Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae)

Sayeh Serri', Johannes Frisch ${ }^{2}$, Thomas von Rintelen ${ }^{2}$
I Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, 19395-1454, Iran 2 Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, D-10115 Berlin, Germany
Corresponding author: Sayeh Serri (serri@iripp.ir; sserri_2000@yahoo.com)

Academic editor: A. Brunke \| Received 17 February 2016 | Accepted 18 September 2016 | Published 20 October 2016
http://zoobank.org/A141DF2D-F1AC-406C-A342-E78E144803EO
Citation: Serri S, Frisch J, von Rintelen T (2016) Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae). ZooKeys 626: 67-86. doi: 10.3897/zookeys.626.8155

Abstract

In this study, the genetic diversity of Iranian populations of two widespread Stenus species representing two ecomorphological forms, the "open living species" S. erythrocnemus Eppelsheim, 1884 and the "stratobiont" S. callidus Baudi di Selve, 1848, is presented using data from a fragment of the mitochondrial COI gene. We evaluate the mitochondrial cytochrome oxidase I haplotypes and the intraspecific genetic distance of these two species. Our results reveal a very low diversity of COI sequences in S. erythrocnemus in contrast to S. callidus. Moreover, the COI based phylogeny of a selection of Iranian Stenus support the monophyly of some species groups of Stenus proposed by Puthz (2008) and contradicts the traditional infrageneric classification.

Keywords

Staphylinidae, Stenus, genetic variability, ecomorphological forms, infrageneric classification, Iran

[^0]
Introduction

Fast mutation rate and lack of recombination as well as its easy amplification and sequencing make COI a useful marker for the study of phylogeny, geographic variation and population genetics as well as species identification (Hebert et al. 2003a, b; Qian et al. 2014: 11). Many studies have demonstrated that mtDNA-COI can be used for population genetics (e.g. Szalanski et al. 2010: 8). Hajibabaei et al. (2007: 171) point out that DNA barcoding offers significant implications for the understanding of the genetic diversity of species. Here, we apply this method in the rove beetle genus Stenus Latreille, 1797 to test the infraspecific genetic variation of representatives of two distinct ecomorphological forms and the validity of the traditional subgeneric concept of the genus.

Stenus is well-known for its unique prey-capture behavior (e.g. Betz 1996: 15-34). The eversible labium, an apomorphy, and the variability of the tarsal structures seem to be responsible for the enormous radiation in this genus (Betz 2002: 1097). The labial features are involved in catching prey in a sudden manner despite the limited reaction ability of the beetle (Betz 1999: 1708). The variable tarsal morphology among the members of this genus also has adaptive values which are in accord with their habitat preferences (Betz 2006: 413-414). With about 2674 species (Puthz, unpublished), Stenus is one of the species-richest genera of animals in the world (Puthz 2012: 286). The members of this rove beetle clade mostly dwell in humid places such as river banks, swamps, bogs and wet grasslands. The multifunctional secretion of the pygidial glands is species-specific and acts as a survival factor against predators. This character has been used in illuminating several evolutionary trends (Schierling et al. 2013: 48,51) and presumably is a character adaptive to the habitat where the species live (Lang et al. 2015: 22).

In Stenus, two major ecomorphological forms can be distinguished, which Kastcheev and Puthz (2011: 454) termed "open-living species" with longer legs and on average bigger bodies (Figure 1), that live in habitats with less dense, often sparse vegetation such as sandy or clayey banks, and "stratobionts" with shorter legs and compact body (Figure 2), which inhabit dense vegetation structures and organic litter. Both forms are moreover distinguished by their dispersal ability, because - unlike the open-living species - there is the evolutionary tendency in stratobionts towards flightlessness. Similar morphological adaptations were already described for many rove-beetle clades such as the paederine subtribe Scopaeina Mulsant and Rey, 1878 (Frisch et al. 2002: 30). The addressed morphological characters determine the ability of the organism to colonize particular habitats and to use their resources (Betz 2006: 413). This relation between morphological features of species and ecological characteristics of habitats seems to be descriptive for niche selection. In Iran, 68 Stenus species were recorded (Serri and Frisch 2016: 18), among which S. erythrocnemus Eppelsheim, 1884 and S. callidus Baudi di Selve, 1848 are the most widespread across the country and were found in most provinces of Iran. According to Kastcheev and Puthz (2011: 454), S. erythrocnemus is an open-living species and S. callidus a stratobiont. Based on Iranian populations of these species, we tested the hypothesis that open-living species show a lower infraspecific genetic diversity than stratobionts owing to their higher dispersal ability.

Figures I-4. I Stenus erythrocnemus Eppelsheim, 1884. $\mathbf{2}$ S. callidus Baudi di Selve, 1848. $\mathbf{3}$ Haplotype network for cytochrome c oxidase subunit I (COI) DNA sequences of S. erythrocnemus. The circle size shows the frequency of the haplotypes. Each dashed line represents a single mutation. $\mathbf{4}$ Haplotype network for cytochrome c oxidase subunit I (COI) DNA sequences of S. callidus. The circle size shows the frequency of the haplotypes. Each dashed line represents a single mutation. Scale bars: 1 mm .

Figure 5. Distribution of Stenus erythrocnemus in Iran (after Serri and Frisch 2016: 28).

Stenus was traditionally divided into subgenera according to morphological characters. Based on European species only, Rey (1884: 31) introduced the six subgenera Hemistenus, Hypostenus, Mesostenus, Nestus, Stenus, and Tesnus. Later, Heyden (1905: 262) replaced Mesostenus with Parastenus because of a homonymy with a genus in the Hymenoptera. Ádám (1987: 135), however, synonymized Parastenus with the older name Hemistenus Motschulsky, 1860, because the type species of both subgenera are considered as subjective synonyms. Therefore he introduced the new subgenus Metastenus for a distinct species group of Hemistenus (Herman 2001: 2041), but later he (Ádám 2001: 126) replaced this name with Metatesnus because of primary homonymy with Metastenus Walker, 1834 in the Hymenoptera. According to Puthz (2009: 47), the genus group name Adamostenus Özdikmen \& Darılmaz, 2008, an unnecessary replacement name for Metatesnus, is a junior synonym of Metatesnus. Puthz (2001: 35) also synonymized Nestus with Stenus s. str. based on the assumption that the tarsal characters traditionally employed for these subgenera do not define distinct monophyletic groups. In the current edition of the Catalogue of Palaearctic Coleoptera, Schülke and Smetana (2015: 802-847) still divided this genus into five subgenera, which are Hemistenus Motschulsky, 1860, Hypostenus Rey, 1884, Stenus Latreille, 1797,

Metatesnus Ádám, 2001 and Tesnus Rey, 1884. Puthz (2008: 139-148) conceived that the traditional subgeneric classification does not reflect the phylogenetic affinities within this genus and thus established 157 monophyletic species groups based on a wide range of presumed apomorphic morphological features of the species included. Ryvkin (2011:59) argued, however, that it is better not to reject the traditional subgeneric concept prior to a comprehensive phylogenetic analysis of the subfamily. To date, there are only a few molecular studies that have investigated the phylogenetic relationships among Steninae species. The first was done recently by Koerner et al. (2013). Their results supported the monophyletic groups proposed by Puthz (2008: 139-148) and moreover revealed that some species groups of Dianous Leach, 1819, the second genus of the Steninae, actually constitute a monophyletic group within Stenus. The monophyly of some species groups proposed by Puthz (2008: 141-147) was also supported by Lang et al. (2015: 21). We performed a preliminary investigation on the intra- and interspecific genetic diversity of some Iranian Stenus to test the validity of the traditional classification of this genus by sequencing the "DNA Barcode" region of the mitochondrial COI gene of these species.

Material and methods

The Stenus specimens this study is based on were collected in the framework of the first author's research project on the diversity and biogeography of this genus in Iran (Serri and Frisch 2016), which was a part of a joint project between the Museum für Naturkunde Berlin and the Iranian Research Institute of Plant Protection on biodiversity and biogeography of selected insect taxa in Iran.

The specimens were collected in humid habitats such as river banks or grassland by hand collecting or sifting of gravelly soil, leaf litter and other phytodebris. Most specimens were killed with ethyl acetate, but some were directly fixated in 96% ethanol.

For DNA extraction, the abdomen of the larger species and the whole body of the smaller species were used and the DNA was purified by the CTAB method (Winnepenninckx et al. 1993). The polymerase chain reaction (PCR) was used to amplify a 5^{\prime} end fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene using the primer pair LCO1490 5'-GGTCAACAAATCATAAAGATATTGG - 3 ' and HCO2198 5'-TAAACTTCAGGGTGACCAAAAAATCA -3' (Folmer et al. 1994). PCR was performed in $25 \mu \mathrm{l}$ volumes including $2.5 \mu \mathrm{M}$ PCR buffer, $1 \mu \mathrm{M} \mathrm{MgCl} 2,0.5$ $\mu \mathrm{M}$ dNTP, $1 \mu \mathrm{M}$ of each forward and reverse primers, $1 \mu \mathrm{M}$ of Taq polymerase and ddH2O up to 25μ l total volumes. In the PCR thermocycles, there was an initial denaturation step at 94° for 1.5 min , followed by 6 cycles of 94° (for 30 s) denaturation, $45^{\circ}(1.5 \mathrm{~min})$ annealing and 72° (for 1 min) extension and subsequently 35 cycles of $94^{\circ}($ for 30 s$)$ denaturation, $51^{\circ}(1.5 \mathrm{~min})$ annealing and $72^{\circ}($ for 1 min$)$ extension. The PCR terminated at 72° (for 5 min) for final extension. The PCR products were purified on a silica membrane with Macherey and Nagel Nucleospin kits following the manufacturer's protocol. The purified PC products were sequenced using an ABI 3130 DNA

Table I. The specimens used in this study with their location data and the GenBank association number of submitted sequences of COI. The specimen number codes the geographical origin of the specimens in the phylogenetic tree (Figures 7, 8).

Species	Specimen number	Collection site	GeneBank association number
Stenus alienigenus	147	Kordestan: 11 km E Sanandaj ($35^{\circ} 20^{\prime} 11^{\prime \prime} \mathrm{N} 47^{\circ} 09^{\prime} 07^{\prime \prime} \mathrm{E}$), 2100 m , 5.9.2008, leg. Serri and Frisch	KU754268
S. araxis	118	Ardabil: N Mt Sabalan, Gheynarjeh ($38^{\circ} 17^{\prime} 18^{\prime \prime} \mathrm{N} 47^{\circ} 41^{\prime} 22^{\prime \prime} \mathrm{E}$), 2100 m, 24.6.2008, leg. Serri	KU754251
S. araxis	121, 122	Esfahan: Kashan, NW Niasar, after Aznaveh ($34^{\circ} 066^{\prime} 28.8^{\prime \prime} \mathrm{N}$ $50^{\circ} 59^{\prime} 45.9^{\prime \prime} \mathrm{E}$), $2195 \mathrm{~m}, 19.5 .2009$, leg. Serri and Nasserzadeh	$\begin{aligned} & \hline \text { KU754253 } \\ & \text { KU754254 } \end{aligned}$
S. araxis	117	Hamedan: W Kabudarahang, 5 km E Goltappeh $\left(3^{\circ} 12^{\prime} 06^{\prime \prime} \mathrm{N}\right.$ $48^{\circ} 14^{\prime} 04^{\prime \prime} \mathrm{E}$), $2210 \mathrm{~m}, 21.7 .2008$, leg. Serri and Nasserzadeh	KU754250
S. araxis	114	Kordestan: Saghez - Baneh, 27 km SW Saghez ($36^{\circ} 08^{\prime} 12^{\prime \prime} \mathrm{N}$ $\left.46^{\circ} 02^{\prime} 42^{\prime \prime} \mathrm{E}\right), 1600 \mathrm{~m}, 3.9 .2008$, leg. Serri and Frisch	KU754247
S. araxis	111	West Azarbaijan: W Salmas, 19 km W Kuzerash $\left(38^{\circ} 11^{\prime} 40^{\prime \prime} \mathrm{N}\right.$ $44^{\circ} 33^{\prime} 04^{\prime \prime} \mathrm{E}$), $1960 \mathrm{~m}, 31.8 .2008$, leg. Serri and Frisch	KU754246
S. araxis	110	West Azarbaijan: Orumieh, S Silvaneh, 14 km S Ziveh ($37^{\circ} 09^{\prime} 06^{\prime \prime N}$ $44^{\circ} 52^{\prime} 55^{\prime \prime} \mathrm{E}$), $2320 \mathrm{~m}, 1.9 .2008$, leg. Serri and Frisch	KU754245
S. cf. araxis	120	Esfahan: Natanz, S Karkas Mts, Taragh ($33^{\circ} 24^{\prime} 39^{\prime \prime} \mathrm{N} 51^{\circ} 46^{\prime} 14^{\prime \prime} \mathrm{E}$), $2580 \mathrm{~m}, 20.5 .2009$, leg. Serri	KU754252
S. cf. araxis	125	Esfahan: S Abyaneh, Bidhand ($33^{\circ} 29^{\prime} 44^{\prime \prime} \mathrm{N} 51^{\circ} 45^{\prime} 399^{\prime \prime} \mathrm{E}$), 2350 m , 18.5.2009, leg. Serri	KU754256
S. cf. araxis, S. araxis	115,116	Tehran: Firouzkuh, Badroud ($35^{\circ} 48^{\prime} 15^{\prime \prime N} 52^{\circ} 39^{\prime} 21^{\prime \prime} \mathrm{E}$), 2060 m , 5.8.2009, leg. Serri and Nasserzadeh	$\begin{aligned} & \hline \text { KU754248 } \\ & \text { KU754249 } \end{aligned}$
S. ater	136	Semnan: NE Chashm, Hikuh, Sheil, Parvar Protected Region ($36^{\circ} 0^{\prime} 54^{\prime \prime N} 53^{\circ} 23^{\prime} 07^{\prime \prime E}$), $1900 \mathrm{~m}, 7.8 .2009$, leg. Serri and Nasserzadeh	KU754264
S. brunnipes	151	Mazandaran: Sari, N Mohammadabad ($36^{\circ} 10^{\prime} 09^{\prime \prime} \mathrm{N} 53^{\circ} 14^{\prime} 08^{\prime \prime} \mathrm{E}$), $820 \mathrm{~m}, 30.5 .2008$, leg. Serri, Nasserzadeh and Pütz	KU754270
S. callidus	089	Chaharmahal \& Bakhtiari: Ardel, Ghahrou, Tang-e Zeverdegan ($31^{\circ} 59^{\prime} 10^{\prime \prime N} 50^{\circ} 51^{\prime} 23^{\prime \prime} \mathrm{E}$), $2350 \mathrm{~m}, 23.6 .2009$, leg. Serri	KU754233
S. callidus	090	Esfahan: Chadegan, W Zayandehrud Dam ($32^{\circ} 43^{\prime} 08^{\prime \prime} \mathrm{N}$ $50^{\circ} 44^{\prime} 20^{\prime \prime} \mathrm{E}$), $2070 \mathrm{~m}, 20.6 .2009$, leg. Serri	KU754234
S. callidus	094	Esfahan: Kashan, S Ghamsar, Ghazaan ($33^{\circ} 42^{\prime} 20^{\prime \prime} \mathrm{N} 51^{\circ} 23^{\prime} 48^{\prime \prime} \mathrm{E}$), $2220 \mathrm{~m}, 17.5 .2009$, leg. Serri	KU754236
S. callidus	045, 046	Ghazvin: 5 km E Abgarm ($35^{\circ} 47^{\prime} 53^{\prime \prime} \mathrm{N} 49^{\circ} 22^{\prime} 43^{\prime \prime} \mathrm{E}$), 1510 m , 21.6.2004, leg. Serri and Frisch	$\begin{aligned} & \hline \text { KU754199 } \\ & \text { KU754200 } \end{aligned}$
S. callidus	092	Hamedan: Eberou road, S Emamzadeh Abdollah (3439'20"N $48^{\circ} 32^{\prime} 19^{\prime \prime} \mathrm{E}$), $2510 \mathrm{~m}, 22.7 .2008$, leg. Serri and Nasserzadeh	KU754235
S. callidus	103	Hamedan: Shahrestaneh ($34^{\circ} 42^{\prime} 56^{\prime \prime} \mathrm{N} 48^{\circ} 22^{\prime} 21^{\prime \prime} \mathrm{E}$), 2220 m , 23.7.2008, leg. Serri and Nasserzadeh	KU754240
S. callidus	031, 033	Hormozgan: Siahu, Talgerdo road, Bangolan ($27^{\circ} 50^{\prime} 03^{\prime \prime} \mathrm{N}$ $56^{\circ} 28^{\prime} 27^{\prime \prime} \mathrm{E}$), $890 \mathrm{~m}, 19.4 .2006$, leg. Serri and Frisch	$\begin{array}{\|l\|l} \hline \text { KU754193 } \\ \text { KU754194 } \\ \hline \end{array}$
S. callidus	034	Kerman: Baft, 6 km N Rabor ($29^{\circ} 20^{\prime} 28^{\prime \prime} \mathrm{N} 56^{\circ} 50^{\prime} 477^{\prime \prime} \mathrm{E}$), 2640 m , 4.5.2007, leg. Serri and Frisch	KU754195
S. callidus	084	Khuzestan: Baghmalek, Chamkureh ($31^{\circ} 31^{\prime} 42^{\prime \prime} \mathrm{N} 49^{\circ} 51^{\prime} 55^{\prime \prime} \mathrm{E}$), 670 m, 27-28.4.2009, leg Serri	KU754231

Species	Specimen number	Collection site	GeneBank association number
S. callidus	$\begin{aligned} & 079-082, \\ & 085,086 \end{aligned}$	Kordestan: 11 km E Sanandaj ($35^{\circ} 20^{\prime} 11^{\prime \prime N} 47^{\circ} 09^{\prime} 07^{\prime \prime} \mathrm{E}$), 2100 m , 5.9.2008, leg. Serri and Frisch	$\begin{aligned} & \text { KU754224 } \\ & \text { KU754225 } \\ & \text { KU754226 } \\ & \text { KU754227 } \\ & \text { KU754230 } \\ & \text { KU754231 } \end{aligned}$
S. callidus	087	Kordestan: 7 km S Ghorveh, Veihaj ($35^{\circ} 06^{\prime} 34^{\prime \prime N} 47^{\circ} 45^{\prime} 54^{\prime \prime} \mathrm{E}$), 2060 m, 5.9.2008, leg. Serri and Frisch	KU754232
S. callidus	098, 099	Kordestan: Saghez - Baneh, 27 km SW Saghez ($36^{\circ} 08^{\prime} 12^{\prime \prime N}$ $46^{\circ} 02^{\prime} 42^{\prime \prime} \mathrm{E}$), $1600 \mathrm{~m}, 3.9 .2008$, leg. Serri and Frisch	$\begin{aligned} & \text { KU754237 } \\ & \text { KU754238 } \end{aligned}$
S. callidus	035, 036	Tehran: Firouzkuh road, Delichai ($35^{\circ} 40^{\prime} 58^{\prime \prime N} 52^{\circ} 28^{\prime} 266^{\prime \prime}$), 2000 m, 21.5.2006, leg. Serri and Frisch	$\begin{aligned} & \text { KU754196 } \\ & \text { KU754197 } \end{aligned}$
S. callidus	105-108	Tehran: Firouzkuh, Badroud ($35^{\circ} 48^{\prime} 15^{\prime \prime} \mathrm{N} 52^{\circ} 39^{\prime} 21^{\prime \prime} \mathrm{E}$), 2060 m , 5.8.2009, leg. Serri and Nasserzadeh	$\begin{aligned} & \text { KU754241 } \\ & \text { KU754242 } \\ & \text { KU754243 } \\ & \text { KU754244 } \end{aligned}$
S. callidus	100	West Azarbaijan: 11 km E Takht-e Soleiman (36 $36^{\prime} 433^{\prime \prime N}$ $47^{\circ} 18^{\prime} 488^{\prime \prime}$ E), $2280 \mathrm{~m}, 7 .-8.9 .2008$, leg. Serri and Frisch	KU754239
S. callidus	083	West Azarbaijan: 2 km E Takht-e Soleiman $\mathrm{N}\left(36^{\circ} 38^{\prime} 05^{\prime \prime} \mathrm{N}\right.$ $\left.47^{\circ} 14^{\prime} 07^{\prime \prime} E\right), 2270 \mathrm{~m}, 7 .-8.9 .2008$, leg. Serri and Frisch	KU754228
S. callidus	037	Zanjan: Abbar - Gilvan ($36^{\circ} 52^{\prime} 50^{\prime \prime N} 48^{\circ} 58^{\prime} 32^{\prime \prime} \mathrm{E}$), 430 m , 12.7.2006, leg. Serri	KU754198
S. cautus	146	Esfahan: S Abyaneh, Bidhand ($33^{\circ} 29^{\prime} 44^{\prime \prime N} 51^{\circ} 45^{\prime} 39^{\prime \prime} \mathrm{E}$), 2350 m , 18.5.2009, leg. Serri	KU754267
S. erythrocnemus	$\begin{gathered} 059,060, \\ 062 \end{gathered}$	Ardabil: N Mt Sabalan, Gheynarjeh ($38^{\circ} 17^{\prime} 18^{\prime \prime} \mathrm{N} 47^{\circ} 41^{\prime} 22^{\prime \prime} \mathrm{E}$), 2100 m, 24.6.2008, leg. Serri	$\begin{aligned} & \text { KU754213 } \\ & \text { KU754214 } \\ & \text { KU754215 } \end{aligned}$
S. erythrocnemus	024	East Azarbaijan: Zijenab (Mt Sahand) ($37^{\circ} 52^{\prime} 08^{\prime \prime N} 46^{\circ} 18^{\prime} 46 " E$), $2150 \mathrm{~m}, 8.8 .2005$, leg. Serri and Frisch	KU754192
S. erythrocnemus	134	Esfahan: Natanz, Taragh, Keshe, S Mt. Karkas ($33^{\circ} 24^{\prime} 39.3^{\prime \prime N}$ $51^{\circ} 46^{\prime} 13.9^{\prime \prime} \mathrm{E}$), $2580 \mathrm{~m}, 17.5 .2009$, leg. Serri	KU754262
S. erythrocnemus	070	Gilan: E Masuleh ($37^{\circ} 09^{\prime} 48^{\prime \prime} \mathrm{N} 49^{\circ} 00^{\prime} 19^{\prime \prime} \mathrm{E}$), $820 \mathrm{~m}, 8.6 .2008$, leg. Serri, Nasserzadeh and Pütz	KU754219
S. erythrocnemus	009	Kerman: Mahan road, $3 \mathrm{~km} S$ pass ($30^{\circ} 11^{\prime} 29^{\prime \prime} \mathrm{N} 57^{\circ} 25^{\prime} 42^{\prime \prime} \mathrm{E}$), 2430 m, 30.4.2007, leg. Serri and Frisch	KU754189
S. erythrocnemus	051-054	Tehran: Dizin ($36^{\circ} 01^{\prime} 53^{\prime \prime} \mathrm{N} 51^{\circ} 28^{\prime} 52^{\prime \prime} \mathrm{E}$), $2810 \mathrm{~m}, 10.6 .2008$, leg. Serri, Nasserzadeh and Pütz	$\begin{aligned} & \text { KU754205 } \\ & \text { KU754206 } \\ & \text { KU754207 } \\ & \text { KU754208 } \end{aligned}$
S. erythrocnemus	047-050	West Azarbaijan: SE Makou, Gharakelisa ($39^{\circ} 05^{\prime} 32^{\prime \prime} \mathrm{N}$ $44^{\circ} 32^{\prime} 40^{\prime \prime} \mathrm{E}$), $1860 \mathrm{~m}, 28.8 .2008$, leg. Serri and Frisch	$\begin{aligned} & \text { KU754201 } \\ & \text { KU754202 } \\ & \text { KU754203 } \\ & \text { KU754204 } \end{aligned}$
S. erythrocnemus	055-058	West Azarbaijan: Orumieh, S Silvaneh, 14 km S Ziveh $\left(37^{\circ} 09^{\prime} 06^{\prime \prime N}\right.$ $44^{\circ} 52^{\prime} 55^{\prime \prime} \mathrm{E}$), $2320 \mathrm{~m}, 1.9 .2008$, leg. Serri and Frisch	$\begin{aligned} & \text { KU754209 } \\ & \text { KU754210 } \\ & \text { KU754211 } \\ & \text { KU754212 } \end{aligned}$
S. erythrocnemus	064	West Azarbaijan: 18 km W Khoy, Ghotour road ($38^{\circ} 28^{\prime} 45^{\prime \prime N}$ $\left.44^{\circ} 47^{\prime} 08^{\prime \prime} \mathrm{E}\right), 1320 \mathrm{~m}, 29.8 .2008$, leg. Serri and Frisch	KU754216

Species	Specimen number	Collection site	GeneBank association number
S. erythrocnemus	068, 069	West Azarbaijan: Siahcheshmeh - Khoy, Kordkandy (N 3855'02" E44 ${ }^{\circ} 27^{\prime} 40^{\prime \prime}$), 1870 m, 28.8.2008, leg. Serri and Frisch	$\begin{aligned} & \text { KU754217 } \\ & \text { KU754218 } \end{aligned}$
S. erythrocnemus	071-074	West Azarbaijan: Siahcheshmeh - Khoy, W Zarabad (N 38²4'16" E44 ${ }^{\circ} 28^{\prime} 10^{\prime \prime}$), $2400 \mathrm{~m}, 30.8 .2008$, leg. Serri and Frisch	$\begin{aligned} & \text { KU754220 } \\ & \text { KU754221 } \\ & \text { KU754222 } \\ & \text { KU754223 } \end{aligned}$
S. erythrocnemus	011,012	Yazd: Taft, Dehbala ($31^{\circ} 35^{\prime} 37^{\prime \prime N} 54^{\circ} 07^{\prime} 20^{\prime \prime} \mathrm{E}$), $2550 \mathrm{~m}, 15.5 .2007$, leg. Serri and Frisch	$\begin{aligned} & \text { KU754190 } \\ & \text { KU754191 } \end{aligned}$
S. fuscicornis	156	Mazandaran: Ramsar, Javaherdeh road, Eshkatechal ($36^{\circ} 50^{\prime} 32$ "N $\left.50^{\circ} 34^{\prime} 39^{\prime \prime} E\right), 1450 \mathrm{~m}, 6.6 .2008$, leg. Serri, Nasserzadeh and Pütz	KU754272
S. ganglbaueri	153	Mazandaran: Baladeh, Nesen, E pass ($36^{\circ} 14^{\prime} 37^{\prime \prime N} 51^{\circ} 27^{\prime} 17^{\prime \prime} \mathrm{E}$), 2960 m, 1.6.2008, leg. Serri, Nasserzadeh and Pütz	KU754271
S. hypoproditor	137	Kordestan: N Divandarreh, SW Zarrineh, 5 km NW Ebrahimabad ($35^{\circ} 59^{\prime} 10^{\prime \prime} \mathrm{N} 46^{\circ} 52^{\prime} 111^{\prime \prime} \mathrm{E}$), $1960 \mathrm{~m}, 4.9 .2008$, leg. Serri and Frisch	KU754265
S. intricatus zoufali	135	East Azarbaijan: Tabriz - Marand, 9 km N Amand ($38^{\circ} 17^{\prime} 18^{\prime \prime N}$ $46^{\circ} 08^{\prime} 46^{\prime \prime} \mathrm{E}$), $1520 \mathrm{~m}, 26.8 .2008$, leg. Serri and Frisch	KU754263
S. maculiger	133	West Azarbaijan: W Salmas, 10 km W Kuzerash ($38^{\circ} 11^{\prime} 40$ " N $44^{\circ} 33^{\prime} 044^{\prime \prime} \mathrm{E}$), $1960 \mathrm{~m}, 31.8 .2008$, leg. Serri and Frisch	KU754261
S. martensi	166	Mazandaran: Kelardasht- Marzanabad road, ($36^{\circ} 35^{\prime} 39^{\prime \prime} \mathrm{N}$ $\left.51^{\circ} 08^{\prime} 37^{\prime \prime} \mathrm{E}\right), 1000 \mathrm{~m}, 3.6 .2008$, leg. Serri, Nasserzadeh and Pütz	KU754279
S. medus	161	Mazandaran: Rineh, S Mt Damavand ($35^{\circ} 53^{\prime} 56 " \mathrm{~N} 52^{\circ} 06^{\prime} 29^{\prime \prime} \mathrm{E}$), 2960 m, 3.8.2009, leg Serri and Nasserzadeh	KU754276
S. mongolicus	138	Semnan: Shahroud, NE Mojem, Tash ($36^{\circ} 31^{\prime} \mathrm{N} 54^{\circ} 42^{\prime} \mathrm{E}$), 10.8.2009, leg. Serri and Nasserzadeh	KU754266
S. ochropus	159	Fars: SE Sepidan, Dalkhon ($30^{\circ} 14^{\prime} 40$ "N 52ㅇ6'09"E), 2090 m, 9.5.2007, leg. Serri and Frisch	KU754275
S. persicus	163	Kordestan: Saghez - Baneh, 27 km SW Saghez ($36^{\circ} 08^{\prime} 12^{\prime \prime} \mathrm{N}$ $46^{\circ} 02^{\prime} 42^{\prime \prime} \mathrm{E}$), $1600 \mathrm{~m}, 3.9 .2008$, leg. Serri and Frisch	KU754277
S. pieperi	157	Mazandaran: S Salmanshahr ($36^{\circ} 38^{\prime} 49^{\prime \prime N} 51^{\circ} 10^{\prime} 277^{\prime \prime} \mathrm{E}$), 280 m , 4.6.2008, leg. Serri, Nasserzadeh and Pütz	KU754273
S. ressli	158	Mazandaran: Tonekabon, Sehezar Forest ($36^{\circ} 32^{\prime} 36^{\prime \prime N} 50^{\circ} 49^{\prime} 53^{\prime \prime} \mathrm{E}$), 1090 m, 5.6.2008, leg. Serri, Nasserzadeh and Pütz	KU754274
S. schab	164	Kohgiluye \& Boyerahmad: N Yasuj, Sepidar, Dilgan River ($30^{\circ} 45^{\prime} 03^{\prime \prime N} 51^{\circ} 08^{\prime} 07{ }^{\prime \prime} \mathrm{E}$), $2270 \mathrm{~m}, 18.6 .2009$, leg. Serri	KU754278
S. turk	124	Esfahan: S Abyaneh, Bidhand ($33^{\circ} 29^{\prime} 44^{\prime \prime N} 51^{\circ} 45^{\prime} 39^{\prime \prime} \mathrm{E}$), 2350 m , 18.5.2009, leg. Serri	KU754255
S. turk	126-129	Golestan: NE Kalaleh, Zav, Totlitamak village ($37^{\circ} 29^{\prime} 36^{\prime \prime} \mathrm{N}$ $\left.55^{\circ} 46^{\prime} 25^{\prime \prime} \mathrm{E}\right), 1240 \mathrm{~m}$, , 16.10.2009, leg. Serri	$\begin{array}{\|l} \hline \text { KU754257 } \\ \text { KU754258 } \\ \text { KU754259 } \\ \text { KU754260 } \\ \hline \end{array}$
S. viti	148	Mazandaran: Kelardasht - Marzanabad (36³5'40"N 51º $08^{\prime} 37^{\prime \prime} \mathrm{E}$), 1000 m, 3.6.2008, leg. Serri, Nasserzadeh and Pütz	KU754269

sequencer. All sequences were aligned manually and corrected for misreads using Bioedit version 7.0.5.3 (Hall 1999). Additional mitochondrial COI GenBank sequences of Euaesthetus ruficapillus (Lacordaire, 1835) and E. superlatus Peyerimhoff, 1937 were included in the dataset (GenBank accession numbers KM447120 and KM451370) as
outgroup taxa. A Maximum Parsimony Analysis was conducted with PAUP*4.0 b10 (Swofford 2002). The dataset was also analyzed in MEGA 6 (Tamura et al. 2013) with maximum likelihood using the Tamura-Nei model with uniform rates among sites. The mean p-distance within each species of Stenus callidus and S. erythrocnemus were calculated separately using the Kimura2-parameter model (Kimura 1980) in MEGA 6. The haplotype data files of the populations of each species and the polymorphisms indices were obtained in DnaSP 5.10 (Librado and Rozas 2009) and the nexus files were transferred to PopART version 1.7 (Leigh and Bryant 2015) in order to construct a haplotype network based on the TCS algorithm (Clement et al. 2002).

Results

The PCR amplification using LCO1490/HCO2198 primers yielded a product with a maximum length of 658 bp (excluding primers) from 91 individuals of 23 species out of a total of 157 specimens of 37 species of Iranian Stenus. The alignment was blasted against GenBank sequences and found to match with existing records of Stenus. The base composition of about 29% A, 39% T, $16 \% \mathrm{C}$ and 16% G exhibits the common AT bias of COI.

The alignment (total of 658 bp) contained 294 variable characters, of which 246 were parsimony informative and contributed to the Maximum Parsimony (MP) Analysis. The MP Analyses produced two equally parsimonious trees with a tree length of 1197 steps, CI of 0.3768 , RI of 0.8564 and RC of 0.3227 (Figure 7). Node support was estimated by bootstrap using 1000 pseudoreplicates and 100 replicates. The major clades are generally well supported (see below). All obtained sequences were submitted to GenBank (accession numbers in Table 1). The maximum likelihood tree was constructed by the heuristic search with the Nearest-Neighbor-Interchange (NNI) method, gaps treatment using all sites, the neighbor-joining (NJ) tree as the initial tree and bootstrapped with 1000 replications (Figure 8). The topology obtained from ML analyses does not deviate significantly from the MP tree. Both methods reveal a high degree of genetic homogeny among different populations of Stenus erythrocnemus and more pronounced heterogeny in S. callidus. The selected populations of S. callidus cluster in seven groups, but these groupings do not correspond well to the geographic distribution of the examined populations and some are not well supported in the bootstrap analysis. There are, however, some populations that form separate geographical clusters such as the populations from Kerman (specimen no. 034) with those of the Ghohrud Mountains (specimen no. 094) and the populations from Tehran Province (specimens no. 105, 107). These apparent geographical clusters are, however, not significant, because they are made up of only two populations from the same region (Figure 9). Surprisingly, the populations of S. callidus from Kordestan Province show a low similarity of the COI gene and appear in different clades of the cladogram (Figures 7, 8).

The haplotype networks for COI of S. callidus and S. erythrocnemus (Figures 3, 4) comprise fourteen and four haplotypes, respectively. Haplotype diversity (h) was estimated at 0.911 ± 0.034 for S. callidus and 0.267 ± 0.107 for S. erythrocnemus. The nucleotide diversity (π i) of each species was calculated as 0.01348 ± 0.00074 for S. callidus and 0.00045 ± 0.00019
Table 2. Kimura two-parameter pairwise genetic distances between populations of Stenus callidus.

	031	033	034	035	036	037	045	046	079	080	081	082	083	084	085	086	087	089	090	092	094	098	099	100	103	105	106	107	108
031																													
033	0.000																												
034	0.006	0.006																											
035	0.022	0.022	0.022																										
036	0.022	0.022	0.022	0.000																									
037	0.000	0.000	0.006	0.022	0.022																								
045	0.002	0.002	0.008	0.023	0.023	0.002																							
046	0.002	0.002	0.008	0.023	0.023	0.002	0.000																						
079	0.012	0.012	0.011	0.028	0.028	0.012	0.014	0.014																					
080	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026																				
081	0.006	0.006	0.000	0.022	0.022	0.006	0.008	0.008	0.011	0.020																			
082	0.012	0.012	0.011	0.028	0.028	0.012	0.014	0.014	0.000	0.026	0.011																		
083	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026	0.000	0.020	0.026																	
084	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026	0.000	0.020	0.026	0.000																
085	0.000	0.000	0.006	0.022	0.022	0.000	0.002	0.002	0.012	0.020	0.006	0.012	0.020	0.020															
086	0.000	0.000	0.006	0.022	0.022	0.000	0.002	0.002	0.012	0.020	0.006	0.012	0.020	0.020	0.000														
087	0.003	0.003	0.009	0.022	0.022	0.003	0.005	0.005	0.015	0.020	0.009	0.015	0.020	0.020	0.003	0.003													
089	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026	0.000	0.020	0.026	0.000	0.000	0.020	0.020	0.020												
090	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026	0.000	0.020	0.026	0.000	0.000	0.020	0.020	0.020	0.000											
092	0.023	0.023	0.023	0.005	0.005	0.023	0.025	0.025	0.030	0.003	0.023	0.030	0.003	0.003	0.023	0.023	0.023	0.003	0.003										
094	0.008	0.008	0.002	0.023	0.023	0.008	0.009	0.009	0.012	0.022	0.002	0.012	0.022	0.022	0.008	0.008	0.011	0.022	0.022	0.022									
098	0.011	0.011	0.008	0.020	0.020	0.011	0.012	0.012	0.014	0.019	0.008	0.014	0.019	0.019	0.011	0.011	0.014	0.019	0.019	0.022	0.009								
099	0.003	0.003	0.009	0.022	0.022	0.003	0.002	0.002	0.015	0.020	0.009	0.015	0.020	0.020	0.003	0.003	0.003	0.020	0.020	0.023	0.011	0.014							
100	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026	0.000	0.020	0.026	0.000	0.000	0.020	0.020	0.020	0.000	0.000	0.003	0.022	0.019	0.020						
103	0.020	0.020	0.020	0.002	0.002	0.020	0.022	0.022	0.026	0.000	0.020	0.026	0.000	0.000	0.020	0.020	0.020	0.000	0.000	0.003	0.022	0.019	0.020	0.000					
105	0.014	0.014	0.011	0.020	0.020	0.014	0.015	0.015	0.017	0.019	0.011	0.017	0.019	0.019	0.014	0.014	0.014	0.019	0.019	0.022	0.012	0.012	0.014	0.019	0.019				
106	0.011	0.011	0.008	0.020	0.020	0.011	0.012	0.012	0.014	0.019	0.008	0.014	0.019	0.019	0.011	0.011	0.014	0.019	0.019	0.022	0.009	0.000	0.014	0.019	0.019	0.012			
107	0.011	0.011	0.008	0.017	0.017	0.011	0.012	0.012	0.014	0.015	0.008	0.014	0.015	0.015	0.011	0.011	0.011	0.015	0.015	0.019	0.009	0.009	0.011	0.015	0.015	0.003	0.009		
108	0.012	0.012	0.009	0.022	0.022	0.012	0.014	0.014	0.015	0.020	0.009	0.015	0.020	0.020	0.012	0.012	0.015	0.020	0.020	0.023	0.011	0.002	0.015	0.020	0.020	0.014	0.002	0.011	

Table 3. Kimura two-parameter pairwise genetic distances between populations of Stenus erythrocnemus.

	009	011	012	024	047	048	049	050	051	052	053	054	055	056	057	058	059	060	062	064	068	069	070	071	072	073	074	134
009																												
011	0.000																											
012	0.000	0.000																										
024	0.002	0.002	0.002																									
047	0.000	0.000	0.000	0.002																								
048	0.000	0.000	0.000	0.002	0.000																							
049	0.002	0.002	0.002	0.003	0.002	0.002																						
050	0.000	0.000	0.000	0.002	0.000	0.000	0.002																					
051	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000																				
052	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000																			
053	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000																		
054	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000																	
055	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000																
056	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000															
057	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000														
058	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000													
059	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000												
060	0.002	0.002	0.002	0.003	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002											
062	0.002	0.002	0.002	0.003	0.002	0.002	0.000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003										
064	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002									
068	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000								
069	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000							
070	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000						
071	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000					
072	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000	0.000				
073	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000			
074	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
134	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

Figure 6. Distribution of Stenus callidus in Iran (after Serri and Frisch 2016: 28).
for S. erythrocnemus (Table 4). In S. callidus, no haplotype has an outstandingly high frequency, while S. erythrocnemus has a dominant haplotype (Hap_1) found in populations of the Elburz and Zagros Mountains and the central mountain ranges.

The maximum genetic distance among populations does not exceed 0.003% in S. erythrocnemus and is much higher in S. callidus with 0.028% (Tables 2, 3). The highest genetic distance as well as the highest haplotype diversity in the populations of S. callidus was observed in the central zone of the Zagros Mountains. In S. erythrocnemus, the highest genetic distance is among the populations of northwestern Iran.

Regarding the subgeneric concept of Stenus, our results (Figures 7, 8) do not support the traditional grouping except for Hemistenus, the selected species of which appear in the same clade. Our results rather support the monophyly of those species groups of Puthz (2008: 139-148), which we tested with at least two representatives. These species groups and the included species are: S. guttula group with S. erythrocnemus and S. maculiger, S. cordatus group with S. araxis and S. turk, S. glacialis group with S. medus, S. persicus and S. schah, S. ochropus-ludyi-coarcticollis group with S. martensi, S. ochropus, S. pieperi and S. ressli, S. ater group with S. ater, S. hypoproditor and S. intricatus zoufali.

Figure 7. Strict consensus of most-parsimonious trees. Values above the branches indicate clade bootstrap support (>50) using 1000 replicates. The geographical origin of the specimens is coded by numbers behind the species name which correspond to the geographical information in Table 1.

Figure 8. Maximum likelihood phylogram. Numbers on branches are bootstrap values (>50). The specimen codes correspond to the geographical information in Table 1. Scale shows number of substitutions per site.

Figure 9. Distribution map of sequenced specimens of Stenus callidus $(\boldsymbol{\bullet})$ and S. erythrocnemus (O). Numbers are haplotype numbers (see Table 4). Sites with more than one haplotype number indicate several geographically close localities.

Discussion

With the example of Iranian populations of the open-living Stenus erythrocnemus and the stratobiont S. callidus, we demonstrate that different ecomorphological forms of congeneric species with differing dispersal ability and degree of geneflow can show a different degree of infraspecific genetic variability.

The open-living S. erythrocnemus is the most widespread Stenus in Iran. It was found in most of the country in high abundance at elevations between 250 m and 2800 m a.s. l. (Figure 5, after Serri and Frisch 2016: 27). As an example of the openliving ecomorphological form described by Kastcheev and Puthz (2011: 454), this mobile species does not show geographically structured populations. The low level of haplotype diversity as well as the low intraspecific distance of this species indicate a high level of gene flow between the populations of this species, which are connected to each other even across zoogeographic barriers due to the species' dispersal ability. This gene flow within the Iranian meta-population of S. erythrocnemus is probably supported by the wide ecological adaptability, which prevents geographic isolation. Unlike the remainder of Iranian Stenus, we repeatedly collected S. erythrocnemus not only

Table 4. Summary of genetic diversity indices in the mitochondrial COI gene segment of Stenus callidus and S. erythrocnemus.

Species	N	L	k	H	h (\pm standard deviation)	$\begin{gathered} \pi \\ \text { (} \pm \text { standard } \\ \text { deviation) } \end{gathered}$	Haplotype no.: sequence(s) no.
Stenus callidus	29	658	30	14	0.911 ± 0.034	0.01348 ± 0.00074	Hap_1: 031, 033, 037, 085, 086 Hap_2: 034, 081 Hap_3: 035, 036 Hap_4: 045, 046 Hap_5: 079, 082 Hap_6: 080, 083, 084, 089, 090,100, 103 Hap_7: 087 Hap_8: 092 Hap_9: 094 Hap_10: 098,106 Hap_11: 099 Hap_12: 105 Hap_13: 107 Hap_14: 108
S. erythrocnemus	28	658	3	4	0.267 ± 0.107	0.00045 ± 0.00019	$\begin{gathered} \text { Hap_1: 009, 011, 012, 047, 048, 050, 051, } \\ 052,053,054,055,056,057,058,059,064 \text {, } \\ 068,069,070,071,072,073,074,134 \\ \text { Hap_2: } 024 \\ \text { Hap_3: } 049,062 \\ \text { Hap_4:060 } \end{gathered}$

Abbreviations: N, number of sequences; L, sequence length (number of bases); k, number of variable sites; H , number of haplotypes; h, haplotype diversity; π, nucleotide diversity.
in natural habitats, but also in polluted sites and anthropogenic places such as watering channels of farms far from natural, permanent watercourses.

The stratobiont S. callidus, the second widespread Stenus in Iran, was collected in high abundance in most of the collecting sites all over the country (Figure 6, after Serri and Frisch 2016: 27). Our cladogram shows the separation of the tested S. callidus populations into six genetic units, which can be explained by the limited dispersal ability of the mostly micropterous individuals of S. callidus. The genetic variability of S. callidus, as shown by the higher genetic distance among populations and more diverse haplotypes, might moreover be increased by discontinuity of suitable habitats caused by man-made destruction, because - in contrast to S. erythrocnemus - the species usually avoids strongly disturbed sites.

Though our COI examination of a limited number of West Palaearctic species of Stenus is not extensive when it comes to understanding the supraspecific phylogeny of the entire clade, it clearly shows the monophyly of the included Hemistenus species and the polyphyletic relationship among the investigated members of subgenus Stenus. The relationships of Tesnus and Metatesnus with other species were not resolved, because we were able to extract DNA from only one species of each of these subgenera. The monophyly of the selected Hemistenus species is, however, consistent with the result of the analysis performed by Koerner et al. (2013: 340).

Our results, which agree with those of Koerner et al. (2013: 345) and Lang et al. (2015: 20-21), further support the monophyly of the tested infrageneric species groups proposed by Puthz (2008: 139-148). On one hand, this result is not very significant, as only few species of some of these groupings were included in this study. On the other hand, our results clearly contradict the traditional subgeneric concept, which is followed until today, and proves the morphological characters this erroneous concept is based on to be phylogenetically uninformative convergencies. The included members of one of these traditional subgenera, Hemistenus, constitute, however, one well supported clade (bootstrap value >90) comprising the S. cordatus group, the S. glacialis group and the S. ochropus-ludyi-coarcticollis group. Particularly the first two species groups are closely related sister groups (bootstrap value 100). Further investigations are necessary to show whether Hemistenus - unlike the other traditional subgenera - actually represents a monophyletic group or not.

Our results support the supraspecific phylogenetic concept of Puthz (2008: 139148) and at the same time largely contradict the traditional subgenera. Therefore, these subgenera should not be used anymore in favour of the informal species groups, though the monophyly of some of them still has to be proved.

Among the collected specimens of S. araxis, there are specimens which show differences in the structure of the median lobe of the aedeagus and in the spermatheca. The cladogram shows that these specimens form a separate clade although they have no geographic separation. Both morphological and genetic examination of a broader basis of specimens is necessary to clarify whether this form should be considered as a distinct species.

Since we did not succeed in extracting DNA from a large number of the recently collected species or from the Iranian material in Scheerpeltz solution collected by Senglet, it was not possible to include all Iranian species into the analysis. Moreover, the paucity of fresh specimens of many rare species did not allow us to use genetic data of these species in our phylogenetic analysis. Nevertheless, this preliminary study provides benchmark data for future phylogenetic investigations that include a higher number of taxa at a wider geographic scale and additional genes. Our current analysis based on a COI fragment suggests that the 'barcoding fragment' studied here can also be used for testing the phylogenetic validity of supraspecific groups.

Acknowledgements

We thank Matthias Glaubrecht, Hamburg (formerly Museum für Naturkunde Berlin), for giving the first author the opportunity to work in the lab of the museum. Björn Stelbrink, Gießen (formerly Museum für Naturkunde Berlin), kindly supervised her in the lab and introduced her to the techniques for mitochondrial DNA analysis. We are grateful to Volker Puthz, Schlitz, who introduced the first author to Stenus taxonomy and never hesitated to support her over the years. The first author is thankful to Hiva Nasserzadeh, Hayk Mirzayans Insect Museum, Tehran, for her company dur-
ing collecting trips. Last but not least, we thank Lee Herman, American Museum of Natural History, New York, for proof-reading the manuscript and helpful comments. Part of field work in Iran and the whole work at the laboratory of the Museum für Naturkunde Berlin were supported by the German Research Foundation (DFG) from 2004-2011 (GZ: 446 IRN-18/1/04, 446 IRN-18/2/04, FR 2453/1-1, FR 2453/3-1).

References

Ádám L (1987) Staphylinidae of the Kiskunság National Park (Coleoptera: Staphylinidae). Natural History of the National Parks of Hungary 5: 126-168.
Ádám L (2001) In: Ádám L, Gabor H: Adatok a Zempléni-hegység, a Hernád-völgy, a Bodrogköz, a Rétköz és a Taktaköz holyvafaunájához (Coleoptera). Sátoraljaújhely, 129 pp.
Baudi di Selve F (1848) Alcune specie nuove di stafilini. Studi Entomologici 1(2): 113-148.
Betz O (1996) Function and evolution of the adhesion-capture apparatus of Stenus species (Coleoptera, Staphylinidae). Zoomorphology 116: 15-34. doi: 10.1007/BF02526926
Betz O (1999) A behavioral inventory of adult Stenus species (Coleoptera: Staphylinidae). Journal of Natural History 33: 1691-1712. doi: 10.1080/002229399299806
Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). The Journal of Experimental Biology 205: 1097-1113.
Betz O (2006) Ecomorphology: Integration of form, function, and ecology in the analysis of morphological structures. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 15: 409-416.
Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. Proc 16th Int Parallel Distrib Process Symp 2: 184. doi: 10.1109/ipdps.2002.1016585
Eppelsheim E (1884) Diagnosen neue Coleopteren aus Lenkoran. Verhandlungen des naturforschenden Vereines in Brünn 22 [1883]: 11-16.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Frisch J, Burckhardt D, Wolters V (2002) Rove beetles of the subtribe Scopaeina Coiffait (Coleoptera: Staphylinidae) in the West Palaearctic: Phylogeny, biogeography and species catalogue. Organisms, Diversity and Evolution 2(1): 27-53. doi: 10.1078/1439-6092-00032
Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23(4): 167-172. doi: 10.1016/j.tig.2007.02.001
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Biological Sciences 270:313-321. doi: 10.1098/rspb.2002.2218

Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Biological Sciences (270) (Suppl.): 96-99.

Herman LH (2001) Catalog of the Staphylinidae (Insecta: Coleoptera) 1758 to the end of the second millennium. IV. Staphylinine group (Part l) Euaesthetinae, Leptotyphlinae, Megalopsidiinae, Oxyporinae, Pseudopsinae, Solieriinae, Steninae. Bulletin of the American Museum of Natural History 265: 1807-2440.
Heyden L von (1905) Notiz. Wiener Entomologische Zeitung 24: 262.
Kastcheev VA, Puthz V (2011) Contribution to the knowledge of the fauna of Steninae (Coleoptera, Staphylinidae) of the Kazakhstan. 319th Contribution to the Knowledge of Steninae. Entomofauna 32: 437-460.
Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120. doi: 10.1007/BF01731581
Koerner L, Laumann M, Betz O, Heethoff M (2013) Loss of the sticky harpoon-COI sequences indicate paraphyly of Stenus with respect to Dianous (Staphylinidae, Steninae). Zoologischer Anzeiger 252: 337-347. doi: 10.1016/j.jcz.2012.09.002
Lang C, Koerner L, Betz O, Puthz V, Dettner K (2015) Phylogenetic relationships and chemical evolution of the genera Stenus and Dianous (Coleoptera: Staphylinidae). Chemoecology 25: 11-24. doi: 10.1007/s00049-014-0171-4
Leigh J, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-6. doi: 10.1111/2041-210X. 12410
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. doi: 10.1093/bioinformatics/btp187
Puthz V (2001) Beiträge zur Kenntnis der Steninen CCLXIX. Zur Ordnung in der Gattung Stenus Latreille, 1796 (Staphylinidae, Coleoptera). Phillippia 10: 33-42.
Puthz V (2008) Stenus Latreille und die segenreiche Himmelstochter (Coleoptera, Staphylinidae). Linzer biologische Beiträge 40(1): 137-230.
Puthz V (2009) Neue und alte paläarktische Stenus-Arten (Col., Staphylinidae). 305. Beiträge zur Kenntnis der Steninen. Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 61: 29-50.
Puthz V (2012) Steninae. In: Freude H, Harde KW, Lohse A (Eds) Die Käfer Mitteleuropas. Band 4. Zweite Auflage, 286-317.
Qian L, An Y, Song J, Xu M, Ye J, Wu C, Li B, Hao D (2014) COI gene geographic variation of Gypsy moth (Lepidoptera: Lymantriidae) and a TaqMan PCR diagnostic assay. DNA Barcodes 2: 10-16. doi: 10.2478/dna-2014-0002
Rey C (1884) Tribu des brévipennes. Deuxième groupe: Micropéplides. Troisième groupe: Sténides. Annales de la Société Linnéenne de Lyon 30(2): 153-415.
Ryvkin AB (2011) Contributions to the knowledge of Stenus (Nestus) species of the crassus group (Insecta: Coleoptera: Staphylinidae: Steninae). 1. Four new species from the Russian Far East with taxonomic notes. Baltic Journal of Coleopterology 11(1): 57-72.
Schierling A, Seifert K, Sinterhauf SR, Rieß JB, Rupprecht JC, Dettner K (2013) The multifunctional pygidial gland secretion of the steninae (Coleoptera: Staphylinidae): ecological significance and evolution. Chemoecology 23: 45-57. doi: 10.1007/s00049-012-0118-6
Schülke M, Smetana A (2015) Staphylinidae [Omaliinae - Scydmaeninae]. In: Löbl I, Löbl D (Eds) Catalogue of Palaearctic Coleoptera Vol. 2/1. Brill, Leiden, Boston, 304-900.

Serri S, Frisch J (2016) Species diversity and biogeography of the Steninae MacLeay, 1825 of Iran, with comparative notes on Scopaeus Erichson, 1839 (Coleoptera: Staphylinidae). Deutsche Entomologische Zeitschrift 63(1): 17-44. doi: 10.3897/dez.63.5885
Swofford DL (2002) PAUP. Phylogenetic Analysis Using Parsimony,Version 4. 10. Sinauer Associates, Sunderland, MA.
Szalanski AL, McKern JA, Solorzano C, Austin JW (2010) Genetic Diversity of Ants (Hymenoptera: Formicidae) from the Ozark-St. Francis National Forest, Arkansas, USA. Sociobiology 56(3): 1-10.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6. Molecular Biology and Evolution 30: 2725-2729. doi: 10.1093/molbev/mst197

Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends in Genetics 9: 407. doi: 10.1016/0168-9525(93)90102-N

[^0]: Copyright Sayeh Serri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

