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Chronic pain patients suffer a disrupted quality of life not only from the experience of
pain itself, but also from comorbid symptoms such as depression, anxiety, cognitive
impairment, and sleep disturbances. The heterogeneity of these symptoms support
the idea of a major involvement of the cerebral cortex in the chronic pain condition.
Accordingly, abundant evidence shows that in chronic pain the activity of the medial
prefrontal cortex (mPFC), a brain region that is critical for executive function and working
memory, is severely impaired. Excitability of the mPFC depends on the integrated effects
of intrinsic excitability and excitatory and inhibitory inputs. The main extracortical sources
of excitatory input to the mPFC originate in the thalamus, hippocampus, and amygdala,
which allow the mPFC to integrate multiple information streams necessary for cognitive
control of pain including sensory information, context, and emotional salience. Recent
techniques, such as optogenetic methods of circuit dissection, have made it possible
to tease apart the contributions of individual circuit components. Here we review the
synaptic properties of these main glutamatergic inputs to the rodent mPFC, how each
is altered in animal models of chronic pain, and how these alterations contribute to pain-
associated mPFC deactivation. By understanding the contributions of these individual
circuit components, we strive to understand the broad spectrum of chronic pain and
comorbid pathologies, how they are generated, and how they might be alleviated.
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INTRODUCTION

Chronic pain is one of the conditions with the highest negative impact on quality of life
throughout the world. WHO data show that globally, lower back pain and migraines constitute
the two leading causes of years lived with disability (GBD 2016 Disease and Injury Incidence
and Prevalence Collaborators, 2017). Unfortunately, effective treatments for chronic pain are
still lacking, due in large part to the incomplete understanding of the underlying pathogenic
mechanisms. A fundamental difference between pain and other percepts is that there is no pain
cortex; on the contrary, pain appears to be the perceptual creation originating from the complex
information flow between multiple brain areas (Singh et al., 2020). This is not surprising, given
that normal pain processing functions as a signal of danger. Healthy fear learning in response
to a pain-inducing stimulus requires integration of sensory information (Where am I hurt?),
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information about the context (Where is the pain-inducing
stimulus located?), and emotional salience (How much damage
can this cause?). Therefore, in pain, and in chronic pain in
particular, the sensory perception is inextricably mixed with
cognitive symptoms and with a powerful emotional component
(Berryman et al., 2013; Porreca and Navratilova, 2017; Bell et al.,
2018). Consequently, the focus of pain researchers has widened to
include brain areas beyond the ones strictly involved in somato-
sensory perception. Among these new areas of interest, the
ventral areas of the mPFC, the prelimbic (PL) and infralimbic
(IL) sub-regions, are particularly intriguing. Due to the diverse
functions of the major inputs to mPFC, these regions are ideally
situated to process the multi-faceted information relevant to
pain perception. Furthermore, the mPFC has been shown to
mediate multiple components of chronic pain including sensory
(Cordeiro Matos et al., 2015; Lee et al., 2015), cognitive (such
as memory and attention problems, Moriarty et al., 2011; Baker
et al., 2016) and emotional (such as catastrophizing, Galambos
et al., 2019) components.

Current models suggest that functional deactivation of
at least part of the ventral mPFC is a major pathogenic
mechanism in different chronic pain conditions. A first hint
of the major involvement of the PFC in chronic pain
was provided about 15 years ago, when Apkarian et al.
(2004) showed that the PFC of back pain patients shows
a gray matter loss that is proportional to the duration of
the pain. Subsequent animal studies confirmed the mPFC
involvement and provided evidence suggesting a functional
deactivation of the ventral areas of the mPFC early in the pain
chronification process, although some differences exist between
layer 2/3 and layer 5 neurons. In layer 2/3 pyramidal cells,
a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) and N-methyl-D-aspartate (NMDA) ratio, a
measure of glutamatergic synaptic strength (Bredt and Nicoll,
2003; Kauer and Malenka, 2007), and decreased intrinsic
excitability (Metz et al., 2009; Wang et al., 2015), together
with an overall decrease in glutamate concentration in the PL
(Kelly et al., 2016), suggest that both synaptic and intrinsic
excitability are reduced. In layer 5 neurons, the decreased
synaptic excitability (Kelly et al., 2016) and impaired excitatory
cholinergic modulation (Radzicki et al., 2017) are only in
part countered by a slight increase in intrinsic excitability
(Cordeiro Matos et al., 2015; Wu et al., 2016). Mechanistic
studies of chronic pain suggest that the ventral mPFC output
exerts a critical modulatory role on pain perception, mostly
through activation of descending pathways (Cheriyan and Sheets,
2018; Huang et al., 2019). This conclusion is supported by
the fact that, in rodent pain models, optogenetic activation
of the ventral mPFC has analgesic effect (Lee et al., 2015;
Zhang et al., 2015). The cellular mechanisms of the region’s
deactivation in chronic pain remain incompletely understood,
but, as noted, abundant evidence suggests that synaptic
mechanisms provide a major contribution to this functional
state (Ji et al., 2010; Kelly and Martina, 2018). In this context,
alteration of glutamatergic inputs to the mPFC appears to
have a central role in the development of the chronic pain
phenotype.

What are the major glutamatergic inputs to the ventral
mPFC? The rodent PFC was originally defined as the cortical
area receiving inputs from the medio-dorsal thalamus (Leonard,
1969; Krettek and Price, 1977). However, the thalamic inputs
are not the only glutamatergic afferents to the ventral mPFC,
and important projections originate in several other brain
areas, including the contralateral mPFC, the amygdala, and
the ventral hippocampus. Other inputs include the ipsilateral
agranular insular cortex, which provides glutamatergic inputs to
the PL (Hoover and Vertes, 2007), and the claustrum, which
provides inputs to both the IL and PL. All four major inputs
provide monosynaptic contacts onto dendritic spines on layer
2/3 pyramidal neurons (Little and Carter, 2012), as well as
targeting neurons in deeper layers (Bacon et al., 1996; Parent
et al., 2010; Collins et al., 2018; Kelly and Martina, 2018). Contacts
with neurons whose cell bodies are located in deeper layers
are the result of both direct innervation of these layers and of
terminations onto the long apical dendrites of pyramidal cells that
reach all the way to layer 1. For example, the widely branched
apical tufts of layer 5 pyramidal neurons receive thalamic inputs
up to layer 1 (Parent et al., 2010; Cruikshank et al., 2012).

Here we briefly summarize how the three main extra-
cortical glutamatergic synaptic inputs (thalamic, hippocampal,
and amygdalar) to the ventral mPFC are affected in rodent
models of chronic pain and discuss how these changes may
contribute to the chronic pain phenotype.

Thalamic Inputs
The major source of sensory input to the mPFC comes from the
thalamus, which projects to both the PL and IL subregions of
the mPFC (Krettek and Price, 1977). Retrograde tracer injections
in the PL and IL result in heavy staining of multiple thalamic
nuclei including the anteromedialis, mediodorsalis, nucleus
rhomboideus and nucleus reuniens. The major thalamic afferents
to the mPFC originate in the mediodorsal thalamus (MD)
(Hoover and Vertes, 2007) and make contacts with dendritic
spines, with the highest density in layer 3. Thalamic inputs
target both pyramidal neurons and inhibitory interneurons
(Figure 1A), so the net functional effect of their activation is
mixed. For example, optogenetic activation of MD thalamic
inputs causes both large glutamatergic and GABAergic currents
in PL pyramidal cells (Kelly and Martina, 2018). The synaptic
delay of the GABAergic currents suggest that they are at least in
part mediated by feed-forward inhibition. The thalamus contacts
parvalbumin (PV) expressing interneurons to evoke feedforward
inhibition on mPFC (Canetta et al., 2020). Somatostatin (SST)
and vasoactive intestinal peptide (VIP) expressing interneurons
also receive direct glutamatergic inputs (Sun et al., 2019;
Canetta et al., 2020). The timing and relative strengths of
thalamic excitatory input and feed-forward inhibition mediate
the thalamo-cortical rhythm that is critical for normal brain
functioning. Accordingly, dampening thalamic activity causes
significant reductions of GABA signaling in the mPFC and
concomitant abnormalities in cognition and social interaction.
These can be ameliorated by selectively activating mPFC PV-
positive interneurons (Ferguson and Gao, 2018). Thalamic inputs
to mPFC undergo both short-term and long-term bidirectional
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plasticity. For example, glutamatergic inputs from the MD and
nucleus reuniens can undergo both long-term potentiation (LTP)
and long-term depression (LTD) (Bueno-Junior et al., 2012; Vu
et al., 2020). Glutamatergic inputs from the nucleus reuniens
of the thalamus to layer 5 neurons show short-term depression
in acute slice preparation when stimulated at theta frequencies
(when using a 10 stimuli train at 5–10 Hz, the response to the
last stimulus is roughly 60% of the first). These thalamic inputs
cause very similar short term plasticity in layer 2/3 neurons
(Banks et al., 2021). Thalamic inputs onto layer 5 pyramidal cells
from the MD thalamus are also depressing, even at longer time
intervals (Kelly and Martina, 2018).

At least in the early stage of neuropathic pain (1 week in rats)
the overall magnitude of the excitatory thalamic glutamatergic
input to PL pyramidal neurons appears reduced (Kelly and
Martina, 2018; Table 1). Inhibition is also reduced, but whether
this is driven by a reduction in feed-forward inhibition or
by reduction in inputs to specific interneuronal populations
remains unclear. In this context, it is worth noting that in a
rodent model of acute pain, projections from the paraventricular
thalamus to the mPFC appear to selectively enhance activation
of GABAergic neurons suggesting thalamo-cortical feedforward
inhibition in visceral nociception. Similar to the chronic pain
scenario, pharmacogenetic activation of mPFC glutamatergic
neurons attenuates visceral nociception (Jurik et al., 2015). In
line with the hypothesis that the thalamic input to the mPFC is
altered in chronic pain, a human brain imaging study (Henderson
et al., 2013) found thalamic volume loss in patients with chronic
neuropathic pain and suggested that chronic pain is associated
with altered thalamic anatomy and impaired thalamo-cortical
network activity.

Hippocampal Inputs
The hippocampal input to the mPFC provides an important
anatomical substrate for learning and memory functions, as the
hippocampus is required for memory formation and encoding,
particularly of declarative memories. The mPFC is important

for working memory function, and may link the hippocampal
memory trace with other regions of the neocortex for long-term
memory storage (Thierry et al., 2000). While there is no known
direct mPFC projection to the hippocampus, the ventral region
of the hippocampus provides an important glutamatergic input
to the mPFC (Parent et al., 2010). The hippocampal afferents
to the mPFC contact both pyramidal cells and interneurons
in layers 2–6 (Parent et al., 2010; Kelly and Martina, 2018;
Canetta et al., 2020) and have a distinct spatial pattern, with the
densest innervation in the ventral region of mPFC and gradually
more sparse innervation more dorsally (Jay and Witter, 1991;
Figure 1B). Thus, the excitatory effects of hippocampal inputs
increase along the dorso-ventral axis so that in anesthetized rats
stimulation of CA1 evokes an excitatory response in only 14%
of cells in dorsal PL, which increases to 42% in the ventral part
of PL and reaches 61% in IL (Ishikawa and Nakamura, 2003).
The innervation of dorsal PL is overall sparser and by and large
limited to layers 5–6 (Thierry et al., 2000, but see Canetta et al.,
2020), while in the IL the afferents contact cells in layer 2/3 as well
as layer 5–6. mPFC inputs have been explored in four separate
pyramidal neuron populations delineated by their output targets:
those that project to contralateral cortex (cortico-cortical), those
that project to the amygdala (cortico-amygdalar), those that
project to striatum (cortico-striatal), and those that project to the
pons (cortico-pontine). In layer 2/3 of IL, the hippocampal inputs
contact both cortico-cortical and cortico-amygdalar neurons (Liu
and Carter, 2018). Interestingly, at least in PL layer 2/3, all
cells receiving hippocampal inputs also receives MD thalamic
inputs (Canetta et al., 2020). In layer 5 of both IL and PL
the hippocampal inputs show a preference for cortico-cortical
neurons (Liu and Carter, 2018). Both the subiculum and CA1
project to the PL region of the mPFC (Ferino et al., 1987), and
CA1 also projects to the IL (Swanson, 1981). Additionally, the
mPFC receives collaterals from the projection connecting the
CA1/subiculum to agranular insular area of the lateral prefrontal
cortex (Verwer et al., 1997). Overall, it has been estimated that
the hippocampal inputs synapse onto approximately 40% of all

FIGURE 1 | Schematic depicting the main extracortical glutamatergic inputs to the rodent mPFC. Line thickness represents the connection strength.
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mPFC neurons, including pyramidal neurons and interneurons.
Consequently, a single stimulation in the hippocampus induces
an early excitatory postsynaptic potential (EPSP) in pyramidal
cells (Degenetais et al., 2003) as well as short latency excitatory
responses in identified interneurons (Ferino et al., 1987; Tierney
et al., 2004). Accordingly, when PL responses to hippocampal
stimulation are recorded in anesthetized rats, PL pyramidal
neurons respond with a single action potential that in ∼40%
of cells is followed by prolonged inhibition. The inhibitory
response appears the result of both feed-forward and feedback
components. These responses exhibit paired-pulse facilitation
and can undergo long-term potentiation in response to high
frequency tetanic stimulation (Laroche et al., 1990). Interestingly,
and in contrast with the thalamic inputs to the PL, which
show a preference for PV-positive interneurons, the hippocampal
inputs to the PL are skewed toward VIP-positive interneurons
(Canetta et al., 2020).

Alterations in hippocampal–mPFC connections are reported
in both human chronic pain patients (Mutso et al., 2014; Ayoub
et al., 2019) and animal pain models (Cardoso-Cruz et al.,
2013; Ma et al., 2019). Multielectrode array recordings in a
rodent model of inflammatory pain shows that information
flow from the ventral CA1 to the infralimbic cortex is reduced
between 6 and 12 days after pain onset (Ma et al., 2019), in
line with a previous finding suggesting that the information
flow between the hippocampus and the mPFC is impaired in
neuropathic pain rats (Cardoso-Cruz et al., 2013). Similarly,
in chronic back pain patients, functional connectivity between
the anterior hippocampus and mPFC is reduced (Ayoub et al.,
2019). Hippocampal modulation of IL activity is disrupted in
rats with peripheral inflammation, and chemogenetic activation
of the glutamatergic hippocampal input to the mPFC reduces
spontaneous pain (Ma et al., 2019). This finding suggests that in
pain conditions the efficacy of hippocampal input to the mPFC
is decreased, in line with the interpretation that the probability of
release at this synapse is decreased in neuropathic pain (Kelly and
Martina, 2018; Table 1).

Amygdalar Inputs
The third major extracortical glutamatergic input to the mPFC
comes from the amygdala, which is critical for processing fear
and other negative emotions. The mPFC receives inputs from the
medial portions of the basolateral nucleus (BLA), and adjacent
portions of the lateral, basomedial and amygdalo-hippocampal
nuclei (McDonald, 1991); the main amygdalar input to the
ventral mPFC, however, originates in the BLA (Hoover and
Vertes, 2007). Studies combining retrograde tracer injections
into rat mPFC with immunohistochemistry for glutamate and
aspartate found that the BLA sends glutamatergic projections
to multiple mPFC subregions, including the anterior cingulate
cortex (ACC), PL and IL (McDonald et al., 1996; Figure 1C).
BLA inputs preferentially target layer 2 cortico-amygdalar over
neighboring cortico-striatal neurons. Importantly, these afferents
make even stronger connections onto neighboring PV- and
SST-expressing interneurons, which in turn preferentially target
cortico-amygdalar neurons (McGarry and Carter, 2016). In
keeping with these findings, BLA glutamatergic projections to

layers 2–6 of the rat mPFC establish synaptic contacts with
dendritic spines of pyramidal neurons as well as with the aspiny
dendritic shafts and somata of PV-positive neurons (Gabbott
et al., 2006). Beside PV-interneurons, amygdalar inputs form
monosynaptic contacts also on SST-positive interneurons of
the ventral mPFC (McGarry and Carter, 2016). Accordingly,
BLA inputs evoke excitatory and inhibitory responses in layer
5 pyramidal neurons of both the IL and PL (Cheriyan et al.,
2016). BLA inputs show some degree of regional and laminar
segregation, as they mostly target layer 2/3 in the PL (with
limited presence in layer 5), but show generalized distribution
in layer 5 of the IL. Thus, multiple lines of evidence show
that BLA inputs to the PL and IL form monosynaptic contacts
with both pyramidal neurons and interneurons, which results
in a net inhibitory (Ji et al., 2010) metabotropic glutamate
receptor 1 (mGluR1) dependent (Sun and Neugebauer, 2011)
effect in vivo. These findings are further supported by in vivo
recordings from the IL and PL of anesthetized rats, which show
that pyramidal neurons respond to BLA stimulation with a
combination of an early excitatory component and one or more
inhibitory components. Interestingly, the excitatory component
does not evoke action potentials, while the inhibition is long-
lasting (∼300 ms), confirming that the net effect of the BLA
stimulation is inhibitory (Dilgen et al., 2013).

Rodent studies have established a key role for enhanced BLA
input in the pain-associated PFC deactivation. The first data were
provided by an elegant study from the Neugebauer lab in a rat
model of inflammatory pain. These authors demonstrated that, in
this model, increased BLA activity leads to selective enhancement
of inhibitory synaptic currents in PFC pyramidal neurons,
without affecting the excitatory input (Ji et al., 2010). This effect
may appear counterintuitive, as increased glutamatergic input
leads to cortical deactivation, but it is in line with the net
inhibitory effect of the BLA inputs to the mPFC and further
supported by data obtained in a mouse model of neuropathic
pain showing that optogenetic inhibition of synaptic inputs from
the BLA to GABAergic interneurons in the mPFC have analgesic
effect (Huang et al., 2019). Additionally, a very recent paper
found that the ratio of excitatory to inhibitory effects elicited by
activation of BLA inputs to the PL, but not the IL, is decreased in
a rodent neuropathic pain model (Cheriyan and Sheets, 2020).
In line with this scenario, synaptic input from the BLA to
inhibitory interneurons in the PL increases in neuropathic pain
due to reduced endocannabinoid-regulated mGluR5 modulation
(Kiritoshi et al., 2016; Huang et al., 2019). Thus, it is likely
that the increased functional connectivity between the left
amygdala and multiple cortical regions, including the prefrontal
and cingulate cortices demonstrated in a human neuroimaging
study of chronic pain patients results in a net inhibitory effect
(Simons et al., 2014).

DISCUSSION

Numerous findings support the idea that the ventral mPFC is
deactivated in chronic pain conditions (Ji et al., 2010; Wang
et al., 2015; Kelly et al., 2016; Radzicki et al., 2017). It is
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TABLE 1 | Main pain-associated alterations in mPFC glutamatergic inputs.

mPFC input Inhibition-to-excitation ratio Excitatory
response

Inhibitory
response

Short-term plasticity Human imaging changes
in pain

Naïve Changes in pain models

Thalamic 2.3 No significant
change

2-fold reduction 2-fold reduction No significant change in
probability of release

Reduced thalamic volume;
reduced connectivity

Model: Rat SNI, 1 week post-surgery (Kelly and Martina, 2018) Trigeminal nerve pain
patients (Henderson et al.,
2013)

Hippocampal 0.6 No significant
change

No significant
change

No significant
change

Reduced probability of
release

Reduced connectivity

Model: Rat SNI, 1 week post-surgery (Kelly and Martina, 2018) Chronic back pain patients
(Ayoub et al., 2019)

Amygdalar 1.2 2.1 No significant
change

2-fold increase Unknown Increased connectivity

Model: Rat arthritis model, 5–6 h post-kaolin and carrageenan injection (Ji et al., 2010) Complex regional pain
syndrome patients (Simons
et al., 2014)

reasonable to hypothesize that the decreased function of the
mPFC network is mediated by the compounded action of three
distinct mechanisms. The first two mechanisms that contribute to
the mPFC deactivation in the chronic pain condition are synaptic:
a combination of input-specific depression of the excitatory
glutamatergic inputs, and potentiation of GABAergic inhibition.
The reduced glutamatergic drive might explain the shortened
dendrites of layer 5 mPFC neurons (Kelly et al., 2016), which,
possibly in combination with the reduced length of the axon
initial segments (Shiers et al., 2018), may provide a cellular
basis for the grey matter reduction associated with chronic
pain in patients and animal models (Apkarian et al., 2004;
Seminowicz et al., 2009).

The altered synaptic inputs may also cause a more
general effect, which is a widespread alteration of the
excitation/inhibition (E/I) balance. E/I imbalance is regarded as
a key pathogenic mechanism in numerous neurodevelopmental
disorders (Deidda et al., 2015; Kim et al., 2021). Thus, it
is possible that through recurrent inhibitory and excitatory
circuitries the mPFC network acts as a magnifier of the effects of
even minor alterations in specific inputs, so that relatively minor
synaptic changes end up producing large behavioral effects.

Clearly, these synaptic effects do not take place in a vacuum
but interact with the neuronal intrinsic excitability. For example,
many of the thalamic input to the ACC and the PL are provided
by the same thalamic neurons, which form terminals in these two
different cortical areas (Kuramoto et al., 2017); yet, in chronic
pain conditions the ACC is hyperexcited (Zhao et al., 2006;
Xu et al., 2008; Blom et al., 2014; Singh et al., 2020) and the
PL is inhibited. This finding suggests that a third mechanism,
which is represented by alterations in intrinsic excitability such
as increased input resistance in the ACC (Santello and Nevian,
2015) or increased action potential threshold in the PL (Wang
et al., 2015), contributes to the final electrophysiological outcome
of altered synaptic inputs.

As to the functional consequences of the reduced mPFC
output, it is likely that the most relevant effects on the sensory

components of pain perception are mediated by the descending
projections to the periaqueductal gray (PAG) and to the nucleus
accumbens (NAc). This idea is supported by the finding that
the inhibition of the mPFC output appears particularly strong
in neurons projecting to the PAG (Cheriyan and Sheets, 2018).
However, activation of the mPFC projection to the nucleus
accumbens has analgesic effect by itself (Lee et al., 2015), as
does direct optogenetic activation of the nucleus accumbens
core (Kc et al., 2020); additionally, inhibition of the PFC
input to the nucleus accumbens amplifies both sensory and
affective symptoms of acute pain in naïve animals (Zhou et al.,
2018). Thus, the exact identity of the brain networks that relay
the mPFC deactivation-mediated modulation of sensory pain
remains to be established.

The cognitive and affective components of the chronic pain
syndrome are likely mediated by different mPFC projections, and
the correlation between mPFC firing and cognitive performance
appears different in control and pain conditions. For example,
disruption of the ventral hippocampus to PFC connectivity
was reported in a model of inflammatory pain (Ma et al.,
2019). Additionally, theta-rhythm connectivity between the
(dorsal) hippocampus and the mPFC is reduced in neuropathic
pain, and this is correlated with performance on a working
memory task (Cardoso-Cruz et al., 2013). As expected, in
control conditions, optogenetic inhibition of PL firing and
of hippocampus-mPFC coherence disrupts working memory
performance. In pain animals, however, optogenetic inhibition
of PL pyramidal cells restores normal theta rhythms and
coherence and improves working memory (Cardoso-Cruz et al.,
2019a). As the chronic pain phenotype (both neuropathic and
inflammatory) is characterized by reduced mPFC excitability and
disrupted ventral hippocampus–PL connectivity, the fact that
pyramidal neuron inhibition improves cognitive performance
in pain animals is unexpected and suggests a context where
synaptic modulation of pyramidal cell activity, possibly through
E/I imbalance (discussed above) is more important than simple
firing frequency. Although the detailed network effects of this
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optogenetic modulation on PL output remain to be clarified, it
is interesting that this manipulation does not directly affect pain
measures (Cardoso-Cruz et al., 2019b). Another group, however,
recently showed that modulation of the input from the ventral
hippocampus to the mPFC has a significant impact on pain
perception, as chemogenetic activation of the ventral CA1-IL
pathway alleviated spontaneous pain in a model of inflammatory
pain (Ma et al., 2019). Thus, these data suggest that input-specific
effects are central to the mPFC role in pain modulation. At the
same time, the role of the ventral hippocampus in pain perception
also remains unclear, because in a rodent model of early
stage neuropathic pain neither optogenetic nor pharmacological
activation of the ventral hippocampus produced analgesic effects
(Wei et al., 2021). Multiple factors may explain these differences,
including the specific pain model used, the pain duration, the
strength, duration and pattern of the hippocampal stimulation,
and the type of neurons stimulated.

Thus, as expected for a complex percept such as pain, the brain
mechanisms involved are extremely complicated. An additional
layer of complexity is provided by the fact that although both
the PL and IL are inactivated in chronic pain, it is unclear
whether their relative function level is equally affected. For
example, a recent study in a neuropathic pain model found that
the balance between excitatory and inhibitory effects caused by
activation of the BLA input to the mPFC is decreased in the
PL, but not the IL (Cheriyan and Sheets, 2020). This is not
a trivial point because the PL and IL have different functions.
For example, in coding aversion responses, they are believed to
play opposite roles, with the PL promoting aversion learning
and the IL facilitating extinction of aversive responses (Gourley
and Taylor, 2016). Whether similar differences exist in the roles

that the IL and PL play in the pain phenotype remains unclear.
The picture, however, is even more complex, as we must also
consider the temporal structure of mPFC rearrangement in the
pain phenotype. Many of the changes we have discussed take
place relatively early in the course of the disease (in rodents,
within 1–2 weeks from the onset of the peripheral injury). This
is a particularly interesting timeframe, because it likely represents
the transition from acute to chronic pain. Yet, brain networks
continue to change in the presence of neuropathic injuries, either
continuing along their disease trajectory or due to adaptive
responses (Ren et al., 2021). Finally, the pain phenotype also
exhibits important sex dimorphism, including in mPFC-specific
tasks (Shiers et al., 2018). Accordingly, recent data show that
sex-specific differences are apparent in pain-associated effects
on GABAergic modulation in the rodent Mpfc (Jones and
Sheets, 2020). Whether these sex-specific differences in mPFC
function are relevant for the sex dimorphism of the chronic pain
phenotype will likely represent an intriguing field of research in
the near future.
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