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Abstract: An important reason of cancer proliferation is the change in DNA methylation patterns,
characterized by the localized hypermethylation of the promoters of tumor-suppressor genes together
with an overall decrease in the level of 5-methylcytosine (5mC). Therefore, identifying the 5mC sites
in the promoters is a critical step towards further understanding the diverse functions of DNA
methylation in genetic diseases such as cancers and aging. However, most wet-lab experimental
techniques are often time consuming and laborious for detecting 5mC sites. In this study, we
proposed a deep learning-based approach, called BiLSTM-5mC, for accurately identifying 5mC sites
in genome-wide DNA promoters. First, we randomly divided the negative samples into 11 subsets
of equal size, one of which can form the balance subset by combining with the positive samples
in the same amount. Then, two types of feature vectors encoded by the one-hot method, and the
nucleotide property and frequency (NPF) methods were fed into a bidirectional long short-term
memory (BiLSTM) network and a full connection layer to train the 22 submodels. Finally, the outputs
of these models were integrated to predict 5mC sites by using the majority vote strategy. Our
experimental results demonstrated that BiLSTM-5mC outperformed existing methods based on the
same independent dataset.

Keywords: 5-methylcytosine sites; one-hot encoding; nucleotide property and frequency;
bidirectional long short-term memory; majority vote

1. Introduction

DNA methylation, which is one of the most studied epigenetic modifications, plays
important roles in mammalian development and is associated with a number of key
biological processes such as genomic imprinting, repression of transposons and genes,
aging, and carcinogenesis [1]. Currently, there are three most common DNA methylation
types in living organisms, including N6-methyladenine (6mA), N4-methylcytosine (4mC),
and 5-methylcytosine (5mC) [2]. Among them, 5mC is generated when a methyl group
is attached to the fifth position of cytosine pyrimidine ring via DNA methyltransferases.
In somatic cells, 5mC almost exclusively occurs at palindromic CpG dinucleotides within
promoters [3].

An increasing number of human diseases have been found to be associated with
aberrant DNA methylation at promoters and regulatory regions [3,4]. For example, many
studies have highlighted that the changes in DNA methylation patterns are linked to the
initiation of autoimmune rheumatic diseases such as systemic lupus erythematosus [5]
and rheumatoid arthritis [6]. Although other epigenetic modifications can also occur
in these diseases, DNA methylation is often used as a clinical biomarker and has more
practical value due to the stability of the methylated cytosine and its physical association
with a specific DNA sequence [7]. In a recent breakthrough, DNA methylation levels
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can be adopted as biomarkers of aging to estimate the age of any tissue and cell type
across the entire life course, forming an accurate epigenetic clock [8]. Subsequently, these
biomarkers have been reported to undoubtedly capture pivotal aspects of biological aging
and its associated morbidity and mortality [9]. Furthermore, previous research showed
that alterations of DNA methylation levels play a critical role in carcinogenesis [10,11].
Genome-wide hypomethylation and the localized hypermethylation of the promoters of
tumor-suppressor genes are common epigenetic features of cancer cells and have been
recognized as an important component of cancer development and diagnosis [12,13].
Therefore, the accurate identification of 5mC sites in genome-wide DNA promoters is of
great importance for understanding the mechanisms and functions of DNA methylation in
human genetic diseases such as aging and cancer.

Several traditional high-throughput sequencing techniques, such as bisulfite sequenc-
ing [14], oxidative bisulfite sequencing [15], TET-assisted pyridine borane sequencing
(TAPS) [16], and Aza-IP [17], have been developed to detect 5mC sites. However, these
experimental methods are often time consuming and laborious, insufficient to cope with
the explosive growth of nucleotide sequences generated in the post-genomic era [18].
Therefore, it is urgent to explore effective computational methods to identify 5mC sites. To
date, various prediction models based on machine learning have been proposed to address
this challenge, including Methylator [19], MethCGI [20], iDNA-Methyl [21], and so on. For
instance, Bhasin et al. [19] developed a support vector machine (SVM) model called Methy-
lator to identify cytosine methylation in CpG dinucleotides from the MethDB database [22],
where every nucleotide was represented by using the conventional binary sparse encoding.
Then, Fang et al. explored an SVM-based classifier called MethCGI for predicting methy-
lation status of CpG islands in human brain tissues, using nucleotide sequence contents
and transcription factor-binding sites as features [20]. Later, the iDNA-Methyl predictor
constructed by Liu et al. achieved remarkable improvements in annotating the DNA methy-
lation sites based on the pseudo-trinucleotide composition and the SVM classifier [21].
Since then, many computational predictors have been proposed to detect 5mC sites in
RNA sequences, such as RNAm5Cfinder [23], iRNAm5C-PseDNC [24], RNAm5CPred [25],
iRNA-PseTNC [26], m5CPred-SVM [27], iRNAm5C_SVM [28], and so on [29–32]. For
example, Feng et al. designed an SVM-based model to predict 5mC sites in Homo sapiens,
in which the RNA samples were encoded using the pseudo-dinucleotide composition [29].
Li et al. explored a web-server named RNAm5Cfinder to identify RNA 5mC sites in eight
tissue/cell types from a mouse and human based on the one-hot encoding and the random
forest algorithm [23]. Recently, Lv et al. collected experimentally confirmed 5mC data
from Homo sapiens, Mus musculus, Saccharomyces cerevisiae, and Arabidopsis thaliana,
and developed an optimal predictor called iRNA-m5C for the identification of 5mC sites
by comparing the performance of different feature extraction methods and classification
algorithms [18]. More reports about the recognition of 5mC sites can be seen in the recent
review article [33].

Despite some meaningful achievements that have been made for the detection of
DNA/RNA 5mC sites in recent years, there are still two important challenges. First, all
previous models were trained on the datasets with the relatively smaller size and have not
been applied to predict the 5mC sites in genome-wide DNA promoters. Second, these tools
based on machine learning need to take considerable time to extract features and select the
optimal feature subset by fusing diverse types of features. To solve these problems, Zhang
et al. collected promoter methylation data of the small cell lung cancer (SCLC) from the
cancer cell line Encyclopedia (CCLE) database [34,35], and build a deep learning-based
predictor called iPromoter-5mC for identifying 5mC modification sites in the promoter
region [36]. Based on the one-hot encoding, iPromoter-5mC achieved the robust and
reliable performance on the independent testing dataset. Subsequently, Nguyen et al.
compared the effectiveness of several of the most popular machine learning techniques
including XGBoost, random forest, deep forest, and the deep feedforward neural network
based on the same datasets [37]. Among them, the XGBoost classifier with the k-mers
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embeddings strategy showed the best achievement and outperformed the iPromoter-5mC
model on both the 5-fold cross-validation (CV) and the independent test [37].

In this work, we proposed a novel deep learning framework named BiLSTM-5mC for
further improving the detection of the 5mC sites in genome-wide DNA promoters. BiLSTM-
5mC utilized the one-hot and the nucleotide property and frequency (NPF) methods
to encode nucleotide sequences and adopted the bidirectional long short-term memory
(BiLSTM) model with a fully connected network to perform the final prediction. To
comprehensively evaluate the performance of the proposed model, both the 5-fold CV
and the independent test were carried out on the benchmark datasets associated with
the SCLC. The experimental results exhibited that BiLSTM-5mC achieved a competitive
performance and could be used to help increase predictive levels of DNA 5mC sites in
the promoter region from the SCLC. Figure 1 illustrates the framework diagram of the
BiLSTM-5mC method.
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Figure 1. The workflow of the proposed BiLSTM-5mC model for the prediction of 5mC sites.

2. Results and Discussions
2.1. Sequence Composition Analysis

It is well known that almost all predictors for the identification of 5mC sites are based
on the assumption that the sequences around 5mC sites have different nucleotide distri-
butions from the sequences around non-5mC sites. In this study, the sequence context
around one potential site can be represented by a sequence window of 41 nucleotides with
the modification site at the center. To research the preference of nucleotides distribution
around 5mC sites, a web-based tool called Two Sample Logo [38] was employed to statisti-
cally analyze the occurrence frequencies of nucleotides at each position between flanking
regions of 5mC and non-5mC sites in genome-wide DNA promoters. The statistically sig-
nificant differences in position-specific nucleotide composition between positive samples
(sequences containing 5mC sites) and negative samples (sequences containing non-5mC
sites) from the benchmark datasets were graphically represented in Figure 2, in which the
nucleotides enriched or depleted in the positive samples are located above or under the
horizontal axis, respectively, and the consensus cytosines (C) are displayed in the middle
section between the 20 position and 22 position.
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As shown in Figure 2, the following observations were obtained. (1) The cytosine (C)
and the guanine (G) are prominently enriched in the positive samples and tend to occur
at the upstream of 5mC sites. (2) The most conserved motif appears to be “CCGG” at
positions 20~23 for the sequence contexts containing 5mC sites. (3) Statistically significant
position-specific differences exist between positive and negative samples, indicating the
non-random sequence pattern around DNA 5mC sites. Accordingly, it is possible and
rational to explore a computational method to predict potential 5mC sites in the promoter
region by only using sequence information.

2.2. Performance Evaluation on Different Feature Encoding Methods

In this section, we compared the performance of the proposed deep learning frame-
work combined with four different feature encoding schemes, including the one-hot en-
coding, the NPF strategy, and their concatenation (one-hot+NPF) and combination (one-
hot&NPF). As described in Section 3, the one-hot and the NPF methods can encode the
nucleotide sequences around 5mC or non-5mC sites into a series of matrices with the
size of 41 × 4, respectively. The output of the one-hot+NPF representation is a large ma-
trix of 41 × 8 by concatenating the two matrices with the same size separately generated
by the one-hot and the NPF encoding schemes. In contrast, the main idea of the one-
hot&NPF strategy is to combinate the outputs of 22 sub-models trained by the proposed
deep learning framework, in which 11 sub-models adopt the one-hot encoding and the
other 11 sub-models apply the NPF-based features.

All the results on the training dataset by using the 5-fold CV and on the independent
testing dataset were displayed as the histograms visually in Figure 3, where sensitivity
(Sen), specificity (Spe), accuracy (Acc), and Matthew’s correlation coefficient (MCC) were
selected as the evaluation measures.
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independent testing dataset.

As can be seen from Figure 3a, the proposed BiLSTM-5mC models based on four
different feature encoding techniques provided the satisfying performance with the Spe
and the Acc higher than 0.92 on the training dataset by using the 5-fold CV. This indicated
that the two types of features (i.e., one-hot and NPF) contain position-specific sequence
information and could effectively reflect the difference of the nucleotide composition
between positive and negative samples. In addition, the model only using the NPF features
outperformed the model only using the one-hot encoding in terms of Sen and MCC,
maybe due to the sequence-order information encoded in the NPF features. Meanwhile,
the ensemble predictor with the one-hot&NPF encoding was superior to the predictor
with the one-hot+NPF encoding in terms of Spe (0.9404), Acc (0.9302), and MCC (0.6235).
Similar conclusions could be reached from Figure 3b. For the independent testing dataset,
the combination of the BiLSTM model and the one-hot&NPF representation exhibited
the highest Spe (0.9374) and Acc (0.9303) and obtained the acceptable Sen value (0.8661)
and MCC value (0.6384). This suggested that the proposed deep learning framework
could serve as a powerful tool for the recognition of 5mC sites. Additionally, the receiver
operating characteristic (ROC) curves associated with these models were plotted in Figure 4,
which demonstrated the similar conclusions as Figure 3. The area under the ROC curve
(AUC) values of these predictors were higher than 0.96.
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2.3. Performance Comparison with Existing Methods

To the best of our knowledge, there are only two computational tools to identify 5mC
sites in genome-wide DNA promoters on the same datasets, i.e., iPromoter-5mC [36] and
5mC_Pred [37]. Table 1 provides an overview of these tools and our model, including
feature description methods and classification algorithms. For a fair comparison with
existing methods, we adopted the same training dataset and independent testing dataset to
objectively evaluate the identification performance. The corresponding comparison results
are reported in Tables 2 and 3 using the following five common metrics: Sen, Spe, Acc,
MCC, and AUC.

Table 1. Summary of existing tools for 5mC sites prediction in genome-wide DNA promoters.

Method Feature Algorithm

iPromoter-5mC [36] One-hot Deep neural network
5mC_Pred [37] K-mers XGBoost

BiLSTM-5mC (This study) One-hot and NPF BiLSTM

Table 2. Performance comparison on the training dataset by using the 5-fold CV.

Method Sen Spe Acc MCC AUC

iPromoter-5mC 0.8746 0.9039 0.9016 0.5743 0.9566
5mC_Pred 0.8990 0.9200 0.9180 0.6260 0.9620

BiLSTM-5mC 0.8096 0.9404 0.9302 0.6235 0.9644
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Table 3. Performance comparison on the independent testing dataset.

Method Sen Spe Acc MCC AUC

iPromoter-5mC 0.8777 0.9042 0.9022 0.5771 0.9570
5mC_Pred 0.8950 0.9200 0.9180 0.6250 0.9620

BiLSTM-5mC 0.8661 0.9374 0.9303 0.6384 0.9635

As illustrated in Table 2, the proposed BiLSTM-5mC model attained the best perfor-
mance in terms of Spe (0.9404), Acc (0.9302), and AUC (0.9644). However, the Sen value of
our method was lower than those of other predictors. This may be caused by the extreme
imbalance between the number of positive and negative samples in the dataset. In addi-
tion, 5mC_Pred provided an outstanding performance with the Sen value close to 0.9 and
the highest MCC value, which adopted the FastText algorithm to generate embedding
vectors [37]. This indicated that k-mers embeddings learned from a pre-trained language
model could improve the capability of the model to discriminate 5mC sites from non-5mC
sites. Referring to Table 3, BiLSTM-5mC showed the acceptable Sen value and the best
predictive power in terms of Spe (0.9374), Acc (0.9303), MCC (0.6384), and AUC (0.9635)
compared to iPromoter-5mC and 5mC-Pred. The possible cause was that the BiLSTM
model could make up for the lack of time information in the one-hot encoding and capture
the long-range information of DNA sequences.

In summary, BiLSTM-5mC achieved an excellent performance and outperformed
the other existing tools both on the training dataset and the independent testing dataset.
These comparison results demonstrated that BiLSTM-5mC is a powerful predictor with
the capability of accurately predicting the potential 5mC sites. We hope that our approach
might be effectively used for the large-scale annotation of 5mC sites.

3. Materials and Methods
3.1. Benchmark Datasets

The construction of a high-quality benchmark datasets is the prerequisite step in
developing a robust and reliable classification model. In the present work, the benchmark
datasets constructed by Zhang et al. [36] were directly applied to train and test our proposed
method, including 69,750 positive and 823,576 negative 5mC samples. Specifically, all the
samples in this dataset were nucleotide sequences with the length of 41 and the cytosine
at the center, which were collected from the entire genome in the SCLC of the CCLE
database [34,35]. In order to reduce the homology bias, the sequences that had more than
80% sequence similarity with any other sequences were removed by using the CD-HIT
software [39]. Using the same strategy in that work [36], the total samples were randomly
divided into the training dataset and the independent testing dataset. As a result, the
training dataset contained 55,800 5mC samples and 658,861 non-5mC samples, while
the remaining 13,950 5mC samples and 164,715 non-5mC samples were adopted as the
independent testing dataset. Although the proportion of positive samples and negative
samples was about 1:11, this unbalanced data could more objectively reflect the distribution
of 5mC modification sites in the promoter region. The details of the benchmark datasets
are presented in Table 4.

Table 4. The information of the experimental datasets.

Dataset Positive Sample Negative Sample

Training dataset 55,800 658,861
Testing dataset 13,950 164,715

Total 69,750 823,576
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3.2. Feature Encoding Schemes
3.2.1. One-Hot Encoding

The one-hot encoding is a simple and effective feature representation scheme for the
classification of the DNA sequences, which can describe the nucleotide composition along
the DNA sequences. For this encoding scheme, four types of nucleotides, namely adenine
(A), cytosine (C), guanine (G), and thymine (T), are represented as (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1), respectively. Accordingly, the DNA sample with the length of
41 in the dataset is encoded into a 41 × 4-dimensional vector.

3.2.2. The Nucleotide Property and Frequency

The nucleotide is the basic structural and functional unit of DNA, and its chemical
property can impact the inherited characteristics of DNA sequences to some degree. In
addition, the cumulative frequency characteristics of nucleotide in the DNA sequence
can capture the sequence-order and position-specific information. Similar to the one-
hot encoding scheme, the NPF features have been widely used for the computational
identification of DNA or RNA modification sites [40–42].

According to the NPF method, the i-th nucleotide ni (1 ≤ i ≤ 41) in the DNA sequence
can be represented by a four-dimensional vector (xi, yi, zi, di). These elements are defined
as follows:

xi =

{
1, if ni ∈ {A, G}

0, otherwise
(1)

yi =

{
1, if ni ∈ {A, C}

0, otherwise
(2)

zi =

{
1, if ni ∈ {A, T}

0, otherwise
(3)

di =
1
|Ni|

|Ni |

∑
j=1

f
(
nj
)

(4)

where

f (nj) =

{
1, if nj = ni
0, otherwise

, ni, njε{A, C, G, T}, (5)

where |Ni| is the length of the prefix string from the first position to the position i of the
sequence, di is the accumulated frequency of the nucleotide ni in the prefix string, and the
first three elements (i.e., xi, yi, zi) stand for the ring structure, chemical functionality, and
hydrogen bond of the nucleotide ni, respectively. As a result, each query 5mC sample is
converted into a 41 × 4-dimensional vector by using the NPF encoding.

3.3. Model Construction
3.3.1. The Overall Framework

To solve the imbalance problem between positive samples and negative samples,
the under-sampling method was adopted in this study. Firstly, we randomly divided
the negative samples from the training dataset into 11 groups with the equal size, one
of which can be combined with the same amount of the positive samples to form the
balanced training subset. Next, a query sequence was converted into numerical vectors
with the fixed length by using the one-hot and NPF encoding. Then, these vectors were
input into 22 sub-models acquired by the BiLSTM model and the fully connected network
for predicting the category of the query sequence. Finally, the 22 predictive results were
integrated to determine whether the query sequence was a 5mC sample or not by using
a simple majority voting method. The above comprehensive predictor was named as
BiLSTM-5mC, whose overall framework was illustrated in Figure 5.
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3.3.2. Bidirectional Long Short-Term Memory Network

DNA sequence analysis is similar to natural language processing, in which recurrent
neural networks (RNNs) can be used to process the sequential data. As a popular and
powerful RNN architecture, LSTM has been widely used to solve the problem of biological
sequence analysis and has achieved excellent performance [43–45]. BiLSTM consists of
two reversed unidirectional LSTM networks, which is a special type of RNN. BiLSTM can
integrate both forward and backward information in a sequence and capture the mutual
dependence across the sequence [46]. In BiLSTM-5mC, two BiLSTM models were designed
to process the one-hot and NPF feature encoding schemes. Subsequently, the apiece feature
matrix generated by the apiece encoding scheme was converted into a one-dimensional
feature vector as the input of the full connection layer to perform the classification.

3.3.3. Fully Connected Network

We utilized the one-hot and NPF features as the input to train the BiLSTM models
in parallel. Then, the resulting feature vectors were fed into a fully connected network
with three layers. Both the first and second layer of the fully connected network con-
tained 300 neurons, and the last output layer contained two units for predicting two
classes (i.e., 5mC sample and non-5mC sample). Additionally, sigmoid was selected as the
activation function.

When the voting strategy was applied to integrate all the decisions originated from
the 22 sub-models into the final assignment result, a strict identification standard was
utilized. Specifically, if only all the sub-models judged that the query sample is a true 5mC
modification site, the BiLSTM-5mC model could decide that the center nucleotide of the
query sequence is a 5mC site.

3.4. Performance Evaluation

To rigorously and impartially measure the performance of the proposed model, we
implemented the 5-fold CV and the independent dataset test based on the benchmark
datasets. In this work, the five common evaluation metrics were reported, including
sensitivity (Sen), specificity (Spe), accuracy (Acc), and the Matthews correlation coefficient
(MCC). They are defined as follows:

Sen =
TP

TP + FN
, (6)

Spe =
TN

TN + FP
, (7)
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Acc =
TP + TN

TP + TN + FP + FN
, (8)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (9)

where TN, TP, FN, and FP denote the numbers of the true negative, true positive, false
negative, and false positive, respectively. Moreover, for the sake of illustrating the diag-
nostic ability of our predictor visually, the receiver operating characteristic (ROC) curve
emerged by plotting the true positive rate (Sen) against the false positive rate (1-Spe) at dif-
ferent thresholds. The area under the ROC curve (AUC) was also calculated as a powerful
performance metric and provided in the ROC figure.

4. Conclusions

In this study, we proposed a deep learning-based approach, called BiLSTM-5mC, for
accurately identifying 5mC sites in genome-wide DNA promoters in cell lines of the SCLC.
The main innovative points of our model existed in the following two aspects. First, we
adopted the under-sampling method to solve the imbalance problem between positive
samples and negative samples. The overabundant negative samples were randomly
divided into 11 groups, one of which had an approximately equal size with the positive
samples. Second, the deep learning frame based on the BiLSTM model and the fully
connected network was explored to perform the identification of 5mC sites by capturing
the sequence-order and position-specific information from the one-hot and NPF features.
Benchmarking experiments demonstrated that the proposed BiLSTM-5mC model exhibits
a competitive performance compared with two existing algorithms and could serve as a
useful tool for helping increase the annotation levels of 5mC sites.
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