliable
biomarker to predict, diagnose and instruct treatment selection
of patients or whether its relation with neurotransmitter systems
(GABAA and NMDA receptors), stimulation of neurotropic
factors (e.g., BDNF), and/or crosstalk with the endocannabinoid
system (e.g., PPAR-α) may provide a valuable biomarker axis
with a higher disorder-selectivity. This analysis includes both
neurosteroids that are positive allosteric modulators of GABAA

receptors (Pinna et al., 2000; Belelli and Lambert, 2005), such
as allopregnanolone and pregnanolone and their sulfated forms
that are inhibitors of NMDA-mediated tonic neurotransmission,
which results in neuroprotection (Vyklicky et al., 2016).

The novel discovery that the endocannabinoid system
regulates the biosynthesis of neurosteroids, including
allopregnanolone has recently opened the field for assessing
valuable PTSD biomarkers at the interface of these neuronal
systems. In recent years, cannabinoid-based agents have
become an integral part of drug discovery for PTSD treatment
(Ruehle et al., 2012; Neumeister et al., 2014). The impact of
the endocannabinoid system is under-scored by the density
of receptors in glutamatergic neurons of emotion-relevant
areas, including the the amygdaloid complex, the hippocampus
and the frontal cortex (Katona, 2009). Synthetic cannabinoid
receptor antagonists or knockouts enhance fear acquisition
and impair fear extinction, a core feature of PTSD (Reich
et al., 2008; Papini et al., 2015). In addition to the well
assessed role of the endocannabinoid, anandamide (AEA)
or 2-arachidonoyl-glycerol (2-AG) both in neuropsychiatric
disorders and animal models of stress (Chhatwal et al., 2005;
Umathe et al., 2011; Dubreucq et al., 2012), compelling evidence
indicates stimulation of the intracellular endocannabinoid target,
peroxisome-proliferator activated receptor (PPAR)-α by its
endogenous neuromodulator, N-palmitoylethanolamine (PEA)

engages the biosynthesis of neurosteroids to modulate emotional
behavior (Locci and Pinna, 2017b; Locci et al., 2018) (please see
Figure 1 for a graphic representation).

This unforeseen behavioral and neurosteroidogenic function
of PPAR-α, formally known to regulate pathophysiological
functions, including inflammation and oxidative stress, opens the
field for potential novel biomarkers for PTSD.

This article will discuss whether new discoveries in the field
support a biomarker role for allopregnanolone biosynthesis and
the endocannabinoid system for stress-induced disorders with
focus on PTSD. The strategy of assessing a biomarker axis, which
indicates the relation of various inter-related neurobiological
deficits for one disorder (Figure 2), may help for diagnosis
accuracy and for designing successful individualized treatments.

NEUROSTEROID ACTION AT GABAA AND
NMDA RECEPTORS

Sulfated or unconjugated neuroactive steroids modulate
ionotropic amino acid neurotransmitter receptors, including
GABAA and NMDA receptors. The GABAA receptor offers two
binding residues that express affinity for allopregnanolone and
unconjugated congeners (e.g., pregnanolone) that act as potent
positive allosteric modulators of the action of GABA at GABAA

receptors. One is located at the interface of the α/β subunits,
and the other is within the cavity of α subunits (Hosie et al.,
2006). The α,β,γ GABAA receptor subtype is the most frequent
synaptic configuration and is highly sensitive to benzodiazepines
but shows lower sensitivity to GABA and neurosteroids (Nusser
and Mody, 2002). The α,β,δ GABAA receptor subtype expressed
in the extrasynaptic region is benzodiazepine-insensitive,
show low efficacy for GABA, but neurosteroids increase its
agonist efficacy (Stell et al., 2003; Shu et al., 2012). This
receptor combination shows high efficacy for neurosteroids
(Brown et al., 2002; Nusser and Mody, 2002; Wohlfarth et al.,
2002; Figure 1). Sulfated neurosteroids such as pregnenolone
sulfate, dehydroepiandrosterone sulfate, pregnanolone sulfate,
and allopregnanolone sulfate may function as endogenous
neuromodulators by inhibiting GABAA receptors, or depending
on the receptor conformation and the sulfated neuroactive
steroid examined, by activating or inhibiting NMDA-mediated
neurotransmission (Park-Chung et al., 1999). Sulfation at C3 is
essential to reverse the direction of modulation from positive
to negative in GABAA receptors. Steroid negative and positive
modulators act through distinct sites, which implies that steroid
negative and positive modulators can act independently or
coordinately to modulate the flavor of GABAergic-mediated
inhibitory neurotransmission (reviewed in Smith et al., 2014).
While, micromolar concentrations of pregnenolone sulfate
negatively modulate GABAA receptors, pregnenolone sulfate can
negatively or positively modulate NMDA receptors, depending
on the receptor subunits expressed (Malayev et al., 2002; Smith
et al., 2014). For instance, pregnenolone sulfate potentiates
NMDA receptors that contain NR2A and NR2B subunits, but
negatively modulates NR2C and NR2D-containing receptors
(Malayev et al., 2002). Recent studies showed that pregnanolone
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FIGURE 1 | The endocannabinoid and neurosteroid systems cross-talk regulates emotional behavior. The neurosteroids, allopregnanolone (Allo) and its equipotent

isomer pregnanolone (PA) are primarily synthesized in glutamatergic corticolimbic neurons and upon secretion; they may act at GABAA receptors located on cell

bodies or dendrites of distal pyramidal neurons (Arrow 1). They may also act at GABAA receptors located on glutamatergic neurons’ dendrites or cell bodies by an

autocrine mechanism (Arrow 2), or may access and act at the intracellular sites of GABAA receptors located in glutamatergic neurons that produced allopregnanolone

itself (Arrow 3) (Agís-Balboa et al., 2006, 2007; Pinna et al., 2008). Allopregnanolone plays a central neuromodulatory role in facilitating the action of GABA at GABAA
receptors (a primary target of anxiolytics) and in the fine-tuning of the receptor for agonists and GABAmimetic agents (Pinna et al., 2000). The finding that

allopregnanolone facilitates the efficacy of GABAA receptor allosteric modulators substantiates its endogenous physiological relevance (Pinna et al., 2000, 2008;

Guidotti et al., 2001). Importantly, GABAA receptors composed by α,β,γ subunits are the most common configuration in the synaptic membranes and they are

responsible for the inhibitory phasic currents. These receptors are benzodiazepine-sensitive but show lower sensitivity to GABA and allopregnanolone (Nusser and

Mody, 2002). The GABAA receptors including α,β,δ subtypes are mostly extrasynaptic and mediate inhibitory tonic currents. Of note, they are not sensitive to

benzodiazepines and show low efficacy for GABA, however, allopregnanolone increase their efficacy (Stell et al., 2003; Shu et al., 2012). The efficacy of GABAergic

neurosteroids is greatly enhanced for this receptor combination (Brown et al., 2002; Nusser and Mody, 2002; Wohlfarth et al., 2002). Remarkably, protracted stress

favors a GABAA receptor composition with high sensitivity for allopregnanolone and its analogs (Locci and Pinna, 2017a). Following the action of sulphotransferase,

allopregnanolone, and pregnanolone can be transformed into allopregnanolone sulfate (Allo-S) and pregnanolone sulfate (PAS). These sulfated steroids can be

measured by gas chromatography-mass spectrometry in serum, CSF, and brain of patients or rodents in concentrations consistent with a physiological role in

modulating neurotransmitter systems (Smith et al., 2014; Locci and Pinna, 2017b). Recently, pregnanolone sulfate has been shown to inhibit NMDA receptors.

Pregnanolone sulfate can accumulate in plasma membranes and may accesses binding sites that are located at NMDA receptors (Borovska et al., 2012). Importantly,

pregnanolone sulfate, and probably allopregnanolone sulfate, is highly potent at inhibiting tonic rather than synaptically mediated NMDA receptor neurotransmissions.

While synaptic NMDA receptors play a pivotal role in synaptic plasticity, learning and memory, as well as in synaptogenesis, tonic-mediated NMDA receptor

neurotransmission is mostly involved with excitotoxicity. Thus, the effects of pregnanolone sulfate negative modulation of tonic-mediated NMDA receptor

neurotransmission have relevance for neuroprotection (Vyklicky et al., 2016). By this mechanism, these allopregnanolone and pregnanolone sulfated derivatives may

play a role in the regulation of cognitive processes and of emotional behavior (reviewed in Locci and Pinna, 2017a). There is growing evidence that the intracellular

peroxisome proliferator-activated receptor (PPAR-α) is also a cannabinoid target (depicted on the bottom right). PPAR-α heterodimerize with the retinoid X receptor

(RXR) and binds to the consensus regions on the target gene promoters and initiates transcription (Neumeister, 2013). Given that endoannabinoids activate PPAR-α

(Marsicano et al., 2002; Pistis and Melis, 2010), the activation of these nuclear receptors represents a novel mechanism by which cannabinoids may modulate

behavior. The endocannabinoid congener, N-palmitoylethanolamine (PEA) is a PPAR-α endogenous agonist, which is decreased in PTSD patients (Wilker et al., 2016).

Recent preclinical findings showed that supplementing PEA in rodent PTSD models improves emotional behavior by enhancing allopregnanolone biosynthesis in

corticolimbic glutamatergic neurons. This effect is mimicked by PPAR-α agonists and prevented by allopregnanolone biosynthetic enzyme blockers and by deletion of

the PPAR-α gene (Locci and Pinna, 2017b). Thus, anxiolytic, anti-aggressive and anti-fear effects of PEA and synthetic PPAR-α agonists may relate to an induction of

corticolimbic allopregnanolone’s biosynthetic enzymes. This may result in potentiation of GABAA receptor and, possibly, in an inhibition of tonic-mediated NMDA

signal transduction associated with improved behavioral dysfunction. Stress effects on PEA levels and probably expression of PPAR-α may result in the

downregulation of allopregnanolone’s biosynthetic enzyme expression and allopregnanolone levels. The interface of the endocannabinoid and neurosteroid systems

may provide an important biomarker axis to selectively predict, diagnose, and establish the best individualized treatment selection for PTSD patients.
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FIGURE 2 | Biomarker axis at the interface of the endocannabinoid and

neurosteroid systems. In animal models of PTSD, protracted stress results in

the downregulation of allopregnanolone biosynthetic enzymes (e.g.,

5α-reductase type I, 5α-RI) and allopregnanolone concentrations in

corticolimbic glutamatergic neurons of the frontal cortex, hippocampus, and

basolateral amygdala. This allopregnanolone decrease correlates with

behavioral dysfunction, such as increased aggression, enhanced contextual

fear responses and anxiety-like behavior (Pinna et al., 2003; Pibiri et al., 2008).

Supplying allopregnanolone or stimulating its biosynthesis decreases

anxiety-like behavior, aggression and fear responses (Pinna, 2013; Pinna and

Rasmusson, 2014). Stress may also result in changes in GABAA receptor

subunit expression (Pinna et al., 2006; reviewed in Locci and Pinna, 2017a)

with increased α4, α5, and δ subunits and decreased α1, α2, and γ2, which

result in down-regulated benzodiazepine binding sites and inefficacy of

benzodiazepine pharmacological action (Pinna et al., 2006; Nin et al., 2011b).

Protracted stress results in increased GABAA receptor subunits, including

α4−5,β,δ highly sensitivity for allopregnanolone (Locci and Pinna, 2017a). Both

allopregnanolone biosynthesis downregulation and decreased benzodiazepine

binding sites have been reported in PTSD patients (Rasmusson et al., 2006,

2018; Geuze et al., 2008). Thus, the combination of downregulation of

allopregnanolone biosynthesis, changes in GABAA receptor subunit

expression, and lack of benzodiazepine pharmacological action are peculiar

changes observed in PTSD that may provide a selective biomarker axis for this

disorder. Stress may affect PEA levels and expression of PPAR-α, which in turn

may downregulate allopregnanolone concentrations. Thus, the

PPAR-α-allopregnanolone axis may provide further biomarker candidates to

support selection of the best individualized precision medicine for PTSD. Allo,

allopregnanolone; GABA, γ-aminobutyric acid; PEA, N-palmitoylethanolamine;

PPAR-α, peroxisome-proliferator activated receptor-α; StAR, steroidogenic

acute regulatory protein; TSPO, 18 kDa translocator protein.

sulfate has a potent inhibitory action at tonic rather than
synaptically-activated NMDA receptors, which provides
neuroprotection and possibly improves emotional behavior
and cognition (Vyklicky et al., 2016). This feature is relevant
for developing a novel class of steroid-based NMDA-inhibitors
devoid of the psychotomimetic effects that characterize classical
NMDA receptor inhibitors, including ketamine. While GABAA

receptor subunit expression during protracted stress has been
previously investigated (discussed below), the role and action
of sulfated pregnanolone, pregnenolone, allopregnanolone,
and the expression of NMDA receptor subunits in
PTSD patients and in rodent stress models, still warrants
elucidation.

The Neurosteroid and Endocannabinoid
Crosstalk
Intriguingly, studies conducted in cell cultures, brainstem
and spinal cord showed the endocannabinoid, PEA binding
at the ligand-activated nuclear receptor, PPAR-α stimulates
allopregnanolone biosynthesis and potentiates pentobarbital-
induced sedation (Sasso et al., 2010, 2012; Raso et al., 2011).
These observations suggest that PPAR-α may play a role in the
regulation of emotions by inducing neurosteroidogenesis in
corticolimbic neurons following binding with its endogenous
ligand, PEA, or synthetic agonists. Whereas the classic
cannabinoid receptor type 1 (CB1) has been shown to regulate
emotions and stress responses, PPAR-α’s role on emotions
remains poorly understood (Riebe and Wotjak, 2011; Häring
et al., 2012). The relevance of the endocannabinoid system in
behavior is highlighted by expression of CB1 and PPAR-α in
glutamatergic neurons of emotion-relevant areas that have been
identified by brain imaging to be critical in PTSD (amygdala,
hippocampus, frontal cortex) (Moreno et al., 2004; Lo Verme
et al., 2005; Shin et al., 2006; D’Agostino, 2007; D’Agostino
et al., 2009; Katona, 2009; Petrosino and Di Marzo, 2017).
Moreover, evidence suggests CB1 disruption leads to impaired
fear extinction (Reich et al., 2008), depressive- and anxiety-
like behavior, while agonists, like AEA, induce anxiolysis and
improve fear responses (Hill and Patel, 2013). Current thought
suggests that the effects of AEA at CB1 account for the majority
of anti-fear effects of endocannabinoids (Marsicano et al., 2002;
Viveros et al., 2005; Kamprath et al., 2006; Thiemann et al.,
2008; Jacob et al., 2012), however this view seems no longer
tenable (Pistis and Melis, 2010). In addition to these cell-surface
cannabinoid receptors (O’Sullivan, 2007), there is growing
evidence that PPAR-α’s activation represents a novel mechanism
by which cannabinoids modulate behavior. Stimulation of PPAR-
α by PEA or synthetic PPAR-α agonists was recently shown to
elevate corticolimbic allopregnanolone levels in hippocampus,
amygdala, frontal cortex and in olfactory bulb, which correlated
with improvement of PTSD-like behavior in socially isolated
mice (Locci and Pinna, 2017a). PEA facilitates contextual
fear extinction and fear extinction retention and induces
anti-aggressive, anxiolytic, and antidepressant-like effects in
socially isolated mice (Locci and Pinna, 2017b; Locci et al.,
2017). PPAR-α synthetic agonists normalized allopregnanolone
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levels and improved behavior, whereas antagonism at PPAR-
α, inhibition of allopregnanolone biosynthetic enzymes, or
PPAR-α KO mice prevented both PEA-induced behavior
and its neurosteroidogenic effects (Locci and Pinna, 2017b).
While the role of PPAR-α in neuropsychiatric disorders is
just emerging, studies in the field suggest serum PEA and
oleoylethanolamide (OEA) concentrations increase after acute
social stressor (Dlugos, 2012) and decrease following recovery
(Hill et al., 2009a). Stress evokes fast induction of fatty acid amide
hydrolase (FAAH), which reduces PEA and AEA levels (Patel
et al., 2005; Hill et al., 2009b). In PTSD patients, symptoms are
inversely correlated with reduced hair levels of PEA, OEA and
stearoylethanolamide (SEA) in both males and females (Wilker
et al., 2016). PEA adjunctive therapy to citalopram improves
symptoms in depressed patients (Ghazizadeh-Hashemi, 2018).
Furthermore, intense workouts increase PEA and OEA levels
and improve depression and PTSD (Heyman, 2012). In rodents,
exposure to predator stressors reduces cardiac PEA and OEA
levels (Holman et al., 2014), but, antidepressant-like effects
are induced by increasing PEA and OEA (Adamczyk et al.,
2008; Umathe et al., 2011; Melis et al., 2013). Collectively, the
crosstalk between the endocannabinoid system and neurosteroid
biosynthesis during stress may unveil biomarker axis uniquely
altered in specific stress-induced mood disorders.

BIOMARKERS AND TREATMENT OPTIONS
FOR PTSD AT THE INTERFACE OF THE
ENDOCANNABINOID AND
NEUROSTEROID AXIS

Psychiatric disorders, such as PTSD, are not currently amenable
to objective neurobiological determinations as is routine practice
in the diagnosis and treatment of other medical conditions. This
is most likely due to the general complexity and multifactorial
origins of these disorders and the difficulty to establish a
consistent bio-signature. While no biomarkers for PTSD
have to date been firmly assessed with diagnostic validity,
a consistent progress in the field has been done. Biomarker
candidates for PTSD have been proposed but often they share
overlaps with other psychiatric disorders with similar symptoms
and that are currently treated with same drugs. Indeed, the
first-choice pharmacological treatments for PTSD, the SSRIs,
act through multiple molecular mechanisms other than by
inhibiting serotonin reuptake. These mechanisms include the
stimulation of neurosteroid and endocannabinoid biosynthesis
and neurotrophic factors, such as BDNF, which are found
deficient in PTSD. Increasing allopregnanolone levels is also
associated with increased BDNF expression (Nin et al., 2011a).
Collectively, these findings have contributed to improve our
understanding of the psychobiological abnormalities associated
with PTSD and promote the development of novel targeted
treatment options. For instance, the correlation between
the impairment of neurosteroid biosynthesis and behavioral
modifications in neuropsychiatric disorders has been the focus
of several studies (van Broekhoven and Verkes, 2003; reviewed
in Pinna, 2013; Agis-Balboa et al., 2014; Locci and Pinna,

2017a). A reduction in the content of the GABAergic modulator
allopregnanolone and its equipotent isomer pregnanolone
was reported in cerebrospinal fluid (CSF) and serum of major
depression and PTSD patients (Romeo et al., 1998; Uzunova
et al., 1998; Rasmusson et al., 2006, 2016; Pineles et al., 2018). A
negative correlation between CSF allopregnanolone levels and
PTSD symptoms was more recently confirmed in male patients
(Rasmusson et al., 2018). Other clinical studies support the
significance of allopregnanolone biosynthesis as a biomarker
of mood disorders (Uzunova et al., 1998; Agis-Balboa et al.,
2014; reviewed in Zorumski et al., 2013; Schüle et al., 2014;
Locci and Pinna, 2017a) with finding showing decreased
allopregnanolone levels in postpartum depression (Nemeroff,
2008), under treatment with finasteride, an allopregnanolone
biosynthetic enzyme blocker (Altomare and Capella, 2002;
Caruso, 2015; Welk et al., 2017), and with anorexia nervosa or
obesity complicated by anxiety and depression (Dichtel et al.,
2018). Intriguingly, SSRI treatments normalize plasma, CSF, and
brain allopregnanolone content in association with improvement
of symptoms in responders only (Romeo et al., 1998; Uzunova
et al., 1998; Agis-Balboa et al., 2014). These findings are in
support of the role of allopregnanolone in the mechanisms of
SSRIs’ anxiolytic effects (Pinna, 2015). The downregulation of
neurosteroid levels found in PTSD and depressed patients can be
modeled in rodents exposed to protracted stress, including the
socially-isolated mouse. Allopregnanolone is produced in brain
corticolimbic neurons (Figure 1) and a reduction of its levels
by prolonged social isolation (Agís-Balboa et al., 2006, 2007) or
exposure to single prolonged stressors, results in development
of anxiety-like behavior, aggression and enhanced contextual
fear conditioning responses associated with impairment of fear
extinction and elevated spontaneous fear responses at recall
(Pinna et al., 2003; Pibiri et al., 2008; Pinna and Rasmusson,
2014; Qiu et al., 2015). These preclinical studies further support
allopregnanolone as a putative biomarker for stress-induced
emotional modification, such as exaggerated fear responses
and impaired fear extinction, a hallmark in PTSD (Pibiri et al.,
2008; Pinna et al., 2008; Pinna and Rasmusson, 2012). This
evidence also suggests that new therapeutic approaches should
counteract the downregulation of neurosteroid biosynthesis
to improve symptoms in PTSD patients. In recent phase 3
clinical trials, intravenous allopregnanolone (brexanolone or
SAGE-547) or an oral analog (SAGE-217) showed a rapid and
long-lasting remission of post-partum depression and major
depressive disorder symptoms, conditions highly comorbid
with PTSD (Kanes et al., 2017; http://investor.sagerx.com/news-
releases/news-release-details/sage-announces-pivotal-phase-3-
trial-status-sage-217-major). If successfully developed, SAGE-
217 will be the first durable, rapid-acting, oral, short-course
treatment for mood disorders with potential application for
PTSD treatment. Stress tremendously affects the expression
of GABAA receptor subunits (Pinna et al., 2006; reviewed
in Locci and Pinna, 2017a). After social isolation, the α4,
α5, and δ subunit expression was increased, and the α1, α2,
and γ2 were significantly decreased in corticolimbic areas.
These changes result in decreased benzodiazepine recognition
sites and lower pharmacological response to benzodiazepines
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(Pinna et al., 2006). Remarkably, protracted stress favors
a GABAA receptor composition with high sensitivity for
allopregnanolone and its analogs (Locci et al., 2017; reviewed
in Locci and Pinna, 2017a). Clinical findings support lower
benzodiazepine recognition site binding in brain of PTSD
patients in association with benzodiazepine-insensitivity (Geuze
et al., 2008). Altogether, these findings suggest that isolation
stress results in: (i) changes in GABAA receptor subunit
composition; (ii) downregulated neurosteroidogenesis; and
(iii) lack of response to benzodiazepines, which may provide a
unique biomarker axis for PTSD (Figure 2). Allopregnanolone,
analogs or stimulation of allopregnanolone biosynthesis may
be a valuable therapeutic strategy for stress-induced psychiatric
disorders, characterized by benzodiazepine-inefficacy and poor
response to SSRIs. The pharmacological profile of SSRIs on
stimulation of neurotropic factors, including the brain-derived
neurotrophic factor (BDNF), via stimulation of allopregnanolone
biosynthesis is an additional important mechanism to consider
when establishing biomarkers for PTSD. BDNF expression
decrease in PTSD patients is associated with symptom severity.
In the socially isolated mouse, fluoxetine improves behavior by
elevating the corticolimbic levels of allopregnanolone and BDNF
expression, independently from the action of these drugs on
serotonin reuptake inhibition. This and other evidence suggest
that neurosteroid biosynthesis and BDNF expression may be
interrelated (Nin et al., 2011a; Frye et al., 2014), and this may
provide further support for biomarker selection.

Hence, biomarkers that instruct which treatment would be
most effective for a patient is expected to considerably reduce
non-responders and non-completers rate. Discovering new
targets and agents to stimulate allopregnanolone biosynthesis
is pivotal in this process. While more research is required to
elucidate the interaction between the endocannabinoid system
and allopregnanolone biosynthesis and specifically, following
activation of PPAR-α, undoubtedly their cross-talk offers a
unique opportunity to assess a biomarker axis that encompasses
these two systems (Figure 2). A better assessment can be done
following clarification of how stress affects PPAR-α expression
and function. The concentrations of its main endogenous
modulators, PEA, OEA, and SEA, which were found decreased in
hair of PTSD patients, should be confirmed systemically in serum
and CSF of patients. Preclinical studies should also verify whether
their biosynthesis is altered in brain of rodent models of stress-
induced behavioral deficits. Furthermore, methods development
to simultaneously determine both endocannabinoid (AEA),
cannabinoid-like (PEA) and neurosteroid (allopregnanolone)
concentrations in same samples will consistently enhance the
understanding on how the two systems are coordinated in
neuropsychiatric disorders.

Both endocannabinoids and neurosteroids can be measured
by GC-MS, however, presently there is no method that
can determine them simultaneously in the same samples.
Our laboratory established GC-MS methods to determine
neurosteroids and their sulfates in human and rodent samples
and we are currently developing new methods to include
the quantification of endocannabinoids with demonstrated

involvement in the pathophysiology of PTSD. Hence, these
studies will clarify whether allopregnanolone levels down-
regulation is causally linked to a PPAR-α expression down-
regulation and/or endocannabinoid concentrations. The goal is
to provide a reliable bio-signature that may uniquely define
neurobiological alteration in PTSD and shows diagnostic validity.

While many aspects that relate to the endocannabinoid and
neurosteroid cross-talk remain presently obscure, our current
findings highlight the potential for: (i) assessing novel biomarkers
to predict, diagnose, and treat PTSD at the interface of the PPAR-
α-allopregnanolone axis; and (ii) repurposing FDA-approved
PPAR-α agonists for the treatment of PTSD after positive clinical
trials. Very few drugs are direct agonists of PPAR-α, and none
have been tested for their potential effects in fear responses.
However, one class of drugs, the fibrates are fibric acid derivatives
that are prescribed to lower plasma lipids and triglyceride levels
and are synthetic PPAR-α agonists that may be exploited in
rodent models of PTSD to improve behavioral deficits.

CONCLUSIONS

Progress in assessing biomarkers to predict PTSD and
its treatment response will guide the future of novel
PTSD medications that may be designed to improve
neurotransmission (GABA, NMDA), and neuroendocrinologic
(allopregnanolone biosynthesis) and anti-inflammatory (PPAR-
α) responses. Research supports precision medicine for PTSD
designed to stimulate neurosteroidogenesis after assessing
in subpopulations of PTSD patients a downregulation of
allopregnanolone biosynthesis. This can be achieved by acting at
neurosteroidogenic targets or by mimicking allopregnanolone’s
function (e.g., analogs). Several neuronal targets to enhance
steroidogenesis have recently been discovered and these include
the endocannabinoid target PPAR-α. The crosstalk between the
endocannabinoid system and the biosynthesis of neurosteroids,
involving their targeted receptors or the biosynthetic enzymes
promises to provide unique bio-signatures for stress-induced
disorders.

Collectively, advances in the field suggest biomarker-based
diagnosis and treatments for PTSD that encompass the
neurosteroid and endocannabinoid systems may not be a far
reach and these may provide a pivotal complement to the
current practice of assessing the disorder based on self-reported
symptoms and psychiatrist assessments.
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