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22q11.2 Deletion Syndrome (22g11.2DS) is a common microdeletion syndrome with congenital and late-onset
features. Testing for the genomic content of copy humber variations (CNVs) may help elucidate the 22q11.2
deletion mechanism and the variable clinical expression of the syndrome including the high (25%) risk for
schizophrenia. We used genome-wide microarrays to assess CNV content and the parental origin of
22q11.2 deletions in a cohort of 100 adults with 22q11.2DS (44 with schizophrenia) and controls.
22g11.2DS subjects with schizophrenia failed to exhibit de novo CNVs or any excess of novel inherited
CNVs outside the 22g11.2 region. There were no significant effects of parental origin of the 22q11.2 deletion,
deletion length, parental age or family history on expression of schizophrenia. There was no evidence for
a general increase of de novo CNVs in 22¢q11.2DS. A novel finding was the relative paucity of males with
de novo 22q11.2 deletions of paternal origin (P = 0.019). The Y chromosome may play a mediating role in
the mechanism of 22q11.2 deletion events during spermatogenesis, resulting in the previously observed
excess of maternal de novo 22q11.2 deletions. Hemizygosity of the 22q11.2 region appears to be the major
CNV-related risk factor for schizophrenia in 22¢q11.2DS. The results reinforce the need for further efforts to
identify specific molecular mechanisms underlying this expression and to identify the 1% of patients with
schizophrenia who carry 22q11.2 deletions.

INTRODUCTION

22q11.2 deletion syndrome (22q11.2DS), also known as velo-
cardiofacial syndrome or DiGeorge syndrome (MIM nos
188400, 192430), is the most common microdeletion syn-
drome, occurring in approximately one in every 4000 live
births (1). De novo 22ql1.2 deletions (approximately 90%)
are more common than inherited deletions (approximately
10%) in newly diagnosed patients. The high recurrence rate
of these mutations is related to the presence of low-copy
repeat sequences, which predispose the 22ql1.2 region to
structural rearrangement (2,3). A slight excess of de novo

22q11.2 deletions arising on the maternally inherited chromo-
some is unexplained (4,5).

The 22q11.2DS phenotype is highly variable with features
including velopharyngeal insufficiency, congenital cardiac
defects and learning difficulties. Most 22q11.2DS cases,
however, share similar 3 Mb hemizygous microdeletions,
suggesting that factors other than deletion length might con-
tribute to variable clinical expression (6,7).

Adults with 22q11.2DS have a rate of schizophrenia
approaching 25%, whereas in the general population approxi-
mately 1% of schizophrenia is associated with 22ql11.2
deletions (8,9). It is likely that there are elevated rates of
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Table 1. 22q11.2 deletions in 94 adult probands with 22q11.2 deletion syndrome (22q11.2 DS)

Deletion type

Current study

Previous study

Subjects with 22q11.2DS (n = 94 Estimates of 22q11.2 deletion breakpoints using Clinical FISH qPCR (n = 44)°
probands) Affymetrix Nspl 250K SNP array and 3 algorithms probeb (7)
Total Confirmed origin of 22q11.2 (NCBI Build 35)
deletion
n % Inherited® De novo Proximal start Distal end Minimum length Similar results
(n=75) (n=65) point point (Mb)
Short variant 1 1 1 16, 323, 500 18, 285,270 2.0 —/+ -
Long nested 1 1 17, 269, 780 19, 067, 004 1.8 —/+ Yes(n=1)
Short nested 3 3 2 17, 269, 780 18, 697,764 1.4 —/+ -
Short proximal 1 1 1 17, 412, 288 18, 697,764 1.3 —/+ -
variant 1
Proximal variant 1* 2 2 1 1 17, 412, 288 19, 786, 161 2.4 —/+ Yes (n=2)
Proximal variant 2 1 1 1 17, 490, 048 19, 786, 161 2.3 —/+ -
Atypical 1° 1 1 1 17,774, 335 19, 786, 161 2.0 +/+ Yes (n=1)
Atypical 2° 1 1 1 18, 147, 862 19, 786, 161 1.6 +/+ Yes (n=1)
Typical® 83 88 4 57 17, 269, 780 19, 786,161 2.5 —/+ Yes (n = 39)°

Typical start and end points of 22q11.2 deletions are shaded. Recurrent start and end points are shown in bold.
?One subject was assumed to have inherited a proximal variant 1 deletion (DNA unavailable for copy number variation (CNV) analysis from the mother with

22q11.2 DS but clinical fluorescence in situ hybridization (FISH) results had confirmed a 22q11.2 deletion). Four inherited typical 22q11.2 deletions were

confirmed with CNV results available from parents.

®—/+ Denotes hemizygous 22q11.2 deletion on standard clinical FISH testing using TUPLE1 or N25 probe. +/4 Denotes 22q11.2 deletion not detected on
clinical FISH testing. Two atypical 22q11.2 deletions were confirmed with FISH using probe COMT in a quantitative polymerase chain reaction (qPCR) study (7).
Confirmatory FISH data were thus available for all 100 subjects with 22q11.2DS (94 probands, five transmitting parents, one half sibling).

°qPCR results using 21 markers available for the 39 subjects in the current study with apparently typical 22q11.2 deletions showed that 34 subjects had the same
typical 22q11.2 deletion and five had variant distal breakpoints beyond the resolution of the single nucleotide polymorphisms (SNPs) in this study (7). The SNP
array study provided more details on proximal breakpoints but less details on distal breakpoints than the gPCR study (7).

spontaneous mutations in schizophrenia in the general popu-
lation (10). In addition to recurrent 22q11.2 deletions, recent
reports (11—14) provide some evidence for elevated rates of
rare novel CNVs and/or recurrent CNVs in schizophrenia.
These studies suggest that CNVs at loci other than 22q11.2
may contribute to the expression of schizophrenia in
22q11.2DS. To test this hypothesis and to examine character-
istics of the 22q11.2 deletion itself, we scanned the genomes
of a cohort of 100 Canadian adults diagnosed with 22q11.2DS.

RESULTS

Genome-wide copy number variation

Table 1 summarizes the 22q11.2DS-related deletions observed
in this study. Table 2 summarizes CNVs detected elsewhere in
the genome. We found no evidence for an excess of CNVs or
any specific targeted CNV regions in subjects with 22q11.2DS
and schizophrenia, or in 22q11.2DS overall compared with
controls. We were also able to compare the CNV content
between 65 unaffected parents in whom de novo 22q11.2 dele-
tions were confirmed not to have arisen and 53 unaffected
parents on whose chromosome 22 the 22ql1.2 deletions
were confirmed to have arisen as de novo events. These ana-
lyses showed no significant differences between these two
groups of parents in number, size and proportion of losses of
genome-wide CNVs (Supplementary Material, Table S1).
There was only one confirmed de novo CNV outside the
22ql1.2 region (a 636 kb gain at 4q35.1) that occurred in a
non-psychotic 22q11.2DS proband. This is within the expected
rates, given a de novo mutation rate of approximately 1% at

this resolution of analysis in control populations (15). Inspec-
tion of approximately 100 inherited CNVs in subjects with
22q11.2DS revealed on average fewer regions of interest in
this study than in our recent study of autism spectrum dis-
orders (16). There was a novel recurrent/overlapping CNV
at 18pl11.31 in four subjects with 22q11.2DS and schizo-
phrenia, three with 8.5—10 kb losses that were not validated
with quantitative polymerase chain reaction (qQPCR) and one
with a confirmed 338 kb gain inherited from an unaffected
parent. Although a possible region of interest for psychotic
disorders (17,18), the CNV region contained no genes. Sup-
plementary Material, Tables S2 and S3 show all CNVs,
besides the major 22qll1.2 deletion, in subjects with
22q11.2DS and their unaffected parents, respectively.

22q11.2 deletions and related copy number variations

The majority (83/94; 88.3%) of probands with 22q11.2DS
had the common 3 Mb 22q11.2 deletion. The other 11 pro-
bands carried one of eight variants of the 22q11.2 deletion
(Table 1). Single nucleotide polymorphism (SNP) array
results broadly agreed with qPCR results previously published
for 44 of the subjects (7) (Table 1). Subjects with schizo-
phrenia carried the typical (39/44; 88.6%) or one of the
three variant 22q11.2 deletion breakpoints.

We also examined the 22q11.2 deletion region for CNVs
that could predispose to deletion formation. As expected in
this region, there were polymorphic CNVs in some parents,
including two on whose chromosome the deletion had arisen.
A rare 142 508 bp loss (17 269 780—17 412 288), involving
the typical 22q11.2 deletion’s proximal breakpoint, was found



Table 2. Genome-wide copy number variants (CNV) in 22q11.2 deletion syndrome (22q11.2 DS) with and without schizophrenia and in unaffected parents

250K Affymetrix array 22q11.2DS study 500K Affymetrix
array (13)
22q11.2DS patients® (n = 95) Unaffected Popgen controls
parents® (n=500)
(n=122)
22q11.2DS All 22q11.2DS
Schizophrenia versus patients versus
non-psychotic® unaffected parents®
All (n=95) Schizophrenia Non-psychotic Statistic df P Statistic af P
(n=42) (n=153)
Total number of CNV 494 209 285 657 3695
Stringent® 216 91 125 286 1558
Average CNV per genome 5.2 5 54 54 7.4
Stringentb 23 2.2 2.4 z=-120 - 02 23 z=-043 - 0.7 3.1
Median size in kb (range) 177 (3-1987) 177 (3—-1987) 181 (3—1987) 194 (2-2731) 151
Stringent® 212 (14.8— 211 (24.7— 215 (14.8— z=-036 - 0.7 206 (3-2731) z=-051 - 0.6 224
1987) 1987) 1987)
Number >1 Mb CNV (% of total) 45 (9.1%) 19 (9%) 26 (9.1%) 72 (10.9%) 343 (9%)
Stringent® 28 (13%) 13 (14.3%) 15 (12%) X° = 0.24 1 0.6 46 (16.1%) X* =095 1 03 250 (16%)
Losses, % of total 36% 35.4% 36.5% 37.6% 41%
Stringent” 40.3% 36.3% 43.2% =105 1 03 40.6% X>=0004 1 1.0 30%
Number of novel CNV (% of total) 100 (20.2%) 42 (20.1%) 58 (20.4%) 117 (18.1%) 690 (19%)

Stringent” [number of different loci involved] 39 (18.1%) [39] 18 (19.8%) [18] 21 (16.8%) [21] x°=032 1 0.6 44 (154%)[43] x> =064 1 04 237 (152%) [219]

?All 22q11.2 deletions shown in Table 1 were excluded as CNV in the 22q11.2DS patient group. No unaffected parent had a 22q11.2 deletion as shown in Table 1. CNV data for Popgen controls
(13) are provided for comparison. Sample derivations are described in the text.
®Analysis using stringent data set, i.e. called using more than one algorithm or array (see Materials and Methods for further details).
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22911.2 DS cohort
100 adults from 94 families

l DNA sample usable for CNV analyses (FISH results available for other subjects)

95 adults with 22g11.2 DS
122 unaffected parents’

Parental DNA not available ‘

Parental DNA available

19 singletons?

30 duos’
30 parents

46 trios
92 parents

2Includes 3 with de novo 22q11.2 deletions

v TParental FISH (n=6) or sibling CNV (n=5)

half-sibling of subject with probable
inherited deletion®

from parental FISH results; and 1 maternal (
2

Parental origin of
2q11.2 deletion study’

results helped to discern parental origin
where parental DNA was not available

Probable
[

| Confirmed

2 inherited

1 maternal®

1 paternal

6 paternal

36 maternal
24 paternal

5 inherited
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Figure 1. 22q11.2DS, copy number variants (CNVs) and parental origin of deletion. Summary of samples used for genome-wide CNV analyses and of results for
analyses of parental origin of 22q11.2 deletions. Confirmed results for parental origin of deletion are based on CNV and fluorescence in situ hybridization (FISH)
data for 46 trios and 19 duos. In six cases, FISH results allowed inference of a de novo (n = 5) or inherited (n = 1) 22q11.2 deletion when parental DNA was
unavailable and, in five cases CNV results for siblings helped confirm parental origin. Probable results are based on CNV and FISH data for 11 duos, sup-
plemented with clinical data for the parent whose DNA was unavailable for study.

with one algorithm in a proband and unaffected father on whose
chromosome arose the 22q11.2 deletion with an atypical prox-
imal breakpoint about 360 kb distal at 17 774 335 (Atypical 1,
Table 1). The rarity of this CNV in control populations
(0.2-0.8%) (16,19) makes it possible that it was a factor in
the origin of this atypical deletion which is estimated to com-
prise <1% of all 22q11.2 deletions identified (6). However,
there was no evidence that this or any other CNV in the
22q11.2 region predisposed to other 22q11.2 deletion events.

Parental origin of 22q11.2 deletions and expression
of schizophrenia

Expression of schizophrenia was not related to inherited or de
novo status of 22q11.2 deletions. Of the probands with inher-
ited 22q11.2 deletions (Fig. 1), three of seven (42.9%; one
confirmed, two probable) had schizophrenia. Of the 65 pro-
bands with confirmed de novo deletions (Table 1), in whom
parental origin of deletion could be resolved for 60 (Fig. 1),
there were no significant differences in parental origin of de
novo 22qll1.2 deletion between the schizophrenia (14/26,
53.9% maternal) and non-psychotic groups (22/34, 64.7%
maternal; )(2 =0.72,df = 1, P = 0.39), or in mean intellectual
level (IQ) between probands with maternal or paternal origin
of de novo 22q11.2 deletion (70.8, SD 7.9 versus 71.9, SD
9.5, respectively; t = —0.48, df =22, P =0.63). IQ results
were similarly non-significant within the schizophrenia sub-
group (data not shown).

Other factors examined also showed no evidence that they
significantly affected risk for schizophrenia in 22q11.2DS.

In first-degree relatives, with fluorescence in situ hybridization
(FISH) data confirming no 22qll.2 deletion, there was a
family history of psychotic illness in two of 44 (4.5%) subjects
with schizophrenia and one of 56 (1.8%) in the non-psychotic
group. There were no significant differences between these
groups in maternal or paternal age (data not shown).

Sex distribution and parental origin of 22q11.2 deletions

Table 3 shows the sex distribution of probands with confirmed
de novo 22q11.2 deletions and known parental origin. As pre-
viously observed in 22q11.2DS, we found a non-significant
excess of de novo maternal deletions (60%; P =0.12).
Further analyses showed that this was associated with sex of
the offspring, with males significantly less likely than
females to have a de novo 22qll.2 deletion of paternal
origin [relative risk (RR) = 0.44, 95% CI = 0.20-0.94; P =
0.019]. This appeared to be due to an unexpected paucity of
males with deletions arising on paternally inherited chromo-
somes (Table 3). Results were similar for an expanded
sample (Fig. 1) including nine subjects with ‘probable’ de
novo origin of 22qll.2 deletion (RR =0.47, 95% CI=
0.25-0.91; P = 0.014). Similar rates of subjects with schizo-
phrenia were present in all four of the possible groups (data
not shown) and there was no significant difference in sex
distribution between the schizophrenia (20 male, 24 female)
and non-psychotic (24 male, 32 female) 22q11.2DS groups
(x* =0.07, df =1, P = 0.80).

We expanded our examination of skewed sex distribution
to include unaffected full sibling live births. Tests of equal
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Table 3. Confirmed parental origin of de novo 22q11.2 deletions and sex distribution in 22q11.2 deletion syndrome (22q11.2 DS)

Probands with 22q11.2DS Parental origin of de novo 22q11.2 Analyses
deletion
Maternal Paternal Chi-square of equal Relative risk (RR) Overall chi-square of
proportions of parental for maternal origin of parental origin by sex
origin deletion in males
n (%) n (%) Ve df P RR 95% CI N df P
Males 20 (33.3) 6 (10.0) 7.54 1 0.006 1.63 1.08-2.47 5.48 1 0.019
Females 16 (26.7) 18 (30.0) 0.12 1 0.73
Total (n = 60) 36 (60.0) 24 (40.0) 2.40 1 0.12
proportions showed no significant differences in the six families no support for imprinting effects on neuropsychiatric

with male probands of paternal de novo origin 22q11.2 dele-
tions (three brothers, five sisters), 18 families with female pro-
bands of paternal origin (18 brothers, 21 sisters), 16 with female
probands of maternal origin (14 brothers, 16 sisters) and 20
families of male probands of maternal origin (18 brothers, 14
sisters). There were also no significant differences in maternal
or paternal age between subjects with maternal or paternal
de novo origin of deletion overall or when male and female
probands were examined separately (data not shown).

DISCUSSION

Our results suggest that the expression of schizophrenia in
individuals with 22q11.2DS primarily arises from effects
related to the 22q11.2 deletion itself. There was no indication
that other CNVs elsewhere in the genome or that the parent of
origin of de novo 22ql1.2 deletions influenced the schizo-
phrenia phenotype. An interesting observation was that the
previously observed maternal excess of 22qll1.2 deletions
appears to be related to a relative paucity of 22q11.2 deletions
of paternal origin in males, that is, in those deletions arising
during spermatogenesis and segregated with a Y chromosome
in the resulting sperm.

Expression of schizophrenia in 22q11.2DS

In contrast to the recent reports for schizophrenia in the
general population (11-14), we found no evidence for an
overall increase in novel genome-wide CNVs in 22q11.2DS.
There was also no indication in our sample that specific recur-
rent CNVs, other than 22q11.2 deletions, were associated with
expression of schizophrenia. While some rarer CNVs may be
involved in increasing risk for schizophrenia in individual
cases in the general population (11,13,14,20), these do not
appear to be a necessary additional mechanism in the
expression of schizophrenia in individuals with 22q11.2 dele-
tions. We found no significant effects of parental origin of the
22ql1.2 deletion, deletion length, paternal age or family
history of psychotic illness on developing schizophrenia in
22q11.2DS. Our results are consistent with those showing no
relationship of parental origin of de novo 22q11.2 deletions
and expression of attention deficit hyperactivity disorder or
obsessive—compulsive disorder in 22q11.2DS (21). Previous
results using small samples that have suggested a parental
origin of deletion effect on neuropsychiatric expression (22)
are likely to be spurious. Collectively, these results provide

expression in 22q11.2DS (23). Hemizygosity of the 22q11.2
region appears to be the main factor in neuropsychiatric
expression in the syndrome (9).

Notwithstanding our negative statistical results, we com-
pared individual CNVs in our 22q11.2DS sample to those
reported in recent studies of schizophrenia from the general
population that used various ascertainment strategies but
similar CNV detection methods and diagnostic criteria
(DSM-1V) (11-14) (Supplementary Material, Table S4). We
were particularly interested in determining any overlap
between individual non-22ql11.2 deletion CNVs in our
22q11.2DS subjects with schizophrenia and those reported in
these studies. Five subjects with schizophrenia from our
sample had CNVs that shared some similarities in position,
though not necessarily loss/gain status or length, to three
CNVs reported in these studies. One 22ql11.2DS subject
with schizophrenia had a 1.48 Mb loss at 15q13.2-15q13.3
(chr 15:28,748,100-30,231,500) that was inherited from an
unaffected parent. This CNV, in a region flanked by segmental
duplications, has previously been reported in controls (chr
15:28,393,128-30,740,356; variation_8795) (24) as has a
large inversion (chr 15:28,524,307-30,602,466) in this region
(25). The CNV we observed was similar in position but
approximately 100 kb smaller than the 1.54—2.47 Mb losses
reported in 15 patients with schizophrenia and eight controls
in two multi-site studies with slightly overlapping samples
(13,14). Interpretation of these findings will be aided by
further data on ethnicity of samples and the phenotype of con-
trols and inheritance of this CNV in schizophrenia. Three sub-
jects with 22q11.2DS and schizophrenia had large (>1.6 Mb)
losses at 15ql11.2, one of which was inherited from an
unaffected parent. We found similar CNVs in 20 (16.4%)
unaffected parents who did not transmit this CNV to the
offspring with 22q11.2DS and in one non-psychotic proband
with 22q11.2DS. These 15q11.2 CNVs show partial
overlap with the proximal end of a 471 kb loss observed in
26 cases with schizophrenia and 79 controls in one study
(13). Both the large >1.6 Mb and more distal 471 kb CNVs
have previously been reported in controls (24). Finally, one
subject with 22ql11.2DS and schizophrenia had inherited
from an unaffected parent a novel 141 kb gain in a 2q31.3
region with no genes but contained within the extent of a
2.5 Mb de novo loss reported in a patient with childhood-onset
schizophrenia (11). These comparisons with the literature
do not seem sufficiently compelling to modify our overall
conclusions with respect to CNVs, other than the 22ql11.2
deletion, and expression of schizophrenia in 22q11.2DS.
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What then underlies the variable expression of schizo-
phrenia in 22q11.2DS? Altered expression of several genes
within the 22q11.2 region may be necessary to increase sus-
ceptibility of schizophrenia in 22q11.2DS (26-28). There is
some evidence that SNPs in certain genes within the
22q11.2 deletion region on the intact homologous chromo-
some may be involved. For example, we have found signifi-
cant association with schizophrenia and the PIK4CA gene in
22q11.2DS (29) using the same SNPs as those found to be
associated in a general population sample of schizophrenia
(30). This is in contrast to the negative findings of the
COMT functional allele and schizophrenia in 22ql11.2DS
(31). Other small genetic variants in candidate genes for
schizophrenia elsewhere in the genome may also modify the
large effects of the hemizygous 22ql1.2 deletion, as shown
for other phenotypic features of 22q11.2DS (32,33). There
also remains the possibility that various individual CNVs
increase the likelihood of expressing schizophrenia in
22q11.2DS.

Origin of de novo 22q11.2 deletions

We found that males with 22q11.2DS who had a maternal
origin of a de novo 22ql11.2 deletion were represented in a
similar proportion to females with either maternal or paternal
origin of deletion, but that males had a significantly lower
chance of having a paternal origin of the deletion. This is con-
sistent with the meta-analyses of previous studies (4,5) and our
own results showing an excess of de novo deletions of
maternal origin in 22q11.2DS. Previous studies have not con-
sistently documented the sex distribution of patients however,
hampering further comparisons. Larger samples will be
needed to replicate the paucity of paternal origin of de novo
22ql1.2 deletions in males which, although significant,
could be due to chance in a relatively small sample.
Explaining this finding is difficult. The mechanism under-
lying deletions in 22q11.2DS mainly involves non-allelic hom-
ologous recombination (NAHR) between misaligned low copy
repeats during gametogenesis (4,34). It is possible that there
is a female bias in NAHR causing de novo 22ql1.2 deletions
(5). Our results suggest however that de novo 22q11.2 deletions
may occur with approximately equal frequency in oogenesis
and during spermatogenesis, but that somehow the Y chromo-
some affects the likelihood of observing a 22q11.2 deletion.
There is a sequence homology between the Yql2 region and
the low copy repeats, LCR22-2 and LCR22-4, that are most
commonly involved in the 22qll.2 interchromosomal
exchanges and NAHR that give rise to 22ql1.2 deletions.
These regions share a 2.4 kb human satellite sequence subclass
involving AT-rich tripartite repeats (35). Babcock ef al. (35)
have posited that these repeat elements may play a structural
role in mediating NAHR between LCR22-2 and LCR22-4 if
the presence of the Yql2 repeat prevents recombination
between the LCRs, thereby enhancing meiotic stability of the
22q11.2 region. Such a mechanism could be related to physical
proximity of these heterochromatic regions in the nuclear per-
iphery (35,36). The report of a subject with 22q11.2DS resulting
from a de novo Y;22 translocation (37) may be consistent with
interchromosomal interaction between these chromosomes. To
explain the possibility that, in sperm with a 22q11.2 deletion

chromosome, there may be an elevated ratio of those with an
X to those with a Y chromosome, however, would appear to
implicate the segregation process, as a spermatocyte with a de
novo 22ql1.2 mutation would have both sex chromosomes
present. One could speculate that proximity of the Y chromo-
some to the deletion chromosome 22 could interfere with
normal segregation and/or error correction, resulting in an unba-
lanced, non-viable sperm (38), e.g. with two deletion 22q11.2
chromosomes.

Studies of sperm could help investigate possible mechan-
isms. Further studies of NAHR and allelic homologous recom-
bination (AHR, i.e. normal meiotic recombination) in
3-generation families are also needed to determine whether
polymorphic size of LCRs in the 22q11.2 region (39) or clus-
tering of recombination events within certain families and
high rates of AHR in the 22q11.2 region in female meiosis
(5) may also play a role in the observed sex distribution of
de novo 22q11.2 deletions.

Advantages and limitations

This is the largest sample of adults with 22q11.2DS, and one
of the largest ever investigated with respect to the parent of
origin of de novo 22q11.2 deletions (5). Nevertheless, there
were only six men with confirmed paternal de novo origin of
the deletion. There were fewer fathers than mothers available
in parent—offspring pairs but a systematic ascertainment bias
appears unlikely to explain the results. Although including
the largest number of patients with 22q11.2DS-schizophrenia
yet studied, our sample size was relatively limited. However,
if there were a three-fold excess of genome-wide novel or
rare CNVs as proposed in a recent study (11), our sample
would have had sufficient power to show this. Few subjects
(four of 56, 7.1%) in the non-psychotic group were younger
than the median age at onset of psychosis (20.5 years) and
there were no trends for differences between the schizophrenia
and non-psychotic subgroups on any CNV-related parameter
(Table 2), suggesting that misclassifying some subjects as non-
psychotic would not have materially affected the results.

CONCLUSIONS

In summary, hemizygosity of the 22ql1.2 region seems to
confer the major CNV risk for the expression of schizophrenia
in 22q11.2DS. While further investigations are required to
determine molecular risk factors that mediate de novo
22ql1.2 deletion events during gametogenesis, the results
reinforce the need for genetic counseling of individuals with
22q11.2DS about the risk for schizophrenia and further
efforts to identify the 1% of patients with schizophrenia who
carry 22q11.2 deletions.

MATERIALS AND METHODS
Subjects with 22q11.2DS

We diagnosed 100 Canadian adults (44 male, 56 female)
with 22q11.2DS originating from 94 families; six families
had two affected subjects (five parent—offspring pairs and
one half-sibling pair). All subjects met clinical screening



criteria for 22q11.2DS in adults (40) and had confirmed
chromosome 22q11.2 microdeletions using FISH and probes
from the 22q11.2 region (41) (Table 1). Observed ethnicity
of probands was 85/94 (90.4%) European, three of 94
(3.2%) African or mixed African, three of 94 (3.2%) Asian
and three of 94 (3.2%) other origins, consistent with the geno-
type data. Probands (median age 31.4; range 17.6—56.3)
were ascertained as previously described (8), many through
psychiatric sources or referrals, ensuring a high rate of
schizophrenia. Informed consent was obtained and the study
was approved by the Research Ethics Boards of the University
of Toronto, Centre for Addiction and Mental Health and
University Health Network.

All 22q11.2DS subjects had direct assessments, review of
medical records and information from relatives (8,31,42).
Lifetime psychiatric diagnoses were obtained by research
psychiatrists using standard methods and DSM-IV criteria
(31). Subjects with schizophrenia (n = 37), schizoaffective
disorder (n = 6) and psychotic disorder, not otherwise speci-
fied (n = 1), met the criteria for major psychotic disorders
[mean age at onset 20.9 (SD 5.4) years], collectively termed
‘schizophrenia’ for this study. The 56 other subjects comprised
the non-psychotic subgroup. Intellectual level was assessed
using standard methods to obtain Full Scale 1Q (n = 86) or
IQ estimates (n = 8) (43). As expected (43), subjects with
schizophrenia were significantly older (38.3, SD 9.8 versus
30.6, SD 10.6 years; t=23.74, P <0.001) and had lower
mean 1Q (68.6, SD 9.7 versus 73.0, SD 10.2; = —2.16,
P = 0.03) than those in the non-psychotic group.

Parents

We included data for as many of the biological parents of this
adult sample as possible; no parental data existed for four pro-
bands who were adopted. Mean paternal and maternal ages at
birth for 96 subjects with 22q11.2DS were 31.3 (SD 5.8) and
27.9 (SD 4.7) years, respectively. FISH data confirmed the
absence of a 22q11.2 deletion in 73 mothers and 64 fathers.
Extensive family history data from multiple sources provided
information on the demographics and health status of first-
degree relatives, including common phenotypic features of
22q11.2 DS.

Copy number variation detection

We genotyped each available DNA sample [99 subjects with
22q11.2DS; 122 unaffected parents (69 mothers, 53 fathers);
five unaffected siblings] for approximately 250 000 SNPs
with the Affymetrix GeneChip® Human Mapping 250K
Nspl Array according to established protocols (16,39,44).
Duos (proband and one parent) and trios (proband and both
parents) comprised the sample sets used to investigate parental
origin of de movo 22ql1.2 deletions and inheritance of
genome-wide CNVs (Fig. 1).

Nspl array scans were analyzed for CNV content with three
algorithms: DNA Chip Analyzer (dChip) (45,46), Copy
Number Analysis for GeneChip (CNAG) (47) and Genotyping
Microarray based CNV Analysis (GEMCA) (16,48). To mini-
mize potential batch effects, analysis with dChip was performed
in groups of approximately 50 probands/subjects according to
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when the arrays were hybridized. For CNAG version 2.0, we
set the reference pool to include all samples and performed an
automatic batch pairwise analysis with sex-matched controls.
For GEMCA, we used two designated DNA samples
(NA10851 and NA15510) as references for pairwise comparison
with all proband experiments. We further filtered these results
by including only those CNVs that were common to both pair-
wise experiments. In all instances, CNVs were merged if they
were detected in the same individual by more than one algorithm
with the outside probe boundaries (16). In general, CNAG
Merged (5.6/genome) and GEMCA (5.5/genome) algorithms
show more CNVs per genome than dChip Merged (3.0/
genome) (16). We report all data but in analyses we used a
‘stringent’ data set, i.e. CNVs called by more than one algor-
ithm, because these data have a high rate of validation (16).

Controls

Comparison control data comprised CNVs observed in 500
Europeans from the German PopGen project (16,49) and
entries in the Database of Genomic Variants (containing
8006 CNVs at 3933 loci) (24). A CNV was considered to be
‘novel’ in subjects if it was >10 kb, contained at least three
probes, and at least 20% of its total length was unique when
compared with controls. We also compared the results to
CNVs found in a cohort of 1152 non-disease controls of
European origin from the Ontario population that had been
analyzed using the same methods (16,19).

Parental origin of 22q11.2 deletions and other copy
number variations

We used SNP data to infer the parental origin of 22q11.2 dele-
tions for trios and a combination of SNP and FISH data for
duos. Where parent of origin could not be resolved using
SNP data, microsatellite marker analyses were performed
using 11 markers (sequence available upon request) across
the 22q11.2 region (16). For some duos, parent of origin
could be determined but that parent was unavailable for geno-
typic study. In those cases, we estimated whether 22q11.2 del-
etions were probably inherited or de novo in origin using the
available clinical data. We assigned a ‘probable inherited’
22ql1.2 deletion status if the unavailable parent had two
or more major features of 22q11.2DS (40) and a ‘probable
de novo’ 22ql1.2 deletion status if the unavailable parent
had none of these features and other offspring did not meet
the clinical criteria for 22q11.2DS (40).

Copy number variation validation of genome-wide copy
number variations

We validated all de novo and other potentially interesting
novel CNVs (16). Position coordinates were determined
using NCBI Build 35, and results were confirmed using inheri-
tance patterns and qPCR.

Statistical analysis

Chi-square or two-sided Fisher’s exact tests and estimates of
relative risk with 95% CI were used to compare categorical
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variables. Wilcoxon rank sum tests were used to compare
ordinal data, and two-tailed Student’s t-tests for continuous
variables. Main comparisons were between schizophrenia
and non-psychotic groups on genome-wide CNVs and parent
of origin of de novo 22ql11.2 deletions; we also examined
parental ages at birth and family history of psychotic illness
in first-degree relatives. All analyses were performed using
SAS 9.1.3 (SAS Institute, Cary, NC, USA). P-values <0.05
were considered significant.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG Online.
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