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Isotope effect on the circular 
dichroism spectrum of methyl 
α-D-glucopyranoside in aqueous 
solution
Yusuke Kanematsu1, Yukiko Kamiya2, Koichi Matsuo3, Kunihiko Gekko3, Koichi Kato4 & 
Masanori Tachikawa1

H/D isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous 
solution has been analyzed by multicomponent density functional theory calculations using the 
polarizable continuum model. By comparing the computational spectra with the corresponding 
experimental spectrum obtained with a vacuum-ultraviolet circular dichroism spectrophotometer, 
it was demonstrated that the isotope effect provides insights not only into the isotopic difference of 
the intramolecular interactions of the solutes, but also into that of the solute–solvent intermolecular 
interaction.

Circular dichroism (CD) is one of the most utilized spectroscopic properties for the assignment of the biomolecule 
structure. Following the recent development of spectroscopic and computational techniques, the combination 
of measurement and the computation of CD spectra has become an increasingly important approach for the 
detailed elucidation of molecular structure. Beside proteins and nucleic acids, CD has recently been applied for 
structural analysis of carbohydrates using vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer1–5. 
For example, Matsuo et al. compared the experimental CD spectrum of methyl α -D-glucopyranoside (methyl 
α -D-Glc, Fig. 1) in aqueous solution with the spectrum obtained by quantum mechanical (QM) calculations based 
on time-dependent density-functional theory (TD-DFT) with the polarizable continuum model (PCM)6,7 for the 
solvent effect and molecular dynamics (MD) simulation for conformational sampling3. Their pioneering analysis 
demonstrated that the static computation of CD spectrum for three representative equilibrium geometries resulted 
in a substantial difference between the experimental and computational spectra that was then successfully reduced 
by the use of broad conformational sampling for the accumulation of the spectrum. Matsuo et al. revealed that the 
fluctuation of the intramolecular hydrogen bond orientation strongly influenced the methyl α -D-Glc CD spectrum.

As seen in the above case, the fluctuation of hydrogen atom in hydrogen bonding systems can have a dominant 
effect on the molecular properties of hydrogen-bonded systems. Such systems are often associated with a significant 
change in properties on deuteration, i.e., the H/D isotope effect that arises from the isotopic difference of a quantum 
mechanical nature8. The isotope effect is known to slightly modulate the molecular geometry of hydrogen bonded 
systems, and it sometimes results in a drastic change of the phase-transition temperature9, chemical reaction rate10, 
and the nuclear magnetic resonance and infrared absorption spectra11. These isotopic difference effects can be 
used to obtain further detailed information on the behavior of molecules11. Although scarcely explored so far, a 
significant isotope effect can be expected for the CD spectrum of methyl α -D-Glc because of its dependence on 
the conformational fluctuations shown by Matsuo et al.

The H/D isotope effect cannot be predicted by the simple application of the conventional electronic structure 
calculation and classical MD simulation that ignore the quantum nature of the hydrogen nuclei. As an alternative 
choice for computing the molecular spectroscopic properties that efficiently considers the significant fluctuation of 
the hydrogen nuclei in hydrogen bonds and the concomitant H/D isotope effect, Tachikawa et al. have developed 
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a multicomponent (MC) scheme for the feasible extension of the QM calculation12. Quantum mechanical calcu-
lations using this scheme (MC_QM) incorporate the quantum deviation of nuclei from equilibrium geometry, 
i.e., the nuclear quantum effect, into the molecular property calculation with only slight additional cost13. This 
approach has been recently extended to the combination with the PCM [MC_QM/PCM] for the analysis of the 
condensed phase14.

Results and Discussion
We have applied the MC_QM/PCM approach for the calculation of the CD spectrum of methyl α -D-Glc in aque-
ous solution as a tentative probe into the isotope effect on CD, with the calculated spectra shown in Fig. 2(a). We 
focused on methyl α -D-Glc (C7H14O6) and its isotopologue (C7H10D4O6) with deuterated hydroxyl groups. The 
shape of the obtained spectra agreed with that of the previous study3, demonstrating that the present approach is 
as reasonable as the combination of MD sampling and conventional QM calculation for modeling the fluctuating 
methyl α -D-Glc in aqueous solution. The isotopic difference of the spectra in Fig. 2(a) shows that the deuteration 
of the solute will lead to only a tiny shift. Thus, we predict that H/D isotope effect on the CD spectrum can be 
marginally detectable.

To verify the computational prediction of the isotope effect, we measured the CD spectra of the isotopologues 
of methyl α -D-Glc by using a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer1–3. Deuteration 
was introduced by the substitution of light water solvent with heavy one. Fig. 2(b) shows the observed CD spectra 
of methyl α -D-Glc in H2O and D2O. Contrary to computational prediction, a significant blue shift and an increase 
in the peak intensity were observed on deuteration.

What is the origin of the discrepancy between the predicted and the observed isotope shifts? To answer this 
question we focused on the isotopic difference of the solute‒solvent interaction that was not considered in the 
above calculation. It is well known that the deuteration of hydrogen-bonding clusters involves the elongation of 
hydrogen-bonding distances; this is the so-called Ubbelohde effect11. Similar isotope effects have also been reported 
for liquid water, in which the length of the hydrogen-bond in light water was evaluated to be ~4% shorter than 
that in heavy water15. It can be expected that the interaction distances between the hydrophilic solutes and solvent 
water molecules undergo similar changes with isotopic substitution.

Therefore, we recalculated the CD of methyl α -D-Glc in D2O considering the isotope effect on the intermo-
lecular interaction with the deuteration of the solute hydroxyl groups. To describe the elongation of the inter-
molecular distance on deuteration and the corresponding slight weakening of the solute‒solvent interaction, the 
solvation radius used in PCM was scaled by factors of around 1.04 for D2O and alienated from the solute. The 
results of these calculations are shown in Fig. 2(c) and Supplementary Figure S1. The relevant isotopic difference 
of the OH-bond length, cavity volume, and the solvation energy are shown in Supplementary Table S1. We can 
see that the computational isotope effect in Fig. 2(c) was significantly enhanced to achieve better agreement with 
the experimental isotope shift shown in Fig. 2(b), which was brought by only a slight alienation of the solvation 
surface and the relevant change of the geometry and the energy. This result indicates that the obtained isotopic 
shift strongly depends on the isotopic difference of the solute‒solvent interaction. Consequently, the isotope effect 

Figure 1.  Methyl-α-D-glucopyranoside. 
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on the CD spectrum can offer insight into not only the solute conformations but also the carbohydrate hydration. 
Such insight is not available by other spectroscopic techniques such as IR and NMR.

Summary
To summarize, we have analyzed the isotope effect on the CD spectrum of methyl α -D-Glc in aqueous solution 
experimentally and theoretically. We have observed significant isotopic differences for the peak position and the 
intensity in spectra. The modification of the solvation surface was essential for reproducing the observed isotope 
effect on the CD spectrum by MC_QM/PCM calculation, indicating that the isotopic differences are strongly 
dependent on the solute‒solvent interaction. The present results suggest that the isotope effect on CD spectra 
carries the information about the conformation of the hydroxyl groups and water molecules along the solvation 
surface; this will provide new insights into the activity of biomolecules including saccharides.

Method
VUVCD Measurement.  Methyl α -D-Glc of high purity (> 98%) was purchased from Sigma-Aldrich  
(St. Louis, MO) and used without further purification. The sample solutions were freshly prepared by dissolving in 
H2O or D2O at a concentration of 10.0 (w/v%). The obtained sample solutions were incubated at room temperature 
for 1 day prior to performing VUVCD measurements.

The VUVCD spectra of methyl α -D-Glc in H2O or D2O were measured in the 168–210 nm wavelength range at 
25 °C using a VUVCD spectrophotometer at the Hiroshima Synchrotron Radiation Center. A detailed description 
of the spectrophotometer optical devices is available elsewhere16,17. The VUVCD measurement was performed using 
an assembled-type optical cell with CaF2 windows17. The path length of the cell was adjusted with a Teflon spacer 
to 50 μ m for the measurements from 200 to 180 nm, and to reduce the effects of light absorption by the solvent, no 
spacer was used for the measurements below 180 nm. The spectra obtained without the spacer were calibrated by 
normalizing the ellipticities to the spectra measured using a 50 μ m spacer in the overlapping wavelength region 
from 180 to 200 nm. The spectrum was recorded with a 1.0 mm slit, an 8 s time constant, and an 8 nm/min scan 
speed and by using four accumulations. All spectra were smoothed with the Savitsky–Golay filter. The molar ellip-
ticity [θ] was calculated using the molecular weight of the solute. The ellipticity was reproducible within an error 
of ± 5%, which can be mainly attributed to noise and the inaccuracy in the light path length.

Conformational search.  We have performed conformational search using CONFLEX18,19. After 457 pre-
cursory conformers were obtained by CONFLEX with MMFF94s force field and the GB/SA solvation model, 180 
unique conformers optimized by CAM-B3LYP/6-31G(d) with the SMD variant of the PCM solvation model20 
were obtained from the precursors. The obtained structures included 71 GG, 61 GT, and 48 TG hydroxymethyl 
rotamers of methyl α -D-Glc. TD-CAM-B3LYP/6-311+ + G(2d,2p)/SMD calculation was applied to obtain the 

Figure 2.  CD spectra of the methyl α-D-Glc (C7H14O6, red) in H2O and its isotopologue (C7H10D4O6, 
dashed black) in D2O of (a) initial computational prediction, (b) experimental measurement, and  
(c) revised computation with the scaling of the solvation radius by 1.04. 
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rotatory strength of 40 GG, 40 GT, and 25 TG relatively stable conformers according to the relative energies eval-
uated by CAM-B3LYP/6-311+ + G(2d,2p)/SMD calculations for the conformations. All quantum mechanical 
calculations were performed with the Gaussian 09 package21 in which we have implemented the multicomponent 
scheme calculation.

Computational CD spectrum of representative GG and GT hydroxymethyl rotamers.  We 
performed the geometry optimization and rotatory strength calculation of methyl α -D-Glc conformers using 
CAM-B3LYP with the multicomponent scheme (MC_CAM-B3LYP). In MC_CAM-B3LYP calculations, all hydro-
gen nuclei were treated quantum mechanically. Two isotopologues were investigated; the first isotopologue had 
only protons as the hydrogen nuclei and four OH groups of the molecule were replaced with the deuterons for 
the other isotopologue. We used 6-31G(d) electronic basis set for geometry optimization and 6-311+ + G(2d,2p) 
basis set for rotatory strength calculations. For both types of calculations, [1s] GTF calculations were used with 
24.1825 a.u. exponent value for the proton and 35.6214 a.u. for deuteron optimized for the quantum treatment of 
hydrogen nuclei in the MC_HF scheme22. Electronic excitation calculation based on TD-DFT with CAM-B3LYP 
functional was performed to obtain the rotatory strength of the optimized geometry, where the occupied and 
virtual Kohn–Sham orbitals were evaluated with the multicomponent scheme and the excitation of the hydrogen 
nuclei was neglected. 30 rotatory strengths were calculated for each conformer to construct the CD spectrum 
according to the equation:
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where σi is the excitation energy, Ri is the corresponding electronic rotatory strength, and σ∆  is the bandwidth of 
each signal that was set to 0.30 eV.

Average CD spectrum among the rotamers  GG, GT, and TG hydroxymethyl rotamers have four OH 
groups that can rotate to give rise to different hydroxyl rotamers. To consider rotation, average CD spectra were 
constructed on the basis of the Boltzmann distribution of each OH rotamer according to the equation:
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where Eis are the relative energies without the entropic contributions and the temperature in β is set to 298 K.  
The relative populations of GG, GT, and TG hydroxymethyl rotamers in the above averaging were 
[GG:GT:TG =  0.45:0.45:0.10], which is in reasonable agreement with the previously reported population of 
[GG:GT:TG =  0.48:0.48:0.04]23.
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