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Abstract

The ability of caregivers and investigators to share patient data is fundamental to many areas of 

clinical practice and biomedical research. Prior to sharing, it is often necessary to remove 

identifiers such as names, contact details, and dates in order to protect patient privacy. 

Deidentification, the process of removing identifiers, is challenging, however. High-quality 

annotated data for developing models is scarce; many target identifiers are highly heterogenous 

(for example, there are uncountable variations of patient names); and in practice anything less than 

perfect sensitivity may be considered a failure. As a result, patient data is often withheld when 

sharing would be beneficial, and identifiable patient data is often divulged when a deidentified 

version would suffice.

In recent years, advances in machine learning methods have led to rapid performance 

improvements in natural language processing tasks, in particular with the advent of large-scale 

pretrained language models. In this paper we develop and evaluate an approach for 

deidentification of clinical notes based on a bidirectional transformer model. We propose human 

interpretable evaluation measures and demonstrate state of the art performance against modern 

baseline models. Finally, we highlight current challenges in deidentification, including the absence 

of clear annotation guidelines, lack of portability of models, and paucity of training data. Code to 

develop our model is open source, allowing for broad reuse.
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1 INTRODUCTION

The advent of large, open access text corpuses and the resurgence of neural networks has 

driven advances in state-of-the-art model performance in natural language processing [10, 

27]. Barriers to sharing clinical text, however, have stifled progress in the medical domain. 

An unintended consequence is that research has become hyperfocused on the few datasets 

that are readily accessible. MIMIC-III, one of the only public sources of electronic health 

record data, for example, has been referred to as “one of the most (over)analyzed clinical 

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

aewj@mit.edu. 

HHS Public Access
Author manuscript
Proc ACM Conf Health Inference Learn (2020). Author manuscript; available in PMC 2021 
August 03.

Published in final edited form as:
Proc ACM Conf Health Inference Learn (2020). 2020 April ; 2020: 214–221. 
doi:10.1145/3368555.3384455.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc/4.0/


datasets” [12, 29]. This paucity of data is to the detriment of important issues including bias, 

generalizability, and reproducibility [5].

While barriers to sharing are multi-faceted, the risk of revealing sensitive patient information 

is undeniably a significant contributing factor. In the United States, the Health Insurance 

Portability and Accountability Act (HIPAA) provides federal protection for protected health 

information (PHI) [35]. HIPAA permits sharing of non-individually identifiable data and 

outlines a “Safe Harbor” provision on the specific identifiers that must be removed to 

consider a dataset “deidentified”. Examples of HIPAA identifiers include patient names, 

medical record numbers, dates (except year), and ages over 89 years. Enquiries into public 

views on the use of patient data for research broadly suggest that there is a willingness to 

share data where it is for the common good [9, 30].

There is a high density of information held within electronic health records captured during 

routine care. Deidentification of the records allows wider circulation for research, potentially 

amplifying the knowledge that be gained from them. Traditional approaches for 

deidentification can be broadly classified into three categories: rule-based approaches; 

supervised approaches; and combined approaches. Many of the most successful models in 

recent years have achieved improvements by integrating with conditional random fields 

(CRFs) [14]. Inevitably, most models reported in the literature incorporate customized rules 

such as pattern matches, dictionary lookups, and document-structure based filters [36]. 

Consequently, they are often somewhat rigid and generalize weakly beyond their 

development environment [31].

In this study, our contribution is to develop and present a model that achieves state-of-the-art 

performance for deidentification of free-text health records, using Bidirectional Encoder 

Representations from Transformers (BERT). We propose measures for capturing the extent 

that PHI is scrubbed from a corpus to provide a better interpretation of model performance, 

and we quantitatively evaluate the performance on four clinical datasets, exploring the issues 

of generalizability and model portability. We make the code for reproducing this study 

publicly available under a permissive license, enabling use in research and clinical practice.

2 BACKGROUND

In recent years there have been concerted efforts within the biomedical text mining 

community to address the issue of deidentification of electronic health records. In 2006 and 

2014, for example, the National NLP Clinical (n2c2, formerly known as i2b2) Challenges 

focused on automated systems for deidentification of clinical text [32, 33, 36]. In the 2006 

challenge, participants were invited to develop algorithms for automatically removing 

private health information (PHI) from medical discharge records drawn from Partners 

HealthCare, a Boston-based hospital network. The 2014 challenge extended the original task 

to pay particular attention to “longitudinal clinical narratives”, which were described as 

details that were benign when they appeared in separate records but which could lead to 

identification when used together longitudinally. In both challenges, successful approaches 

typically incorporated one or more of the following components: hand-crafted rules to 

capture words and document structure; embeddings to capture meaningful representations of 
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tokens; recurrent layers to incorporate sequence information; and sequence encoding layers 

to promote consistency of predicted labels.

In 2016, the CEGS N-GRID (Centers of Excellence in Genomic Science - Neuropsychiatric 

Genome-Scale and RDOC Individualized Domains) Challenge continued on the theme, this 

time in psychiatric intake records drawn from Partners HealthCare. Top performing 

participants typically employed algorithms that combined several complementary 

deidentification strategies. Liu et al., for example, combined a character level CRF, a token 

level CRF, and a bidirectional Long Short Term Memory (LSTM) network [20]. Lee et al. 

used rule based approaches along with a CRF, and incorporated additional data using 

domain adaptation, along with rules for correcting errors in final predictions [16]. Fully rule-

based approaches were also adopted, for example by Aberdeen et al. who tailored their 

algorithm to the training data using new lexicons [1].

Two of the best performing models to date are presented in work by Dernoncourt et al. and 

Liu et al.. Dernoncourt et al. demonstrated that exceptional performance could be achieved 

by combining recurrent neural networks (RNNs) with CRFs and training the model end-to-

end [7]. Liu et al. extended this model, constructing an ensemble that incorporates both rule-

based approaches and RNNs trained with handcrafted input features [21]. For a more 

comprehensive review of the literature on automated approaches to deidentification of 

clinical test, we refer interested readers to Yogarajan et al. and Stubbs et al. [31, 42].

Deidentification can be considered a specific form of named entity recognition (NER), 

where the entities correspond to PHI. To understand the state-of-the-art in deidentification, 

therefore, it is helpful to consider advances in NER more generally. While modern 

approaches in NER are often mirrored by those used in deidentification - namely end-to-end 

models incorporating embeddings, an RNN, and a CRF - many promising modifications 

have been presented. Vaswani et al., for example, proposed replacing recurrent components 

with a network that learns a weighting over nearby tokens, commonly called attention [37]. 

Peters et al. demonstrated that significant performance improvements could be gained when 

contextualizing word embeddings within local sentences and using these embeddings in 

downstream NLP tasks [25]. Notably, the context learned by Peters et al. is done so by 

models which can only process a sentence in one direction [25]. Radford et al. demonstrated 

that large scale pretraining of language models also results in significant improvements in 

downstream tasks [26]. Devlin et al. pre-train deep Bidirectional Transformers for language 

modeling [8] to create a model named BERT, which is capable of simultaneously 

contextualizing word embeddings using all flanking context. This model resulted in 

significant improvements on the state-of-the-art in NLP on a number of tasks.

3 METHODS

3.1 Model

We adopt the model architecture used in BERT [8] with additional components for 

performing named entity recognition. Briefly, our model consists of L identical layers 

applied sequentially, where each layer is a single transformer block [37]. The outputs of the 
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final layer are passed to a single linear fully connected layer with C outputs, where C is the 

number of classes. A pictorial representation of our architecture is provided in Figure 1.

3.2 Datasets

We use four datasets that comprise collections of free-text notes written during routine 

clinical practice, as summarised below. Each of these datasets is publicly available after the 

respective data use agreement is signed.

• i2b2 2006 Corpus: 889 deidentified discharge summaries shared as part of the 

2006 i2b2 Challenge. Includes challenge annotations, training and test sets, and 

ground truth [36].

• i2b2 2014 Corpus: 1,304 medical records for 296 patients, shared as part of the 

2014 i2b2 Challenge [34].

• PhysioNet Corpus: 2,434 nursing notes collected from patients admitted to 

intensive care units at the Beth Israel Deaconess Medical Center, Boston, MA, 

USA [22].

• Dernoncourt-Lee Corpus: 1,635 discharge summaries, each belonging to a 

different patient admitted to intensive care units at the Beth Israel Deaconess 

Medical Center, Boston, MA, USA [7].

All datasets were used in their entirety in this study, with no records excluded. Summary 

characteristics of the datasets are outlined in Table 1. As shown in this table, the types of 

annotations associated with each dataset vary.

Research into deidentification is made complicated by the need for (sensitive) patient 

information to be present in order to develop and evaluate clinically acceptable models. To 

overcome this, a common approach has been for data custodians to manually replace PHI 

with realistic surrogates. This is a non-trivial task that can have a signicant impact on the 

quality of models built on the data. In a retrospective discussion between organizers of the 

i2b2 2014 challenge, a number of differences between the 2006 and 2014 data were 

highlighted: namely that the 2006 challenge intentionally introduced ambiguous and 

mispelled surrogates for PHI fields, years were not annotated, and the type of note was less 

varied [31]. These details had a notable impact on models trained using the 2006 data and 

provide important context for interpreting model performance.

3.3 Data processing

Harmonization.—Datasets were distributed in a number of formats, primarily eXtended 

Markup Language (XML). We harmonized datasets into a common stand-off format that 

separates text from annotations. We grouped granular annotation types into one of the seven 

entity categories listed in Table 1: age, contact, date, location, ID, name, and profession. We 

assigned unannotated entities the label “other”, resulting in C = 8 possible classes for each 

token.

Tokenization.—Text was split into discrete tokens using whitespaces to denote token 

boundaries. Each token was assigned an entity label using the respective category for the 

Johnson et al. Page 4

Proc ACM Conf Health Inference Learn (2020). Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respective annotation (Table 1). We subsequently applied WordPiece tokenization to further 

discretize the tokens [40]. WordPiece tokenization is easiest to conceptualize as splitting 

words into sub-words, but notably it also splits multiple digit numbers such as the year in 

dates. Note that the WordPiece tokenization is kept internal to the model, and all evaluation 

measures are reported using complete tokens.

Data generation.—We sample contiguous segments of text from each document with a 

maximum length of 100 tokens. We ensure segments of text include entire words by 

preventing the sampler from segmenting on a sub-word token. As the tokenization is fixed a-

priori, we apply this on both training and test sets. For training, we note that this sampling 

scheme may deprive peripheral tokens of necessary context, and consequently sample text 

segments with an overlap of 40 tokens. At test time, we also sample overlapping text 

segments, and take any non-object prediction as the label for the token. If multiple non-

object predictions exist, we take the one with the highest valued prediction.

Data splits.—We evaluate models using standard training and test set splits when 

available. For the PhysioNet gold standard corpus, we assign all documents prefixed with 1–

5 to the training set, and all other documents to the test set.

3.4 Training and evaluation

Model training.—We initialize our models using pre-trained weights via the transformers 

Python library v2.3.01 [39]. We feed the final hidden representation of BERT into a fully 

connected dense layer with one output for each entity type, including the “other” label used 

for non-entities. For entities split into sub-tokens, we only calculate the loss using the first 

sub-token. As BERT was trained using a general language corpus, we evaluate model 

performance when using pretrained weights from scientific corpora (SciBERT) or 

biomedical corpora (BioBERT) [3, 17]. We did not use versions of BERT fine-tuned to 

clinical corpora, such as ClinicalBERT, as these are trained using deidentified text and are 

known to suffer weaker performance for the task of deidentification itself [2]. We fine-tune 

all weights in the model, including those in BERT, and use a dropout probability of 0.1 on 

all layers. We use the Adam optimizer with a learning rate of 5e-5 and linear learning rate 

warmup over the first 40% of iterations. Models were trained for 3 epochs on a single 

NVIDIA Quadro GV100 using CUDA 10.0 and pytorch v1.1.0 [23, 24].

Comparisons.—Our experiments aim to evaluate (1) the impact of model size, (2) the 

impact of letter case, and (3) the impact of the pretrained weights. Specifically, for the i2b2 

2014 corpus, we compare: (a) a large BERT model with 340 million parameters and cased 

tokens (BERTlarge,cased), (b) a similarly large model with uncased tokens (BERTlarge), (c) a 

smaller model with 110 million parameters and cased tokens (BERTbase,cased), (d) a 

similarly sized model with uncased tokens (BERTbase), (e) a BERT based model pre-trained 

using PubMed abstracts and PubMed Central articles (BioBERTbase), (f) a BERT based 

model pre-trained using an academic corpus from semantic scholar (SciBERTbase), and (g) 

the same model with a new vocabulary developed using the semantic scholar corpus 

1https://github.com/huggingface/transformers
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(SciBERTsci) [4, 18]. For the remaining datasets, we fine-tune BERTbase with an uncased 

vocabulary. We assess performance of models trained on each corpus on their respective test 

set, and further evaluate generalization performance on external test corpora. We highlight 

difficulties in cross-dataset comparisons using a re-annotated version of the PhysioNet 

corpus which assigns entities according to the guidelines set forth by the organizers of the 

i2b2 2014 challenge [11, 33]. To reduce the impact of heterogenous annotations, we evaluate 

generalization performance of models using a binary evaluation of only the NAME entity, as 

its annotation was the most consistent across corpora.

Evaluation.—We assessed performance of the model by computing positive predictive 

value (PPV, also known as precision), sensitivity (Se, also known as recall), and the F1 

measure (harmonic mean of Se and PPV). Of these scores, we consider sensitivity - the 

proportion of true identifiers that are correctly annotated by the model - to be the most 

important measure for patient deidentification. As such, we evaluated the performance of 

models at fixed sensitivity levels of 100%, 99.9%, 99.7%, and 99.0%. We further calculate 

the absolute number of false positives and false negatives per 1000 tokens as an interpretable 

measure of performance for the task of deidentification.

The official i2b2 challenge evaluation metrics describe two modes of defining a single entity 

for scoring: (a) entity based, which groups contiguous tokens into single entities and 

penalizes models for incomplete or inconsistent identification of entities across tokens, and 

(b) token based, which evaluates models on their ability to classify tokens. As the goal of 

deidentification is removal of PHI, not perfect entity recognition, we assess models using the 

latter mode. Additionally, we evaluate models after binarizing both entity labels and 

predictions into two groups: PHI and not PHI. Note that for the binary based evaluation we 

do not retrain models.

We compare the performance of our models to state of the art models developed using the 

i2b2 2014 challenge dataset [7, 11, 21]. Dernoncourt et al. apply a bidirectional LSTM with 

character enhanced token embeddings with a label sequence optimization layer [7]. Hartman 

et al. adapted the open source implementation NeuroNER [6], which is based upon the work 

of Dernoncourt et al., and tuned the model to have at least 97% sensitivity. Finally, Liu et al. 

apply an ensemble combining an RNN, an RNN conditioned on hand-crafted features, a 

CRF, and a rule-based approach [21].

Reuse.—A key challenge presented by previous tools is the effort required to customize 

them according to local need. We have made the trained BERTbase model public, easy to 

acquire, and applicable with minimal technical expertise required. We further provide 

detailed guidance facilitating fine-tuning of the model to local corpora. The entire analysis 

described in this study is fully reproducible using code that we have made openly available 

online [13].
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4 RESULTS

4.1 Model Performance

Table 2 shows the performance of models trained on the i2b2 2014 Challenge training 

dataset and evaluated on the i2b2 2014 Challenge test set. The larger models consistently 

outperformed the lower capacity BERTbase models. Case-insensitive models consistently 

outperformed case sensitive models, to the extent that the smaller uncased model had 

equivalent performance to the large cased model. All models outperformed the ensemble 

approach of Liu et al. and neural network approach of Dernoncourt et al. [7, 21].

Table 3 presents performance for each entity type in the i2b2 test corpus comparing the 

uncased BERTbase model to that presented by Dernoncourt et al.. Overall, performance for 

the two approaches is rather similar. The BERTbase model has slightly lower performance 

within the AGE and ID entities, but markedly better performance within the PROFESSION 

entity.

The uncased BERTbase model had a sensitivity of 81.2% on the re-annotated PhysioNet 

corpus. A large proportion of false negatives were in-hospital locations (“medical intensive 

care unit”, “catheterization laboratory”, “floor”), which are not considered as PHI in the 

i2b2 2014 corpus. When treating entities for local hospital departments as non-PHI, the 

sensitivity of the model increased to 90.8% (+ 9.6%).

Performance for uncased BERTbase models across all datasets using only the NAME entity 

is shown in Table 4. The main diagonal represents test set performance, and models perform 

significantly better on their respective test sets as compared to external test sets.

Performance measures of the BERTbase model at fixed sensitivies are presented in Table 5. 

Note that at 99.7% senstivity, the model has a high rate of false positives (50 per 1000 

tokens). Conversely, using the default thresholds, the model based on BERTbase has very few 

false positives per 1000 tokens (0.51), but misses 0.81 tokens of PHI per 1000 tokens 

analyzed.

4.2 Qualitative analysis

The most costly error is that of missed PHI, and consequently we focus our error analysis on 

false negatives. The fine-tuned uncased large model produced 632 false negatives on the 

i2b2 2014 test set. 493 (78%) of these tokens were either directly preceded by or followed 

by a correctly classified PHI token. Examples of false negatives are shown in Table 6.

5 DISCUSSION

Performance.

In this study we fine-tuned a bidirectional encoder representation model to achieve state-of-

the art performance in deidentification of electronic health records. In terms of commonly 

accepted metrics such as positive predictivity and F1 score, the model is highly effective at 

removing patient identifiers, including names, ages, and dates. The larger models performed 

best, though their performance was not appreciably better than the smaller “base” models. 
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Interestingly, the application of pre-trained models built using scientific or biomedical 

corpora did not improve performance, and in one instance caused notable degredation. It is 

appears that better contextual representation of scientific or medical language does not 

translate to improved performance in the downstream de-identification task, possibly 

because PHI tokens are usually common language (names, locations, dates) within the 

context of non-scientific text (“he is staying in Canada”, “Study dated 01/01/2000”, etc).

Reviewing the individual errors of our model was insightful and highlighted annotation 

ambiguities highlighted previously [7, 11, 31]. In the i2b2 2014 corpus, “He continues to go 

to the library daily” is an example of one such ambiguity, where “library” is labelled as a 

protected location and not detected by BERTbase. On the other extreme, our model labelled 

“radiology” in the phrase “southwest montana radiology” as PHI, but this was not annotated 

as PHI in the i2b2 2014 corpus. These ambiguities make the goal of deidentification 

somewhat fickle.

While annotation ambiguity is not new to natural language processing, many cases 

qualitatively identified in both our review and by others appear relatively straightforward to 

reconcile. We thus argue a key step necessary for the advancement of free-text 

deidentification is convergence on a single agreed upon annotation protocol. The need for 

this is especially highlighted in the drop of performance when applying a model to a new 

dataset, as it is unclear whether the deterioration in performance reflect true domain shift or 

merely a shift in labeling practices.

Our assessment of a model trained on the i2b2 2014 corpus and evaluated on the PhysioNet 

gold standard corpus highlights the lack of standardized guidelines for annotating PHI. 

Legally, the Safe Harbor provision of HIPAA is essentially a reference standard. Yet many 

researchers broaden the definition of PHI to produce conservative deidentification models. 

The most frequent addition is that of provider names, but subtler distinctions were 

highlighted by our experiments. In particular, it is unclear at which point local hospital 

departments such as “cath lab” should be considered PHI, and this had a significant impact 

on the performance of the model. The 2016 CEGS N-GRID deidentification challenge 

discusses a few of the challenges associated with these ambiguities, particularly in the 

context of longitudinal records [31].

Cross-dataset performance.

In order to assess model generalizability despite annotator variability, we focused on the 

relatively reliable NAME entity. As expected, models consistently degraded when tested on 

corpora external to their training set. All models had relatively high sensitivity on the 

PhysioNet corpus. Despite the Dernoncourt-Lee and PhysioNet corpora being sourced from 

the same institution, the i2b2 2014 corpus generalized better with higher sensitivity. Overall, 

the results indicate that a high capacity model is capable of delivering over 95% sensitivity 

even if the number of labeled entities is low (e.g. PhysioNet has only 1,779 labeled tokens).

Evaluation.

Almost all deidentification models evaluated to date have reported sensitivity, PPV, and the 

F1 score. Alternative evaluations and assessments have been further proposed based off 
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reidentification risk [28]. The lack of an industry-wide standard for deidentification 

performance has resulted in ambiguity in what is considered adequate performance for 

clinical application [32]. We present a set of measures (Table 5) which combine common 

operating point statistics with the prevalence of the label in order to provide a non-expert 

with a better intuition for the model performance. We stand by our assertion that sensitivity 

is of paramount importance to deidentification, but acknowledge that the difference between 

98.3% sensitivity and 99% is difficult to reason with. Alternatively, the reduction from 0.8 

PHI tokens per 1000 to 0.4 PHI tokens per 1000 at a cost of 1 false positive is much more 

interpretable. We believe these measures to be useful for non-researchers who must review 

deidentification tasks, such as members of an Institutional Review Board, but further study 

is needed to verify this assertion.

Future work.

A number of avenues for future research exist. First, models which combine neural networks 

with rule-based approaches are consistently top performers in the deidentification 

challenges, and it is likely that the addition of rules would improve performance. For 

example, while e-mail addresses are rarely observed in the corpus, they adhere to a 

consistent pattern easily codified using a rule-based approach.

Second, recent work has improved upon the original BERT model [8]. New models 

including RoBERTa [19], ALBERT [15], and XLNet [41] have demonstrated enhanced 

performance in several transfer learning tasks, and so could be expected to offer 

performance gains in deidentification.

Third, a large proportion of PHI entities are constituted by numbers (ages, dates, identifiers). 

Despite training on a large corpus of text, BERT based models struggle with numeracy, in 

particular due to the poor representation of large numbers in sub-word tokenization [38]. We 

qualitatively observed this behavior with delimited identifiers such as 111-11-1111. Due to 

the smaller corpora available for fine-tuning, it is likely that BERT based models will fail to 

adequately span the entire range of plausible years or identifiers. Furthermore, most corpora 

contain synthesized PHI with unrealistic dates (2050 – 2200), which weakens generalization 

of these models to real clinical text. Further work is necessary to better represent numeric 

data within transformer models such as BERT.

Fourth, it is interesting to note that document structure is lost when performing tokenization, 

and yet this structure contains key information on the location of expected PHI. For 

example, many documents contain automatically generated headers with numerous patient 

identifiers. Incorporation of the overall document structure into modelling approaches might 

result in improved performance.

Fifth, finally, and most importantly, progress in deidentification is stifled by overt ambiguity 

in the task itself. Are hospital departments PHI? Many hospitals have an emergency 

department, but strictly speaking this is a patient location smaller than a state. Should 

punctuation be included in the entity? Previous evaluation methods were modified to be 

“fuzzy” calculations allowing one or two characters to be missed, which undermines the 

integrity of the performance measures. Should honorifics be removed? The text “Dr.” may 
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not be considered as sensitive, but perhaps “Professor” would be, and certainly we would 

remove instances of “Baron” or “Dame”. These are just a few of the uncertainties 

encountered in this task which could be solved with an agreed upon set of requirements. 

Across the four datasets analyzed here, we were only able to meaningfully compare name 

annotations primarily due to these annotation ambiguities.

HIPAA provides an important and helpful framework for prescribing what constitutes 

protected health information. However, it is stretching the purpose of the guidelines to apply 

them as strict annotation rules. Moreover, HIPAA provides no guidance on the evaluation of 

automated deidentification approaches. We believe a community wide consensus is 

necessary to define the goals and expectations of deidentification more clearly.
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Figure 1: 
Architecture of the model with example text and predictions. Text is tokenized and fed into 

12 identically constructed transformer blocks. Weights within the transformer blocks are 

initialized using various publicly available pretrained models. The final output of the 

transformer blocks is fed into a linear classification layer. Note the use of sub-word 

tokenization (represented by two hashes before the sub-word), and the class of the 

intermediate punctuation tokens.
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Table 2:

Performance of models developed using the i2b2 2014 challenge training set and evaluated on the i2b2 2014 

challenge test set. Models use all lower case text and an uncased vocabulary unless otherwise specified. Each 

token is treated as a distinct entity. Binary evaluation involves collapsing all labeled entities into a single 

“PHI” group.

Multi-class PHI vs. not PHI

PPV Se F1 PPV Se F1

BERTlarge 98.66 98.15 98.40 99.08 98.57 98.82

BERTlarge,cased 98.56 97.77 98.16 99.00 98.20 98.60

BERTbase 98.61 97.90 98.25 98.98 98.27 98.62

BERTbase,cased 98.36 97.38 97.87 98.90 97.91 98.40

SciBERTsci 98.34 97.88 98.11 98.80 98.33 98.57

SciBERTbase 98.25 98.06 98.15 98.66 98.47 98.57

BioBERT 95.27 91.60 93.36 96.95 93.18 95.03

† Dernoncourt et al. 98.16 98.32 98.23 97.92 97.83 97.88

Hartman et al. 85.7 99.1 91.7 - - -

Liu et al. 97.94 96.04 96.98 99.30 97.28 98.28

†
The PHI vs. not PHI evaluation in Dernoncourt et al. used a subset of classes based upon HIPAA and is not directly comparable to other results.
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Table 3:

Performance comparison of BERTbase against the model of Dernoncourt et al. for individual entities within the 

i2b2 2014 test corpus.

Precision Recall F1

Entity type Model

AGE BERTbase 97.12 98.23 97.67

n = 789 Dernoncourt et al. 98.97 97.60 98.28

CONTACT BERTbase 98.31 98.46 98.38

n = 648 Dernoncourt et al. 98.80 98.33 98.57

DATE BERTbase 99.43 99.26 99.35

n = 8022 Dernoncourt et al. 99.06 99.52 99.29

ID BERTbase 96.73 97.66 97.20

n = 1455 Dernoncourt et al. 99.29 98.76 99.02

LOCATION BERTbase 97.14 94.12 95.60

n = 3027 Dernoncourt et al. 95.96 95.74 95.85

NAME BERTbase 99.12 98.29 98.70

n = 5387 Dernoncourt et al. 98.22 99.15 98.68

PROFESSION BERTbase 96.39 92.49 94.40

n = 346 Dernoncourt et al. 87.99 79.71 83.64
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Table 4:

Performance of models developed using the training dataset specified in the row, and evaluated on the test set 

for the corpus specified in the column. All models are trained using the same hyperparameters with the 

uncased base architecture.

i2b2 2014 i2b2 2006 PhysioNet Dernoncourt-Lee

F1

i2b2 2014 98.62 81.62 87.95 88.32

i2b2 2006 92.77 98.45 75.37 86.85

PhysioNet 83.84 52.28 95.61 78.54

Dernoncourt-Lee 84.02 63.13 90.27 97.42

Se

i2b2 2014 98.27 72.55 96.05 83.10

i2b2 2006 92.11 97.71 77.19 80.85

PhysioNet 76.26 36.68 95.61 68.40

Dernoncourt-Lee 84.89 61.57 95.61 97.59

PPV

i2b2 2014 98.98 93.27 81.11 94.25

i2b2 2006 93.45 99.20 73.64 93.81

PhysioNet 93.09 90.93 95.61 92.19

Dernoncourt-Lee 83.16 64.76 85.49 97.25
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Table 5:

Rate of false negatives (FN) and false positives (FP) for models with a minimum desired sensitivity. Results 

are calculated on the i2b2 2014 test set (414,661 tokens) using the lowest threshold for model predictions 

which has at least the specified sensitivity.

Required Sensitivity PPV F1 FN/1000 FP/1000

100 0 0 0 1000

99.7 49.86 66.47 0.14 47.18

99.0 96.82 97.90 0.47 1.53

98.27 98.92 98.60 0.81 0.51
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