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Ischemic stroke, which results in loss of neurological function,
initiates a complex cascade of pathological events in the brain,
largely driven by excitotoxic Ca2+ influx in neurons. This leads to
cortical spreading depolarization, which induces expression of
genes involved in both neuronal death and survival; yet, the func-
tions of these genes remain poorly understood. Here, we profiled
gene expression changes that are common to ischemia (modeled
by middle cerebral artery occlusion [MCAO]) and to experience-
dependent activation (modeled by exposure to an enriched environ-
ment [EE]), which also induces Ca2+ transients that trigger transcrip-
tional programs. We found that the activity-dependent transcription
factor Npas4 was up-regulated under MCAO and EE conditions and
that transient activation of cortical neurons in the healthy brain by
the EE decreased cell death after stroke. Furthermore, both MCAO
in vivo and oxygen-glucose deprivation in vitro revealed that Npas4
is necessary and sufficient for neuroprotection. We also found that this
protection involves the inhibition of L-type voltage-gated Ca2+ channels
(VGCCs). Next, our systematic search for Npas4-downstream genes
identified Gem, which encodes a Ras-related small GTPase that medi-
ates neuroprotective effects of Npas4. Gem suppresses the membrane
localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby pro-
tecting neurons from excitotoxic death after in vitro and in vivo ische-
mia. Collectively, our findings indicate that Gem expression via Npas4
is necessary and sufficient to promote neuroprotection in the injured
brain. Importantly, Gem is also induced in human cerebral organoids
cultured under an ischemic condition, revealing Gem as a new target
for drug discovery.
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Stroke is the second leading cause of death and the most
frequent cause of disability in adults worldwide (1). Ischemic

stroke initiates a complicated and highly interdigitated cascade
of pathological events (including excitotoxicity, oxidase stress,
inflammation, and apoptosis) and results in cellular damage and
loss of neurological function (2–5). Because of the high energy
demands of the brain, neurons are immediately depleted of en-
ergy by any impedance of cerebral blood flow, resulting in loss of
resting membrane potential and uncontrolled glutamate release
(3, 6). These insults trigger repetitive depolarization, called spread-
ing depolarization, in neurons within the infarct area (6), leading to
increased intracellular Ca2+ levels, production of inflammatory
cytokines and growth factors, and transcription of immediate early
genes (2, 4, 7). These ischemia-induced genes can activate both the
neuroprotective program and pathogenic cascades, which culmi-
nate in apoptotic or necrotic cell death (2, 8). The observation that
both protective and pathological cascades are coactivated by is-
chemia suggests that potentiation of protective signaling pathways
may block the cytotoxic effects of ischemia; however, it remains

unclear how to potentiate the neuroprotective program that is
characteristic of ischemic responses.
In the healthy brain, external sensory stimulation, including an

enriched environment (EE), induces neuronal Ca2+ transients
and gene expression, leading to synaptic plasticity in neurons for
learning and memory (9, 10). Furthermore, nuclear Ca2+/calmodulin
signaling controls expression of neuroprotective genes in the
healthy brain (11, 12). However, it remains unclear 1) how neu-
ronal activity–regulated genes in the healthy brain are different
from ischemia-regulated genes in the pathological brain and 2)
whether induction of neuronal activity–regulated genes in the
healthy brain affects neuroprotection after stroke. In this study, we
found that transient activation of cortical neurons in the healthy
brain decreases cell death after stroke (i.e., via activity-dependent
ischemic tolerance). On the basis of a systematic search, we
identified the activity-dependent transcription factor Npas4 (neu-
ronal PAS domain protein 4), which is necessary for neurons to
resist ischemia. Although Npas4 plays a neuroprotective role in
ischemic stroke (13–15), it is unclear how it regulates this process
at a molecular level. On the basis of another systematic search, we
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identified a molecule, Gem, which acts downstream of Npas4 and
mediates neuroprotection; these findings point to a good thera-
peutic target for stroke.

Results
A Short Exposure to an EE Facilitates Neuroprotection after Stroke.
Rats housed in an enriched cage (provided with ladders, tubes,
hiding places, etc.) for 1 mo show better functional outcomes
after stroke than those housed under standard conditions (16).
However, it remains unknown how an EE facilitates neuro-
protection. To understand the relationship between EE and stroke,
we performed middle cerebral artery occlusion (MCAO) in mice
preexposed to an EE for 40 min (Fig. 1A). Intriguingly, even this
short period of exposure to an EE was sufficient to decrease infarct
volume (48.3 ± 9.8%) compared with that in the control group in
the home cage (Fig. 1 B and C). However, imposing a 6-h interval
between the EE exposure and MCAO surgery prevented this pro-
tective effect. To confirm the requirement of neural activity for
neuroprotection, we utilized the Syn–TetOff system (17) with an
adeno-associated virus (AAV) vector carrying the excitatory Designer

Receptors Exclusively Activated by Designer Drugs (DREADD)
gene, hM3Dq-mCherry, to be expressed in neocortical neurons
(Fig. 1 D–F). Chemogenetic activation with an injection of clozapine
N-oxide (CNO) induced Fos (activity-dependent gene) expression in
these cortical neurons (Fig. 1G and SI Appendix, Fig. S1D). As
expected, CNO injection at 40 min before MCAO significantly re-
duced the infarct volume (46.8 ± 11.0%) compared with that in the
control, whereas CNO administered after MCAO did not (Fig. 1H).
These results suggest that neural activation with either EE or che-
mogenetics before stroke is sufficient to protect neurons from
ischemic death (activity-dependent ischemic tolerance).

Search for Genes Whose Expression Is Altered by Stroke and EE.
Preexposure to a brief period of ischemia (brief ischemia) in-
duces a neuroprotective mechanism in which neurons acquire
tolerance to ischemia (termed ischemic tolerance or ischemic
preconditioning) (18, 19). We hypothesized that neural depo-
larization under both EE and brief ischemia conditions would
trigger expression of common genes underlying the protective
mechanism that blocks death induced by excitotoxicity (Fig. 2B).
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Fig. 1. A short exposure to an EE facilitates neuroprotection after stroke. (A) Schematic drawings of the MCAO surgery and the experimental timeline. TTC,
2,3,5-triphenyltetrazolium chloride. WT mice pre-exposed to an EE for 40 min show reduced volumes of cell death after stroke. (B and C) Living cells were
stained with TTC 24 h after MCAO (B) to calculate the infarct volume (C). (D) Schematic drawing of the AAV/Syn–TetOff vector carrying hM3Dq-mCherry. The
human synapsin promoter (Syn) drives expression of the tetracycline-controlled transactivator (tTA) gene specifically in neurons, and hM3Dq-mCherry is
efficiently induced in the absence of Dox, as previously reported (16). (E and F) Expression of hM3Dq-mCherry in the neocortex. (E) AAV/Syn–TetOff–hM3Dq-
mCherry was injected into the lateral ventricles of postnatal day 0 (P0) pups. (F) The ratio of NeuN+ neurons in mCherry+ cells that expressed hM3Dq in the
neocortex. Immunohistochemistry was performed in sections of the neocortex using antibodies against red fluorescent protein (RFP; magenta) and NeuN
(neuron; green). Enlarged images of the region enclosed by a white square in E are shown on the right (e1). White arrowheads indicate the double-positive
cells (mCherry+ and NeuN+). (G) Activation of cortical neurons by DREADDs. Mice transfected with AAV/Syn–TetOff–hM3Dq-mCherry received i.p. injections
with CNO, and immunohistochemistry was performed for mCherry (Left) and ISH for Fos (Right) in the neocortex 40 min after CNO. (H) MCAO surgery after
activating cortical neurons with DREADDs. Living cells ware stained with TTC 24 h after MCAO. Note that preactivation of cortical neurons with DREADDs
protects neurons from death after stroke. *P < 0.05, **P < 0.01 (one-way ANOVA with post hoc Tukey’s test in C and H).
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Thus, we systematically searched for genes whose expression
would be affected by brief ischemia as well as by the EE (Fig.
2A). First, RNA-sequencing (RNA-Seq) analysis was performed
on the control and ischemic sides of the neocortex 2 h after
MCAO to identify ischemia-regulated genes (SI Appendix, Fig.
S2C). Brief ischemia rapidly induced gene expression in the
cortex: Most of the genes (97 of the top 100) were up-regulated on
the ischemic side relative to expression on the control side of the
cortex (SI Appendix, Fig. S2 B and C). Second, a qRT-PCR
analysis for the top 100 genes identified in this primary screen
was performed using mice exposed to an EE for 40 min, indicating
that 38 genes were also up-regulated (Fig. 2 C–E). Among them,
Npas4 was most highly expressed in neurons [neuronal nuclei
(NeuN) positive] soon after ischemia (SI Appendix, Fig. S3) and
was transiently induced by the EE (Figs. 2C and 3A). We con-
firmed that chemogenetic activation with CNO also induces Npas4
expression in cortical neurons (SI Appendix, Fig. S4 C and D).
To test the role of Npas4 in neuroprotection, we performed

MCAO surgery in Npas4 knockout (KO) mice with or without

EE exposure. Under non-EE conditions, infarct volumes were
larger in Npas4 KOmice (155.0 ± 13.0%) than in wild-type (WT)
mice (Fig. 3C), as previously reported (20). However, there was
no difference in infarct volume between Npas4 KO mice exposed
to EE and those kept in their home cages (Fig. 3 B and C). By
contrast, Npas4 expression induced by doxycycline (Dox) admin-
istration using the AAV/Syn–TetOn system (SI Appendix, Fig. S5)
significantly reduced the infarct volume after MCAO (56.6 ±
10.4%) relative to that in animals receiving phosphate-buffered
saline (PBS) (Fig. 3 D–F). These in vivo studies demonstrated
that Npas4 expression, induced just before stroke, is necessary and
sufficient for activity-dependent ischemic tolerance.

Npas4 Expression Inhibits Excess Ca2+ Influx in Ischemic Neurons In
Vitro. To identify the molecular mechanisms underlying the
ability of Npas4 to protect neurons from death after stroke, we uti-
lized an in vitro model of ischemia in which primary cultured cortical
neurons (96.6 ± 0.3% MAP2+) were incubated under conditions of
oxygen and glucose deprivation (OGD) (SI Appendix, Fig. S6 A–C).
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Fig. 2. Search for genes showing altered expression after stroke and exposure to EE. (A) Schematic drawing of genes up- and down-regulated by stroke and
EE. The relative amounts of messenger RNA (mRNA) for the top 100 genes whose expression was altered by stroke according to the RNA-Seq analysis (SI
Appendix, Fig. S2C) were quantified by qRT-PCR in mice with and without exposure to an EE (control [Ctl], home cage). (B) Brief ischemia and EE induce
membrane depolarization in neurons; 38 genes were up-regulated in the cortex by both brief ischemia and EE. (C) Genes whose expression was up-regulated
by stroke and up- or down-regulated by EE. (D) Genes whose expression was down-regulated by stroke and up- or down-regulated by EE. ND, not detected.
(E) The 38 genes up-regulated simultaneously by stroke and EE. NS: not significant. *P < 0.05, **P < 0.01 (Student’s t test with Bonferroni correction compared
to Ctl in C and D). Note that among the 97 genes up-regulated by stroke; expression of 38 genes was also up-regulated by EE. By contrast, expression of three
genes down-regulated by stroke was not decreased by EE.
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A 1-h treatment with OGD increased transcription of Npas4,
which peaked 1 h after OGD before returning to baseline (Fig. 4B).
To reveal whether expression of NPAS4 (the human homolog) is
induced in an in vitro model of human ischemia, we generated
cerebral organoids from human induced pluripotent stem cells.
Interestingly, NPAS4 expression was increased markedly in hu-
man cerebral organoids 1 h after OGD (250 ± 40%; Fig. 4C),
suggesting that both humans and mice share a common mech-
anism for Npas4 induction by ischemia. In the healthy mouse
brain, Npas4 expression is induced by Ca2+ signaling in a sensory
experience–dependent manner (21, 22). In ischemic neurons,
membrane depolarization evoked by energy depletion activates
N-methyl-D-aspartic acid (NMDA) receptors and L-type voltage-
gated Ca2+ channels (VGCCs), resulting in abnormal Ca2+ in-
flux (3, 23). Consistent with this, OGD-mediated increases in
both Ca2+ influx (SI Appendix, Fig. S6E) and Npas4 expression
(SI Appendix, Fig. S6F) in primary cortical neurons were inhibited
either strongly (34.6 ± 1.9%; SI Appendix, Fig. S6E) (12.9 ±
2.8%; SI Appendix, Fig. S6F) by NMDA receptor antagonist D-
(-)-2-amino-5-phosphonopentanoic acid (D-AP5) or significantly
(78.2 ± 2.1%; SI Appendix, Fig. S6E) (66.5 ± 7.3%; SI Appendix,
Fig. S6F) by L-type VGCC antagonist nifedipine (Nifed). The ex-
cess Ca2+ influx caused by OGD treatment induced death of pri-
mary neurons (24) (SI Appendix, Fig. S6 G and H). Npas4 was
sufficient to block this effect, as WT primary neurons transfected
with AAV/CMV–Npas4 at 24 h before OGD exhibited a de-
creased number of propidium iodide+ (PI+) dead cells after OGD
(67.2 ± 7.0%) than those transfected with AAV/CMV–EGFP
(Fig. 4D), consistent with the in vivo results (Fig. 3 D and E).
Conversely, expression of Npas4 via AAV/CMV–Npas4 in Npas4
KO primary neurons was sufficient to block the increase in the
number of PI+ dead cells (Fig. 4D). These in vitro studies revealed
that Npas4 expression in primary neurons is both necessary and
sufficient for protection against cell death.

Interestingly, Npas4 overexpression before OGD suppressed
an increase in Ca2+ influx in primary cortical neurons (79.8 ±
3.1%; Fig. 4 E and F) similar to Nifed treatment (74.9 ± 2.5%;
Fig. 4F); however, it did not reduce influx further (71.5 ± 3.5%;
Fig. 4F). Furthermore, Npas4 overexpression reduced the num-
ber of dead primary neurons after excessive activation of L-type
VGCCs with their agonist, Bay K8644 (BayK) (25) (77.2 ± 6.7%;
Fig. 4G). These results suggest that Npas4 expression in primary
neurons might directly or indirectly inhibit L-type VGCC func-
tion. To confirm observations in vivo, WT and Npas4 KO mice
received intraperitoneal (i.p.) injections of Nifed soon after the
MCAO surgery. It was reported previously that Nifed treatment
at 2 d after MCAO markedly reduces infarct volume at 2 wk
after MCAO (26). Consistent with this, Nifed reduced the acute
infarct volume in WT mice (53.5 ± 11.6%; Fig. 4I). Intriguingly,
the infarct volumes were not different between WT and Npas4
KO mice treated with Nifed (74.1 ± 14.6%; Fig. 4 H and I),
although under the control conditions, the infarct volume was
larger in Npas4 KO mice (155.0 ± 13.0%) than in WT mice (Fig.
3C). These results strongly suggest that Npas4 expression inhibits
L-type VGCC function in vitro and in vivo.
Next, we investigated the relationship between Npas4 expres-

sion and NMDA receptor function. As shown in SI Appendix,
Fig. S6E, D-AP5 strongly inhibited Ca2+ influx (34.6 ± 1.9%) in
cultured neurons during OGD to a level comparable with that
under the control condition, suggesting that activation of NMDA
receptors is required to induce excessive Ca2+ influx in ischemic
neurons (SI Appendix, Fig. S6I), as previously reported (27). Npas4
overexpression before OGD suppressed the increase in Ca2+ in-
flux in primary cortical neurons (79.8 ± 3.1%; Fig. 4E), similar to
D-AP5 treatment (28.8 ± 1.9%), but did not further reduce the
Ca2+ influx (29.9 ± 1.5%; Fig. 4F). NMDA receptor activation
enables Na+ and Ca2+ influx to further depolarize neurons (28),
which in turn facilitates Ca2+ influx through voltage-gated Ca2+
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channels (29) (SI Appendix, Fig. S6I). Although Npas4 inhibited
L-type VGCCs (Fig. 4G), it was unknown whether it would also
affect NMDA receptors (Fig. 4F). However, Npas4 overexpression
did not prevent the death of primary neurons induced by NMDA
(100.3 ± 4.9%; SI Appendix, Fig. S7A), suggesting Npas4 does not

alter NMDA receptor function in cortical neurons. To confirm
these observations in vivo, mice received i.p. injections of the
NMDA receptor antagonist MK801 [because D-AP5 cannot cross
the blood–brain barrier (30)] soon after MCAO. As expected,
MK801 administration reduced the infarct volume similarly in WT
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and Npas4 KO mice (SI Appendix, Fig. S7 B and C). As NMDA
receptor activation was required for Ca2+ influx in ischemic neurons
(SI Appendix, Fig. S6E), inhibition by MK801 prevented cell death
in Npas4 KO mice after MCAO (SI Appendix, Fig. S7 B and C).

Search for Npas4 Target Genes Conferring Protection against Ischemic
Death. As Npas4 overexpression in primary cortical neurons did
not change the expression of L-type VGCC subunits (SI Appendix,
Fig. S8), it is possible that the transcription factor Npas4 controls
L-type VGCC function via its downstream genes (Fig. 4J). We
therefore searched for Npas4 target genes that met the following
requirements: 1) expression is regulated by ischemic stroke, 2)
expression is altered by Npas4 deficiency, and 3) expression pro-
tects neurons from cell death upon infarct. First, ischemia-
regulated genes were identified with the RNA-Seq analysis in
MCAO mice (SI Appendix, Fig. S2C). Second, qRT-PCR analyses
for the top 200 genes from this primary screen were performed to
identify 12 genes down-regulated and 3 genes up-regulated after
OGD in neurons from Npas4 KO mice compared with expression
in neurons from WT mice (Fig. 5 A and B and SI Appendix, Fig.
S9). Third, to determine which genes are necessary for cell sur-
vival, we overexpressed 13 of the genes as well as Npas4 and an
H2B-EGFP control in primary neurons via electroporation. Only
two of these reduced the number of PI+ dead cells after OGD:
Npas4 and Gem (Fig. 5C). The neuroprotective effect of Gem
overexpression against OGD was confirmed via the AAV/Syn–
TetOn system in primary neurons from WT and Npas4 KO mice
(Fig. 5 D and E), indicating that Gem overexpression is sufficient
to prevent the increase in cell death of Npas4-deficient neurons
(Fig. 5D). Two-color in situ hybridization (ISH) of cortical neu-
rons after MCAO showed thatGem expression increased significantly
mainly in Npas4-expressing neurons (156.4 ± 9.0%; Fig. 5 F–H).
Furthermore, the in vivo experiments revealed that Npas4 over-
expression with the AAV/Syn–TetOn system increased transcription
of Gem and Nptx2 [Npas4-downstream gene (31)] (SI Appendix,
Fig. S10). These results suggest that Gem, a newly identified down-
stream target of Npas4, is sufficient to protect ischemic neurons from
cell death.

Gem Expression Protects Ischemic Neurons from Death.Gem, a member
of the Rem, Rad, and Gem/Kir (RGK) family of Ras-related small
GTPases, regulates Ca2+ channel function and cytoskeletal rear-
rangements (32, 33). Gem overexpression before OGD suppressed
the OGD-induced increase in Ca2+ influx in primary cortical
neurons (75.9 ± 1.8%; Fig. 6A). However, intracellular Ca2+ con-
centrations were not different in Gem-overexpressing and control
primary neurons under normal conditions (105.7 ± 7.5%; SI Ap-
pendix, Fig. S11B). To examine the effect of Gem on VGCC
function, we performed Ca2+ imaging with GCaMP6f in HEK293T
cells cotransfected with the genes encoding L-type VGCC subunits
Cav1.2 (Cacna1c; channel) and Cavβ3 (Cacnb3; regulatory). The
cells were treated with the L-type VGCC agonist (BayK), leading
to a potent increase in Ca2+ influx (Fig. 6B). By contrast,
cotransfection of Gem with Cav1.2 and Cavβ3 suppressed the
increase in Ca2+ influx induced by BayK treatment (68.8 ± 1.9%;
Fig. 6 B and C), while cotransfection ofNpas4 along with these did
not (Fig. 6C). These observations suggested that Npas4 represses
L-type VGCC function via Gem, which regulates the subcellular
localization of Cav1.2 (32). In HEK293T cells cotransfected with
Gem, Cav1.2, and Cavβ3, the amount of Cav1.2 protein on the cell
surface was smaller (41.0 ± 10.0%) than that on HEK293T cells
cotransfected with Cav1.2 and Cavβ3 but not Gem (Fig. 6D and SI
Appendix, Fig. S11C). Similarly, Gem overexpression with the
AAV/Syn–TetOn system in primary neurons also reduced the
amount of endogenous Cav1.2 on the cell surface relative to the
amount in the cell lysate (55.9 ± 7.6%; Fig. 6E and SI Appendix,
Fig. S11E). In the in vivo experiment, Gem overexpression with
the AAV/Syn–TetOn system prior to MCAO did not change

expression of Npas4 or Cav1.2 (Fig. 6F) but significantly reduced
the infarct volume (32.7 ± 6.2%) compared with that with the PBS
control (Fig. 6G). Furthermore, Gem overexpression prevented
increased cell death in Npas4-KO mice (62.9 ± 7.4%; Fig. 6G). To
confirm the effect of Gem deficiency for ischemia, we newly
generated Gem KO mice via the CRISPR-Cas9 system (SI Ap-
pendix, Fig. S12). Gem KO mice exhibited a larger infarct volume
after MCAO than WT mice (174.4 ± 19.9%; Fig. 6H). Interest-
ingly, preexposure to an EE was not neuroprotective against is-
chemia in Gem KO mice (164.8 ± 23.8%) compared with the
effect in control (non-EE) mice (Fig. 6H). Taken together, these
results demonstrate that Gem expression is necessary and suffi-
cient to protect neurons from ischemia in vivo. Notably, expres-
sion of GEM (the human homolog) was also increased in human
cerebral organoids after OGD (370 ± 90%; Fig. 6I), suggesting
that Gem also plays a role in neuronal protection after ischemia in
the human brain. Moreover, Gem expression was up-regulated
transiently in the cortex, hippocampus, and striatum of mice ex-
posed to an EE (SI Appendix, Fig. S13). Therefore, Gem may
regulate L-type VGCC function in both the injured and healthy
brains in an activity-dependent manner.

Discussion
The main findings of this study are that 1) a short period of
neural activation with either natural stimuli (EE) or chemo-
genetics before stroke is sufficient to facilitate neuronal protection
from ischemic death (activity-dependent ischemic tolerance); 2)
Npas4 expression, induced just before stroke, is necessary and
sufficient to promote activity-dependent ischemic tolerance; 3)
Npas4 expression inhibits L-type VGCC function in vitro and
in vivo; and 4) expression of Gem, a newly identified downstream
target of Npas4, is necessary and sufficient to protect neurons
from ischemic death in vitro and in vivo.
Npas4 is neuroprotective in a model of stroke (13–15). Nev-

ertheless, it was not clear how Npas4 promotes survival of is-
chemic neurons after OGD in vitro and after MCAO in vivo.
Synaptotagmin 10 (Syt10) (34) and mitochondrial calcium uni-
porter (Mcu) (35) are Npas4-downstream factors that affect
neuroprotection against excitotoxicity induced by kainic acid and
NMDA, respectively, in primary neurons in vitro. However, our
RNA-Seq analysis of MCAO-treated mice (SI Appendix, Fig. S2)
revealed that expression of Syt10 and Mcu was not altered
markedly after stroke. This suggests that in the in vivo model of
ischemic stroke, Npas4 might regulate unknown targets to pro-
tect ischemic neurons from cell death. In this study, we identified
Gem as an Npas4 target, which is necessary and sufficient to
protect neurons from cell death after in vitro and in vivo
ischemia (Fig. 6).
It is well known that a patient who either had a recent tran-

sient ischemic attack or recovered from a mild stroke is at high
risk of recurrence (36). Although pretreatment with brief is-
chemia induces a neuroprotective mechanism (18, 19), it is dif-
ficult to apply this to patients. Interestingly, animal experiments
reveal that exercise preconditioning (walking on a treadmill)
provides significant neuroprotection against stroke (37), al-
though at least 2 or 3 wk of pretraining is necessary to induce
ischemic tolerance. By contrast, our mouse ischemic models
revealed that a short period of neural activation before stroke is
sufficient to acquire ischemic tolerance (Fig. 1). As shown in the
results from the DREADD system (Fig. 1H), the method that
artificially modulates the brain state may lead to a new therapy
for stroke. Furthermore, our results suggest that transient in-
duction of activity-regulated genes in the healthy brain activates
a neuroprotective mechanism and facilitates cell survival after
stroke (Fig. 1). Consistent with this, our systematic searches for
such responsible genes revealed that Npas4 and thus Gem play a
central role in activity-dependent ischemic tolerance (Figs. 2 and
5). The number of Npas4+ cells in mice overexpressing Npas4 by
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the AAV/Syn–TetOn system was larger (1,790 ± 87 cells/mm2; SI
Appendix, Fig. S5) than that in mice either activated with che-
mogenetics or exposed to an EE (824 ± 126 and 643 ± 78 cells/

mm2, respectively; SI Appendix, Fig. S4). However, the rate of
reduction in infarct volume after MCAO was not significantly
different among these conditions (Figs. 1 and 3). Npas4 may facilitate
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Fig. 6. Gem expression protects ischemic neurons from death. (A) Ca2+ imaging during OGD in primary neurons electroporated with plasmids carrying H2B-
mCherry and Gem. Graph shows Fluo-4 intensities of Gem-overexpressing neurons (Gem) relative to those of surrounding untransfected neurons (untrans-
fected) 5 min after the onset of OGD. (B) Ca2+ imaging of GCaMP6f-transfected HEK293T cells during treatment with BayK (VGCC agonist). GCaMP intensities
were measured in HEK293T cells expressing GCaMP6f, VGCC subunits (Cav1.2 and Cavβ3), and Gem during BayK treatment. (C) Graph showing relative GCaMP
intensities 3 min after BayK treatment (arrow in B). (D) Western blot for Cav1.2 protein on the cell surfaces of HEK293T cells expressing VGCC subunits (Cav1.2
and Cavβ3) and either Gem or Npas4. Graph shows amounts of the cell surface Cav1.2 protein relative to the protein amounts in the cell lysates. (E) Western
blot for endogenous Cav1.2 protein in primary neurons in which Npas4 or Gem was overexpressed. Graph shows amounts of the cell surface Cav1.2 protein
relative to the amounts in cell lysates. (F) Gem overexpression via the AAV/Syn–TetOn system in the cortex in vivo. AAV/Syn–Tet3G and AAV/TRE3G–Gemwere
coinjected into the lateral ventricles of postnatal day 0 (P0) pups. qRT-PCR was performed to calculate relative amounts of each messenger RNA (mRNA) after
PBS or Dox treatment. (G) Effects of Gem overexpression with the AAV/Syn–TetOn system before MCAO. AAV/Syn–Tet3G and AAV/TRE3G–Gem were
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neuroprotection via both cell-autonomous and non–cell-autonomous
mechanisms. In the ischemic brain, abnormal depolarization of
neurons induces several events that affect surrounding neurons, in-
cluding uncontrolled glutamate release (3, 6), production of in-
flammatory cytokines (4), and cell death. It is possible that
preinduction of Npas4 in a certain number of neurons before
stroke may reduce Ca2+ influx via a cell-autonomous mechanism,
leading to propagation to surrounding Npas4-negative neurons.
Although Npas4 and Gem are reported independently as

ischemia-induced genes (20, 38, 39), the functional relationship
between them is unknown. Our results show that Gem is tran-
scriptionally activated by Npas4, whose expression is induced by
excessive Ca2+ influx into the cytoplasm of neurons after stroke
(Fig. 6). Gem suppresses localization of the L-type VGCC to the
cytoplasmic membrane, leading to inhibition of excess Ca2+ in-
flux and thereby protecting neurons from excitotoxic death.
These findings are consistent with the protection conferred by
Npas4 against seizure-induced damage in hippocampal neurons
(12). Transcription of Gem, as well as the related RGK family
member Rem2, is up-regulated by extracellular stimuli (40, 41).
Actually, we found that both EE and brief ischemia induce Gem
expression (Fig. 2 and SI Appendix, Fig. S2). Rem2 inhibits
VGCC currents, promotes development of excitatory and in-
hibitory synapses, and is involved in dendritic branching (33, 41,
42), whereby it controls neural plasticity in the visual cortex (43).
Intriguingly, Gem positively regulates dendritic branching in an
activity-dependent manner (40). Npas4 also regulates dendritic
spine formation and controls the excitatory–inhibitory balance
within neural circuits (21, 31, 44). In the healthy brain, the neural
activity–evoked Npas4 increases both inhibitory synapses in ex-
citatory projection neurons and excitatory synapses in inhibitory
interneurons (31), enabling neurons to calm down. This raises
the possibility that expression of Gem via Npas4 is part of a
feedback loop that controls Ca2+ influx into neurons to regulate
neuroplasticity in the healthy brain and facilitate neuroprotection

in the injured brain. Remarkably, expression of Npas4 and Gem
increased not only in mouse brain but also human cerebral orga-
noids after ischemic treatment (Figs. 4C and 6I). Therefore, it is
possible that Gem generally functions downstream of Npas4 in
various brain areas, nominating it as a good target for drug dis-
covery aimed at neuroprotection from excitotoxicity after stroke as
well as seizure.

Materials and Methods
Animal experiments were approved by the animal care committees of Nara
Medical University, Kagawa University, and Osaka University in accordance
with the policies established in the NIH Guide for the Care and Use of
Laboratory Animals (45). Details of materials regarding a list of animals,
plasmids, primers for RNA-Seq analysis, and antibodies used for our study
can be found in SI Appendix. Furthermore, methods detailing brain surgery
techniques, primary neuronal culture techniques, plasmid and adeno-associated
viral vector constructions, qRT-PCR analysis, RNA-Seq analysis, immunoblot
analysis, immunohistochemistry, ISH, and Ca2+ imaging techniques can also be
found in SI Appendix.

Data Availability. All study data are included in the article and/or supporting
information.
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