
ORIGINAL RESEARCH
published: 11 June 2021

doi: 10.3389/fnut.2021.634100

Frontiers in Nutrition | www.frontiersin.org 1 June 2021 | Volume 8 | Article 634100

Edited by:

Marcello Iriti,

University of Milan, Italy

Reviewed by:

Neville Vassallo,

University of Malta, Malta

Azlina Abdul Aziz,

University of Malaya, Malaysia

*Correspondence:

Tewin Tencomnao

tewin.t@chula.ac.th

Michael Wink

Wink@uni-heidelberg.de

Specialty section:

This article was submitted to

Food Chemistry,

a section of the journal

Frontiers in Nutrition

Received: 27 November 2020

Accepted: 27 April 2021

Published: 11 June 2021

Citation:

Duangjan C, Rangsinth P, Zhang S,

Gu X, Wink M and Tencomnao T

(2021) Vitis Vinifera Leaf Extract

Protects Against Glutamate-Induced

Oxidative Toxicity in HT22

Hippocampal Neuronal Cells and

Increases Stress Resistance

Properties in Caenorhabditis Elegans.

Front. Nutr. 8:634100.

doi: 10.3389/fnut.2021.634100

Vitis Vinifera Leaf Extract Protects
Against Glutamate-Induced Oxidative
Toxicity in HT22 Hippocampal
Neuronal Cells and Increases Stress
Resistance Properties in
Caenorhabditis Elegans

Chatrawee Duangjan 1,2,3, Panthakarn Rangsinth 1,2, Shaoxiong Zhang 4,5, Xiaojie Gu 5,6,

Michael Wink 5* and Tewin Tencomnao 1,2,7*

1Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied

Health Sciences, Chulalongkorn University, Bangkok, Thailand, 2Department of Clinical Chemistry, Faculty of Allied Health

Sciences, Chulalongkorn University, Bangkok, Thailand, 3 Leonard Davis School of Gerontology, University of Southern

California, Los Angeles, CA, United States, 4College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou,

China, 5 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany, 6Department of

Biotechnology, School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China, 7Natural

Products for Neuroprotection and Anti-Ageing Research Unit, Department of Clinical Chemistry, Faculty of Allied Health

Sciences, Chulalongkorn University, Bangkok, Thailand

Vitis vinifea has been used for traditional medicines, food, beverages, and dietary

antioxidant supplements. The chemical compositions and biological activities of the

fruits and seeds have been extensively investigated. However, the biological effects of

the leaves are limited, and its anti-neurodegeneration or antiaging activities are little

known. The current work aims to study the beneficial effects of V. vinifera leaf extract

on neuroprotective effects in HT22 cells, antiaging, and oxidative stress resistance

properties in the Caenorhabditis elegans model. The ethanol extract was characterized

by phytochemical composition using gas/liquid chromatography–mass spectrometry

and reversed-phase high-performance liquid chromatography. The beneficial effects

of V. vinifera ethanol (VVE) extract on antioxidant properties, neuroprotective effects,

and the underlying mechanisms were studied by in vitro and in vivo studies. In HT22

cells, we found that VVE has a protective effect against glutamate-mediated oxidative

stress-induced cell death. The gene expression of cellular antioxidant enzymes such

as CAT, SODs, GSTs, and GPx was upregulated by VVE treatment. Moreover, VVE

was also shown to alleviate oxidative stress and attenuate reactive oxygen species

accumulation in C. elegans. We demonstrated that VVE could upregulate the expression

of stress-response genes gst-4 and sod-3 and downregulate the expression of hsp-16.2.

Our results suggest that the oxidative stress resistance properties of VVE are possibly

involved in DAF-16/FoxO transcription factors. VVE reduced age-related markers

(lipofuscin) while did not extend the life span of C. elegans under normal conditions.
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This study reports the neuroprotective effect and antioxidant activity of V. vinifera leaf

extract and suggests its potential as a dietary or alternative supplement to defend against

oxidative stress and age-related diseases.

Keywords: vitis vinifera, glutamate toxicity, neuroprotection, HT22, oxidative stress resistanc, daf-16, aging,

caenorhabditis elegans

Graphical Abstract |

INTRODUCTION

Reactive oxygen species (ROS) imbalance is associated with
various neurodegenerative diseases, in particular, Alzheimer’s
disease (AD) (1, 2). Glutamate is the main excitatory
neurotransmitter in the brain, which is considered as one
of the initiating factors for neuronal damage (2, 3). A high
accumulation of glutamate can cause neuron death via
accumulated ROS and impaired mitochondrial function (1).
The new AD treatment has been focusing on neuroprotection
by means of reducing glutamate-induced oxidative toxicity
(4). Natural products from herbs or plant extracts that have
antioxidant activity and neuroprotective effects could be a
potential alternative treatment in neurodegenerative diseases.
Herbal compounds have been considered as potential agents for
the prevention of AD.

DMSO, dimethyl sulfoxide; LC-MS, gas/liquid
chromatography–mass spectrometry; HPLC, high-performance

Abbreviations: VVE, Vitis vinifera ethanol; AD, Alzheimer’s disease; DMEM,

Dulbecco’s modified Eagle’s medium; LDH, Lactate dehydrogenase; MTT, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PCR, polymerase chain

reaction; DNA, deoxyribonucleic acid; RNA, ribonucleic acid.

liquid chromatography; ROS, reactive oxygen species; ABTS, 2,2-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium
salt; DPPH, 2,2-diphenyl-1-picrylhydrazyl; Juglone, 5-hydroxy-
1,4-naphthoquinone; SODs, superoxide dismutase; CAT,
catalase; GPx, glutathione peroxidase; GSTs, glutathione-S-
transferase; SOD-3, superoxide dismutase-3; GST-4, glutathione
S-transferase 4; DAF-16/FoxO, Forkhead box protein O.

Vitis vinifera L. (grape) has been used for food, beverages,
and traditional medicine. The leaves have been used in
hemorrhoid and diabetic treatments (5). The therapeutic effects
are mainly attributed to the phenolic compounds in the fruits,
including flavonoids, anthocyanins, and proanthocyanidins (6).
These compounds have an antioxidant capacity and antibiotic,
antiallergic, antidiarrhea, antiulcer, and anti-inflammatory effects
(7, 8). Evidence suggests that the grape seed and skin extracts
have a lifespan-extending effect in C. elegans (9). The leaf extract
of V. vinifera has antioxidant and anti-inflammatory activities
(10). However, the neuroprotective effects and oxidative stress
resistance properties of V. vinifera leaf extract in C. elegans have
not been reported.

In the current study, the neuroprotective effects of V.
vinifera leaf extract against glutamate-induced cytotoxicity
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in HT22 cells, oxidative stress resistance properties, and
antiaging in C. elegans were investigated. This study reports
novel neuroprotective effects and antioxidant activity of
the V. vinifera leaf extract and suggests novel dietary
supplements to defend against oxidative stress and age-associated
neurodegenerative diseases.

MATERIALS AND METHODS

Chemicals and Reagents
5-Hydroxy-1, 4-naphthoquinone (Juglone) and 2, 7-
dichlorofluorescein diacetate were purchased from Sigma-
Aldrich GmbH (Steinheim, Germany) and sodium azide from
AppliChem GmbH (Darmstadt, Germany). Two, 2-Azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS), 2, 2-diphenyl-1-picrylhydrazyl (DPPH), dimethyl
sulfoxide (DMSO), Folin–Ciocalteu reagent, L-glutamic acid,
quercetin, fetal bovine serum, and Dulbecco’s modified Eagle’s
medium (DMEM) were obtained from Sigma-Aldrich (MO,
USA). Gallic acid was purchased from TCI America (OR, USA),
3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
(MTT) from Bio Basic (Ontario, Canada), and Trizol from
Invitrogen (CA, USA). Penicillin/Streptomycin solution was
purchased from Gibco (MA, USA), CytoTox 96 R© kit for lactate
dehydrogenase (LDH) assay from Promega (WI, USA), reverse
transcription (RT) PreMix, and quantitative polymerase chain
reaction (qPCR) Master Mix solution from Bioneer (Daejeon,
South Korea). The reagents for plant extraction were purchased
from RCI Labscan (Bangkok, Thailand).

Plant Material and Extraction
The leaves of V. vinifera were collected from the Pak Chong
district, Nakhon Ratchasima Province, Thailand (14.7125◦N,
101.421944◦E) in July 2016. A voucher specimen of V. vinifera
(BCU-016295) has been deposited at the herbarium of Kasin
Suvatabhandhu, Department of Botany, Faculty of Science,
Chulalongkorn University, Thailand.

The leaves of V. vinifera were dried at shadow for 1–2
weeks and were grounded into a powder. The powder sample
(40 g) was subjected to sequential extraction with solvents of
different polarities (hexane, dichloromethane, and ethanol at
boiling temperature 70–80◦C) by Soxhlet for 36 h (11, 12). The
supernatants were combined, subsequently filtered (Whatman
No. 1 filter paper), and evaporated at 35–45◦C by using a vacuum
evaporator. The crude extracts were stored at −20◦C as a stock.
The residue was dissolved in DMSO to a final concentration of
100 mg/ml as a stock solution before the experiments.

The extraction yields of hexane, dichloromethane, and
ethanol fractions were 1.32, 0.35, and 18.93%, respectively. The
therapeutic effects of V.vinifera products are mainly attributed to
the phenolic compounds (6). Ethanol has been frequently used
as a solvent for polyphenol extraction and is safe for human
consumption (13). Moreover, the ethanol fraction showed the
highest yield compared with hexane and dichloromethane
fractions. Thus, the V. vinifera ethanol extract was used in
this study.

Qualitative Phytochemical Screening
The phytochemical composition of the ethanol extract was
analyzed using gas/liquid chromatography–mass spectrometry
(LC-MS) (Institute of Systems Biology, University Kebangsaan
Malaysia, Malaysia) and reversed-phase high-performance
liquid chromatography (HPLC) (RSU Science and Technology
Research Equipment Center, Rangsit University, Pathumtani,
Thailand) (14) (Supplementary Materials).

In vitro Evaluation of Antioxidant
Properties
Radical Scavenging Activity
The antioxidant activity of the V. vinifera ethanol (VVE)
extract was determined by measuring the decrease in the
absorbance of the stable free radical ABTS and DPPH, following
our methods as described previously (15). Briefly, the DPPH
and ABTS were prepared in ethanol at 0.2 mg/ml. The
reaction consisted of ABTS or DPPH solution and different
concentrations of the VVE extract at a 9:1 ratio. The mixture
was incubated in the dark for 30min at RT. The absorbance
values of DPPH and ABTS were measured at 734 nm or
517 nm, respectively, using an EnSpire R© Multimode Plate
Reader (Perkin-Elmer). The percent inhibition values of the
radical and IC50 were calculated as described previously (15).
The antioxidant capacity was expressed as vitamin C equivalent
antioxidant capacity in milligrams per gram of dry weight plant
extract (15).

Total Phenolic Content
The assay was carried out according to the Folin–Ciocalteu
method and described in our previous work (15). In brief, a
Folin–Ciocalteu’s phenol reagent (10-fold diluted) and the extract
(1 mg/ml) were mixed in a 1:1 ratio and incubated for 20min.
Next, a 7.5% (w/v) Sodium carbonate solution was added to the
mixture and kept in the dark at RT for 20min. The absorbance
was read at 760 nm using an EnSpire R© Multimode Plate Reader
(Perkin-Elmer) as described previously (15). The calibration
curve of standard (gallic acid) was used to calculate the total
phenolic content, expressed as gallic acid equivalents (GAE.g of
plant extracts).

Total Flavonoid Content
The assay was carried out according to the aluminum chloride
colorimetric method and described in our previous work (15).
Briefly, the extract was mixed with 10% (v/v) aluminum
chloride solution and 1-M sodium acetate solution, followed by
incubating for 40min in the dark. After that, the absorbance
was measured at 415 nm. The calibration curve of standard
(quercetin) was used to calculate the total flavonoid content,
expressed as quercetin equivalents (QE.g of plant extracts).

Cell Culture
Mouse hippocampal HT22 cells were obtained from Professor
David Schubert (Salk Institute, San Diego, CA, USA) and
cultured in DMEM supplemented with 10% fetal bovine serum
and 1% penicillin/streptomycin under 5% carbon dioxide
at 37◦C.
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Cell Treatment
HT22 cells were seeded in tissue culture plates (5,000 cells/well in
96 well-plates, 8,000–10,000 cells/well in 12 well-plates) for 12–
18 h. After that, cells were treated with different concentrations
of VVE extract (10–100µg/ml) for 48 h. To induce 40–
50% cell toxicity, the culture medium was added with 5-
mM glutamate and incubated for 18 h. Stock solutions of
glutamate and VVE extract were prepared in DMEM andDMSO,
respectively. For the control group, cells were treated with 0.1%
(v/v) DMSO.

Determination of Cell Viability
Cell viability was evaluated by using MTT and LDH assay
(Supplementary Materials).

Measurement of Intracellular Reactive
Oxygen Species in HT22 cells
ROS production was quantified by the dichlorofluorescein-
diacetate (DCFH-DA) method (Supplementary Materials).

RNA Isolation and Quantitative Reverse
Transcription Polymerase Chain Reaction
Total RNA was extracted using the Trizol reagent (Invitrogen)
following the manufacturer’s instructions. Reverse transcription
was done according to the recommended manufacturers’
protocols of AccuPower RT PreMix (Bioneer). The q-PCR was
performed in an ExicyclerTM 96 (Bioneer). The PCR results were
measured using fluorescent signals. The PCR conditions were:
95◦C for 15min, denaturation at 95◦C for 15 s for 45–55 cycles,
and primer annealing/extension at 55◦C for 30 s. The primer
specificity test was performed by melting curve. β-actin (internal
control gene) was used to normalize the relative expression levels
by using the 2−11CT method. The gene-specific sequences of
primers were CAT, SOD1, GPx, GSTo1, GSTa2, and β-actin (3)
(Supplementary Materials).

C. elegans Strains and Culture Conditions
The strains N2 (wild type), TJ375 [gpIs1(hsp-16-2::GFP)],
TJ356 [zIs356 (daf-16p::daf-16a/b::GFP+rol-6)], CF1553
{muls84[pAD76(sod-3::GFP)]}, CF1038 [daf-16(mu86)I], BA17
[fem-1(hc17)IV], CL2166 [(pAF15)gst-4p::GFP::NLS], and
Escherichia coli OP50 were obtained from the Caenorhabditis
Genetics Center at the University of Minnesota, USA. All
strains were maintained at 20◦C and cultured on nematode
growth media (NGM) plates with living E. coli OP50. For all
assays, the larvae (L1 stage) were seeded in liquid medium
(S-medium), inoculated with E. coli OP50. Synchronous
populations were obtained by using hypochlorite treatment
(5-M sodium hydroxide and 5% sodium hypochlorite). The
eggs were allowed to hatch in M9 buffer as described previously
(15, 16). For the treatment groups, worms were treated
with different concentrations of VVE extract: 25, 50, and
100µg/ml. For the control group, worms were treated with
0.1% (v/v) DMSO.

Survival Assay Under Juglone-Induced
Oxidative Stress
L1 larvae of wild-type (N2) and CF1038 transgenic strains
were treated with different concentrations of VVE extract in S-
medium for 48 h. After treatment, worms were exposed to the
pro-oxidant juglone at 80µM for 24 h. The dead and live worms
were counted by gentle touch with a platinum wire.

Measurement of Intracellular Reactive
Oxygen Species in C. elegans
L1 larvae of wild-type (N2) and CF1038 transgenic strains
were treated with different concentrations of VVE extract
in S-medium for 48 h. After treatment, ROS production was
quantified by the DCFH-DA method according to our previous
work (15, 17). The 50-µMDCFH-DA was added into S-medium
and incubated in the dark at 20◦C for 1 h.

Worm images were examined under a fluorescent microscope
(Keyence Deutschland GmbH, Neu-Isenburg, Germany) at least
30 worms per group. The relative fluorescence of the whole
body was examined using ImageJ software (National Institutes
of Health, Bethesda, MD). The results are presented as mean
fluorescence± SEM.

Quantification of hsp-16.2 Expression
L1 larvae of TJ375 transgenic worms, which carry hsp-16.2
promoter regions fused with a green fluorescent protein (GFP)
reporter, were treated with different concentrations of VVE
extract in S-medium at 20◦C for 72 h. Then, the worms were
induced by exposing a nonlethal dose of 20-µM juglone for 24 h.
After incubation, worms were anesthetized by the addition of 10-
mM sodium azide. Then, worms were mounted on a microscopic
glass slide. The expression of hsp-16.2was examined by observing
the fluorescence at the anterior part from the back of the pharynx
as described previously (15, 18).

Quantification of sod-3 Expression
L1 larvae of CF1553 transgenic worms, which carry sod-3
promoter regions fused with a GFP reporter, were treated with
different concentrations of VVE extract in S-medium at 20◦C for
72 h. Then, worms were submitted to fluorescence microscopy as
described previously (15, 18).

Quantification of gst-4 Expression
L1 larvae of CL2166 transgenic worms, which carry gst-4
promoter regions fused with a GFP reporter, were treated with
different concentrations of VVE extract in S-medium at 20◦C for
48 h. Next, the worms were induced by exposing a nonlethal dose
of 20-µM juglone for 24 h. Fluorescence images were taken by
fluorescence microscopy as described previously (15, 18).

Determination of Subcellular Localization
of DAF-16
L1 larvae of TJ356 transgenic worms were treated with different
concentrations of VVE extract in S-medium for 48 h and
submitted to fluorescence microscopy as described previously
(15, 18).
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FIGURE 1 | Representative bioactive compounds in VVE extract. LC-MS-MS (A) and HPLC (B) profiles of major compounds in VVE extract.

Assessment of Autofluorescent Pigment
BA17 transgenic worms were used for measuring the
accumulation level of the autofluorescent pigment lipofuscin.
L1 larvae of BA17 transgenic worms were treated with different
concentrations of VVE extract in S-medium and maintained
at 25◦C to prevent egg-laying. The media was changed every
second day. On day 16, the worms were anesthetized by
the addition of 10-mM sodium azide, mounted on a glass
slide, and photographed. Worms were photographed using a
BIOREVO BZ-9000 fluorescence microscope (λex 360/20 nm,
λem 460/38 nm) as described previously (15).

Longevity Assay
The wild-type (N2) worms were used for the lifespan assay
under normal conditions. Synchronization and treatment were
conducted as described previously (15). In brief, N2 worms
were synchronized at the L4 larval stage on NGM agar plates
supplemented with VVE extracts and E. coli OP50 at 20◦C.
The treatment plate was prepared by mixing VVE extracts
(final concentration 50µg/ml) with E. coli OP50 and adding on
NGM agar plate overnight before use. The worms were counted
during the transfer to fresh medium every day. After that, the
percentages of surviving worms were documented. Worms that
failed to respond to a gentle touch with a platinum wire were
scored as dead and excluded from the plates. Internal hatched
progeny worms were scored as censors and discarded from
the assay.

Brood Size and Body Length Assay
To analyze the potential toxic effect of the extract on the
reproductive system, brood size wasmeasured as described in our
previous work (15, 18) (Supplementary Materials).

Statistical Analysis
In these studies, the results are presented as the mean ± SEM
and were analyzed with GraphPad Prism 8. The experiments
were performed in at least triplicate. One-way analysis of variance
(ANOVA) following Bonferroni’s method (post hoc) analyzed
a comparison between the control and treatments. Differences
were considered significant at the P ≤ 0.05 level.

RESULTS AND DISCUSSION

Phytochemical Constituents of V. vinifera
Ethanol Extract
In this study, LC-MS and HPLC were carried out for the tentative
identification of the phytoconstituents in the VVE extract. A
phytochemical profile is shown in Figure 1. The detected and
identified compounds are listed in Supplementary Table 1 with
the corresponding retention and MS/MS fragmentation data.

We tentatively identified the main compounds in the VVE
extract, including resveratrol, gallic acid, apigenin, catechin,
quercetin, and tannin. Fingerprinting analysis of VVE extracts
using HPLC showed the presence of the bioactive compound
gallic acid (18.26 mg/100 g of crude extract), catechin (55.10
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mg/100 g of crude extract), epicatechin (14.22 mg/100 g of
crude extract), and quercetin (197.73 mg/100 g of crude extract)
(Supplementary Figure 1B, Table 2). Our results thus agree
with the published chemical composition of V. vinifera leaf
extracts (6, 10).

IN VITRO STUDIES

Effect of V. vinifera Ethanol Extract on
Glutamate-Induced Cytotoxicity in HT22
Cells
Excessive glutamate induced oxidative stress leading to
neurotoxicity and neuronal cell death (2). The immortalized
mouse hippocampal HT22 cells are common cell models
to evaluate glutamate toxicity caused by oxidative stress.
These cells lack ionotropic glutamate receptors, which
exclude excitotoxicity as a cause of glutamate-triggered cell
death (2).

To investigate whether the VVE extract could prevent cell
death induced by glutamate, the protective effects against
glutamate-induced oxidative toxicity were explored in HT22 cells
using MTT, LDH assay, and cell morphological examination.
First, we determined the non-cytotoxic concentration of the
extract and the optimum condition of glutamate in HT22 cells.
We found that the VVE extract was relatively non-cytotoxic at the
tested doses (10–100µg/ml VVE, 48 h) (Figure 2a), and the cell
viability was reduced by approximately 50% at the tested doses
(5-mM glutamate, 18 h) (53.9± 0.6% (p < 0.001) (Figure 2b).

Surprisingly, the viability of the HT22 cells pretreated with
VVE extract had significantly lower glutamate-induced cell death
compared with that of the cells exposed to glutamate alone
[(Figures 2c–e) 10, 25, 50, and 100µg/ml VVE-induced survival
rate against glutamate-induced cell death by 8.4 ± 0.6% (p <

0.05), 11.9 ± 4.3% (p < 0.01), 17.6 ± 0.7% (p < 0.0001),
and 14.9 ± 1.7% (p < 0.001), respectively]. The results suggest
that VVE extract exerts a potent neuroprotective effect against
glutamate-induced cytotoxicity in HT22 cells.

Effect of V. vinifera Ethanol Extract on
Glutamate-Induced Oxidative Stress in
HT22 Cells
Oxidative stress mediates glutamate-induced neuronal cell
death, which plays an essential role in neurodegenerative
diseases (2). To investigate whether VVE extract could suppress
glutamate-induced oxidative stress, we illustrated the antioxidant
properties of VVE extract in vitro and in cells. The VVE extract
showed powerful antioxidant activity in vitro with high phenolic
and flavonoid contents (Supplementary Figure 1, Table 3).
Moreover, the elevated levels of intracellular ROS induced by
glutamate were attenuated in the cells pretreated with VVE
extract (Figures 3a,c) [10, 25, 50, and 100µg/ml VVE reduced
intracellular ROS levels by 87.1 ± 5.1% (p < 0.0001), 81.1 ±

3.9% (p < 0.0001), 86.9± 2.7% (p < 0.0001), and 74.4± 1.4% (p
< 0.0001), respectively].

Both antioxidant properties of VVE extract in vitro and in
cells suggest that VVE extract protects against glutamate-induced

cytotoxicity by inhibiting the accumulation of intracellular ROS.
Previous research has indicated that an antioxidant, such as
phenolic and flavonoids, strongly prevented ROS-induced
neuronal cell death (19). Neuroprotective properties of
resveratrol (20, 21), gallic acid (22), apigenin (21), catechin
(23), and quercetin (24) were also highlighted in several recent
studies. Our results agreed with literature data indicating that the
phenolic compounds (resveratrol, gallic acid, apigenin, catechin,
quercetin, and tannin) in VVE extract may mediate antioxidant
activity and neuroprotective effects in HT22 cells.

Effect of V. vinifera Ethanol Extract on
Gene Expression of Antioxidant Enzymes
in HT22 Cells
The antioxidant and phase II enzymes, including superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx),
and glutathione-S-transferase (GST), have been known as a
central role of ROS-mediated cellular damage prevention (3).
To further examine the mechanism of antioxidant-mediated
neuroprotective effects of the VVE extract, we examined the
effects of the VVE extract on antioxidant enzyme (SOD,
CAT, GPx, and GST) gene expression. We found that VVE
extract (50µg/ml) significantly upregulated the expression of
endogenous antioxidant enzymes, including SOD1, CAT, GPx,
GSTo1, and GSTa2 (Figure 3b).

Our results are in agreement with other studies where grape
leaf extracts (V. vinifera) were found to protect against oxidative
damage by promoting antioxidant gene response in several
models, including neuronal cells (25),C. elegans (26), and rodents
(25, 27, 28). In accordance with previous studies, the bioactive
compounds in grape leaf extracts such as resveratrol (29),
catechin (29), gallic acid (22), and quercetin (30) also increased
antioxidant gene expression.

In the brain, an imbalance of ROS homeostasis is involved
in the pathogenesis of several neurodegenerative events
(31). Antioxidant balance inside the cells requires intrinsic
(endogenous enzymes) and extrinsic (dietary supplements)
antioxidants for neutralizing ROS. Natural plants with
antioxidant properties have been recognized as precious
sources for drug discovery in age-related diseases (24, 32–35).
The current results demonstrated that the protective effect
of VVE extract against glutamate-induced cytotoxicity is not
only through suppressing intracellular ROS production but
also through enhancing endogenous antioxidant and phase II
enzymes in neuronal HT22 cells.

IN VIVO STUDIES

Effect of V. vinifera Ethanol Extract on
Juglone-Induced Oxidative Stress in C.

elegans
C. elegans is a valuable model for aging research in studying
genetic and pharmacological influences of ROS (36, 37). To
further elucidate the antioxidant activities of the VVE extract in
vivo, the oxidative resistance properties of the VVE extract were
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FIGURE 2 | Protective effects of VVE extracts against glutamate-induced toxicity in HT22 cells. Cell viability by treatment with different concentrations of VVE extracts

for 48 h (a) and cell viability by treatment with different concentrations of glutamate for different times (b). Cells were treated with different concentrations of VVE

extracts for 48 h and exposed to 5-mM glutamate for 18 h. Then, cell viability was measured by MTT (c) and LDH (d) assay. Cell morphology was observed under a

microscope at 5× magnification (e). Samples were exposed to 5-mM glutamate (g) to induce toxicity. All data are shown as mean ± SEM of at least three

independent experiments. ####p < 0.0001 vs. DMSO control; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with glutamate-treated cells by

one-way ANOVA following Bonferroni’s method (post hoc).

conducted in a C. elegansmodel. We first determined the survival
of nematodes under oxidative stress conditions.

Treatment with different concentrations of VVE extract
(25–100µg/ml) caused no significant changes in the survival
rate of wild-type worms compared with the DMSO control
(Supplementary Figure 2). However, under oxidative stress
conditions (80-µM juglone for 24 h), the survival rate of the wild-
type worms pretreated with the VVE extract was significantly
increased when compared with the DMSO control (21.1± 1.9%)

(Figure 4a) [25, 50, and 100µg/ml VVE reduced mortality by
32.8 ± 1.5% (p < 0.01), 31.5 ± 1.8% (p < 0.01) and 33.6 ± 1.2%
(p < 0.001), respectively]. Stress resistance properties are closely
related to antioxidant activity (31). Although VVE extracts
improved the survival rate of the wild-type worms, compared
with control, the survival rate did not improve in a similar range
as the epigallocatechin gallate, which is a powerful antioxidant in
green tea (38). Similarly, VVE extract exhibited lower scavenging
activity than epigallocatechin gallate (Supplementary Figure 2).
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FIGURE 3 | Protective effect of VVE extracts against glutamate-induced oxidative stress in HT22 cells. VVE extracts treatment reduced ROS levels in HT22 cells when

compared with glutamate-treated cells (a). VVE extract treatment increased endogenous antioxidant gene expression in HT22 cells when compared with DMSO

control (b). Samples were pretreatment with VVE extracts for 48 h and exposed to 5-mM glutamate (G5) for 12 h to induce oxidative stress. Representative

fluorescence micrographs of cells stained with H2DCFDA were observed under a fluorescence microscope (c). All data are shown as mean ± SEM of at least three

independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with glutamate-treated cells; ###p < 0.001, compared with DMSO

control by one-way ANOVA following Bonferroni’s method (post hoc).
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FIGURE 4 | Protective effect of VVE extracts against juglone-induced oxidative stress in C. elegans. VVE extracts protect against oxidative stress in wild-type C.

elegans. Survival rate of wild-type (N2) worms was significantly enhanced after pretreatment with extracts (a). VVE extracts treatment reduced ROS levels in N2

worms when compared with DMSO control (b). Representative pictures of DCFDA fluorescence in wild-type (N2) worms treated with 25µg/ml VVE (c1); 50µg/ml

VVE (c2); 100µg/ml VVE (c3); and DMSO control (c4). In survival assay, samples were exposed to 80-µM juglone (J) to induce oxidative stress. All data are shown as

mean ± SEM of at least three independent experiments.*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with DMSO control by one-way ANOVA

following Bonferroni’s method (post hoc).

These results suggest that the antioxidant activity of VVE extract
might be partially attributed to improving the survival rate.

Subsequently, the intracellular ROS accumulation was
measured to confirm the antioxidant properties of the VVE
extract. The ROS indicator DCFH-DA was used to determine
the accumulation of ROS levels in wild-type worms. The
fluorescence intensity is correlated with the intracellular ROS
level. The intracellular ROS accumulations were significantly
reduced in the wild- type worms treated with VVE extract
groups [25, 50, and 100µg/ml VVE reduced intracellular ROS
accumulation by 21.2 ± 5.5% (p < 0.05), 34.4 ± 7.5% (p <

0.001), and 32.8 ± 4.8% (p < 0.001), respectively] (Figure 4b)
(Representative microscopy images from individual worms can
be found in Figure 4c). Interestingly, under oxidative stress

conditions (a nonlethal dose of 20-µM juglone), VVE extracts
also reduced intracellular ROS level in wild-type worms when
compared with the worms exposed to juglone alone [25, 50, and
100µg/ml VVE reduced intracellular ROS accumulation by 74.1
± 4.6% (p < 0.0001), 75.2± 5.2% (p < 0.0001), and 80.3± 4.8%
(p < 0.0001), respectively] (Supplementary Figure 3A).

However, we found that the lower concentrations of
VVE extract (<10µg/ml in HT22 cells and 25µg/ml in
worms) neither decreased intracellular ROS accumulation
level nor increased survival rate under oxidative
stress condition compared with the DMSO control
(Supplementary Figure 4). These results suggest that
the VVE extracts at moderate concentrations have
antioxidant activities.
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FIGURE 5 | Stress resistance properties of VVE extracts mediated DAF-16/FoxO pathway in C. elegans. VVE extracts failed to increase survival rate (a) and decrease

ROS levels (b) in CF1038 worms. Moreover, VVE extracts induced a significant translocation of DAF-16::GFP in mutant TJ356 worms (daf-16p::daf-16a/b::GFP +

rol-6) (c). Representative fluorescent images of subcellular location of DAF-16 in nucleus, intermediate, cytosolic regions, and TJ356 worms after treated with VVE

extracts (d). All data are shown as mean ± SEM of at least three independent experiments.*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with

DMSO control by one-way ANOVA following Bonferroni’s method (post hoc).

Previous works have reported that grape seed and skin extracts
have antioxidants (26) and lifespan-extending effects inC. elegans
(9). The data support our assumption that the VVE leaf extract
contains polyphenols (resveratrol, gallic acid, apigenin, catechin,
quercetin, and tannin), which have protective effects against
oxidative stress to reduce endogenous ROS levels in C. elegans.

Effect of V. vinifera Ethanol Extract on
Stress Resistance Properties Mediated by
the DAF-16/FoxO Pathway in C. elegans
DAF-16, the C. elegans homolog of the mammalian FOXO
transcription factor, is the main transcription factor involved in
stress response, metabolism, and longevity (39). DAF-16/FoxO
remains inactive in the cytosol under normal conditions. In
contrast, stress or specific ligands can stimulate its translocation
to the nucleus, influencing stress response genes expression such
as hsp-16.2, sod-3, and gst-4 (39).

To examine the influence of VVE extract on DAF-16 nuclear
translocation, DAF-16 transgenic (TJ356) (DAF-16::GFP)

worms were used. The majority of the worms treated with
DMSO control showed a cytosolic DAF-16::GFP localization
(63.3 ± 7.3% cytosolic, 23.5 ± 7.7% intermediate, and
13.6 ± 4.9% nuclear). However, VVE extract significantly
increased the level of nuclear location of DAF-16::GFP when
compared with the DMSO control [25, 50, and 100µg/ml
VVE induced DAF16::GFP nuclear location by 65.6 ±

6.4% (p < 0.001), 63.2 ± 7.4% (p < 0.001), and 52.5 ±

8.5% (p < 0.001), respectively]. (Figure 5c) (Representative
microscopy images from individual worms can be found in
Figure 5d).

In oxidative stress conditions, such as juglone treatment,
DAF16 has induced translocation into the nucleus (40). We
found that the juglone treatment group significantly increased
the level of nuclear location of DAF-16::GFP when compared
with the untreated control group [by 43.6 ± 7.4% (p < 0.0001)]
(Supplementary Figure 3B). However, VVE extract blocked the
juglone-induced nuclear translocation of DAF-16, suggesting
that VVE extract indeed prevented the juglone-induced oxidative
stress in C elegans.
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FIGURE 6 | Effect of VVE extracts on expression of stress resistance-related genes in C. elegans. VVE extracts decreased hsp-16.2 expression in mutant TJ375

worms (a), increased sod-3 expression in mutants CF1553 worms (b), and gst-4 expression in mutants CL2166 worms (c). a2–a5, b2–b5, c2–c5: Representative

pictures of GFP fluorescence in worms treated with 25µg/ml VVE (a2/b2/c2); 50µg/ml VVE (a3/b3/c3); 100µg/ml VVE (a4/b4/c4); and DMSO control (a5/b5/c5).

TJ375 and CL2166 worms were exposed to 20-µM juglone to induce mild oxidative stress. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, compared with

DMSO control by one-way ANOVA following Bonferroni’s method (post hoc).
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FIGURE 7 | Effect of VVE extracts on aging in C. elegans. VVE extracts attenuated autofluorescent pigment in BA17 worms (a). Autofluorescent granules were

measured under blue wavelength band. VVE extracts had no effect on life span of wild-type (N2) worms in normal conditions (b). Brood size (c) and body length (d) of

wild-type (N2) worms after VVE extracts treatment. Treatment with VVE extracts had no effect on egg-laying activity and body length. Results are expressed as mean

± SEM from three independent experiments (n = 30 worms in each experiment). Treatment groups are compared with DMSO control by one-way ANOVA following

Bonferroni’s method (post hoc).

To further investigate the effects of VVE extract that mediates
antioxidant activity through the DAF-16/FoxO pathway, the
transgenic CF1038 worms, which are the DAF-16 loss-of-
function mutant, were used in survival (Figure 5a) and
intracellular ROS accumulation assay (Figure 5b). Interestingly,
VVE extract failed to increase the survival rate under
oxidative stress (Figure 5a) and attenuate intracellular ROS levels
(Figure 5b) in CF1038 worms. The data indicate that VVE
extract has antioxidant activity and stress resistance in C. elegans
through the DAF-16/FoxO pathway.

Effect of V. vinifera Ethanol Extract on
Gene Expression of Stress Response
(hsp-16.2::GFP, sod-3::GFP, and gst-4::GFP)
in C. elegans
More evidence that VVE extract can attenuate oxidative stress
was obtained by measuring the expression of DAF-16/FoxO
downstream genes (hsp-16.2, sod-3, and gst-4). Heat-shock

proteins have been known as a sensor of oxidative stress function
induced by oxidative stress and heat shock conditions (39).
Under mild oxidative stress conditions (20-µM juglone), the
head of the transgenic worms (TJ375) exhibited high-intensity
GFP fluorescence representative hsp-16.2 gene induction.
However, VVE extract significantly reduced the level of the
fluorescence intensity of hsp-16.2::GFP when compared with the
DMSO control [25, 50, and 100µg/ml VVE reduced expression
level of hsp-16.2 by 25.9 ± 4.5% (p < 0.0001), 32.4 ± 3.8% (p <

0.0001), and 64.3± 1.4% (p < 0.0001), respectively] (Figure 6a).
We further investigate the antioxidant properties of the extract

by determining the expression of antioxidant enzymes including
SOD-3 (superoxide dismutase 3) and GST-4 (glutathione S-
transferase 4). We found that the VVE extract significantly
increased the level of the fluorescence intensity of sod3::GFP
(Figure 6b) and gst-4::GFP (Figure 6c), in transgenic worms
CF1553 and CL2166 worms, respectively [sod3::GFP; 25, 50, and
100µg/ml VVE-induced expression level of Sod-3 by 21.1± 4.6%
(p< 0.01), 22.3± 3.2% (p< 0.001), and 36.1± 5.9% (p< 0.0001),
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respectively] [gst-4::GFP; 25, 50, and 100µg/ml VVE-induced
expression level of gst-4 by 38.0± 7.7% (p< 0.0001), 33.1± 5.3%
(p < 0.0001), and 31.3± 3.8% (p < 0.0001), respectively].

The data indicate that VVE extract exhibited antioxidant
properties, not only by suppressing intracellular ROS but,
additionally, by modulation of the expression of stress-response
genes in C. elegans, such as hsp-16.2, sod-3, and gst-4. These
abilities were similar to the effects of resveratrol (41), gallic acid
(15, 17), catechin (32, 35), and quercetin (15, 24, 42) on oxidative
stress resistance in C. elegans via the transcription factor DAF-
16/FoxO. Taken together, the results of this study strongly suggest
that the VVE extract mediated antioxidant activity and stress
resistance in C. elegans via the DAF-16/FoxO pathway. However,
further studies are required to clarify the underlying mechanisms
of the VVE extract on the neuroprotective effect in C. elegans.

Effect of V. vinifera Ethanol Extract in Aging
C. elegans is a popular model of aging and longevity (36). Several
polyphenols have been reported as antiaging agents in C. elegans,
such as resveratrol (43), anthocyanin (33), and quercetin (24).
To examine the possible influence of VVE extract on aging, the
autofluorescent pigment (lipofuscin) accumulation and lifespan
were measured. The accumulation of intestinal autofluorescence
(lipofuscin) in C. elegans during aging is often used as a marker of
health or aging (44). We found that the VVE extract significantly
decreased the level of lipofuscin accumulation in late adult
worms (16 days) (Figure 7a).

Despite the antioxidant capacity in vitro and in vivo and
aging marker reduction, VVE extract did not show any lifespan-
prolonging effects in wild-type worms in normal conditions
(Figure 7b). These abilities were similar to the effects of
resveratrol in the life span of C. elegans under normal conditions
(43). However, the resveratrol show strongly increased life span
effects in C. elegans under conditions of oxidative stress (43).
Possibly, the antiaging effects of VVE extracts are linked to
antioxidant effects. The effects of VVE extract on the life span of
C. elegans under oxidative stress conditions will be an interesting
topic for future study.

To exclude the toxic effect on the reproductive system and
dietary restriction system induced by VVE extract, we further
measured brood size and body length. Brood size (Figure 7c) and
body length (Figure 7d) in wild-type worms were not affected
by different concentrations of VVE extract. These data indicated
that the effects of VVE extract did not interfere with the fertility
rate nor with body development (e.g., via dietary restriction) as
mentioned in the literature as toxicity markers (33).

CONCLUSION

Oxidative stress has been connected to neurodegenerative
diseases (1, 2). In this study, HT22 hippocampal neuronal
cells and C. elegans models were used to study the protective
effects of VVE extract against oxidative stress as in vitro and
in vivo studies. We found that the VVE extract protects against
glutamate-induced oxidative toxicity in HT22 hippocampal
neuronal cells and against juglone-induced oxidative stress in
C. elegans. The neuroprotective action of the VVE extract in

hippocampal neuronal (HT22) cells is mediated via inhibition
of ROS accumulation and enhancing endogenous antioxidant
enzymes. In addition, the VVE extract exhibits oxidative
resistance properties in C. elegans involved in the DAF-
16/FoxO signaling pathway. VVE reduced age-related markers
(lipofuscin), although it did not extend the life span of C.
elegans under normal conditions. These studies first report
the phytochemical constituents and antioxidant properties of
V.vinifera leaf extract. The leaf extract might be considered as an
alternative supplement or medicine to defend against oxidative
stress and neurodegenerative diseases. In vivo intervention
studies with more complex model organisms are required to
support the therapeutic potential of the VVE extract for age-
related neurodegenerative disorders.
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