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Background: The absence of consensus for prophylaxis of venous thromboembolism (VTE) in spine 
surgery underscores the importance of identifying patients at risk. This study incorporated machine learning 
(ML) models to assess key risk factors of VTE in patients who underwent posterior spinal instrumented 
fusion.
Methods: Data was collected from the IBM MarketScan Database [2009–2021] for patients ≥18 years old  
who underwent spinal posterior instrumentation (3–6 levels), excluding traumas, malignancies, and 
infections. VTE incidence (deep vein thrombosis and pulmonary embolism) was recorded 90-day post-
surgery. Risk factors for VTE were investigated and compared through several ML models including logistic 
regression, linear support vector machine (LSVM), random forest, XGBoost, and neural networks.
Results: Among the 141,697 patients who underwent spinal fusion with posterior instrumentation  
(3–6 levels), the overall 90-day VTE rate was 3.81%. The LSVM model demonstrated the best prediction 
with an area under the curve (AUC) of 0.68. The most important features for prediction of VTE included 
remote history of VTE, diagnosis of chronic hypercoagulability, metastatic cancer, hemiplegia, and chronic 
renal disease. Patients who did not have these five key risk factors had a 90-day VTE rate of 2.95%. Patients 
who had an increasing number of key risk factors had subsequently higher risks of postoperative VTE.
Conclusions: The analysis of the data with different ML models identified 5 key variables that are most 
closely associated with VTE. Using these variables, we have developed a simple risk model with additive 
odds ratio ranging from 2.80 (1 risk factor) to 46.92 (4 risk factors) over 90 days after posterior spinal fusion 
surgery. These findings can help surgeons risk-stratify their patients for VTE risk, and potentially guide 
subsequent chemoprophylaxis.
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Introduction

Venous thromboembolism (VTE) is a significant and 
potentially life-threatening complication that can occur 
after spine surgery. VTE encompasses deep vein thrombosis 
(DVT) and pulmonary embolism (PE), both of which can 
lead to severe morbidity and mortality if not promptly 
detected and treated (1). Despite several committee attempts 
to develop standardized guidelines for VTE mechanical 
and chemoprophylaxis (2-4), our understanding of the 
risk and subsequent prophylactic mitigation of VTE after 
spine surgery has been impeded by heterogeneous spinal 
procedures, inconsistent VTE prophylaxis policies and 
follow-ups across healthcare institutions, and differential 
anesthetic techniques (1,5,6). 

Several recent studies have explored contributory risk 
factors for developing VTE following spine surgery, finding 
increased operative time, older age, body mass index, 
smoking, fusion and instrumentation procedures, cancer 
history, heart failure history, and chronic kidney disease 
to predispose patients to VTE following spine surgeries  
(5,7-9). One study utilized multivariable regression to 
develop a 13-point risk scoring system with a receiver-
operating-characteristic curve area of 0.756 (10). 

Relatively few studies have utilized machine learning 
(ML) methodologies to more comprehensively predict 
VTE risk after spinal surgery. ML provides the advantage 
of utilizing non-linear methods and complex decision trees 

that can adapt with repeated iterations in order to identify 
patterns for predicting outcomes. As a result, ML can 
identify trends that may have gone unnoticed in traditional 
linear analyses, especially when working with large, complex 
datasets. One study used a small cohort of 63 patients to 
identify 113 attributes, generating predictive models that 
were 81–89% accurate (11). A larger institutional study 
utilized deep neural networks (DNN) on over 108 variables 
to predict VTE and found that a history of cardiac disease 
and presence of VTE within 12 months of surgery were the 
highest contributors (12). One national study incorporated 
a larger sample of 13,500 patients, identifying age >65 years,  
obesity, coronary artery disease (CAD), functional status, 
and prolonged operative time to be significant multivariable 
predictors with an area under curve of 0.716 (13).  
We present the largest study to date on this topic, 
incorporating ML models to stratify risk factors for VTE 
in a cohort of >140,000 patients after spinal fusion with 
posterior instrumentation. We also present a simple tiered 
predictive model to help guide clinicians with patient risk 
stratification. We present this article in accordance with 
the STROBE reporting checklist (available at https://jss.
amegroups.com/article/view/10.21037/jss-24-8/rc). 

Methods

Data source

As this was a retrospective cohort review of a national 
de-identified database, institutional review board (IRB) 
approval was not necessary. Patients were identified 
from the IBM MarketScan® Commercial Claims and 
Encounters and Medicare Supplemental and Coordination 
of Benefit databases (Ann Arbor, Michigan). The database 
is a collection of medical insurance claims databases from 
over 300 employer-sponsored and Medicare supplemental 
plans, containing more than 240 million de-identified 
patient records. The database provides information on 
inpatient admissions, outpatient visits, and pharmaceutical 
encounters. The database was selected as it is one of 
the largest administrative claims databases and allows 
for longitudinal follow-up of continuously enrolled 
patients. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Patient selection

The database was first queried for patients aged ≥18 years 
who underwent posterior spinal instrumentation (3– 
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6 vertebral levels) between January 1, 2009, and December 
31, 2021, as defined by the current procedural terminology 
(CPT) code ‘22842’ (Posterior segmental instrumentation 
(e.g., pedicle fixation, dual rods with multiple hooks 
and sublaminar wires; 3 to 6 vertebral segments). Any 
procedures with associated traumas, malignancies, or 
infections were excluded via associated diagnosis codes. 
Additionally, to ensure proper follow-up of the patient 
population, patients who were not continuously enrolled 
in the database for at least 6 months before surgery and 
3 months after surgery were excluded. Finally, to limit 
confounder effects, patients with any episodes of VTE 
within 6 months prior to surgery were excluded.

Study variables and outcomes

Patient demographic information was collected from the 
database including age and sex. Ages were grouped into  
5 categories as defined by the database: 18–34, 35–44, 
45–54, 55–64, and 65+ years old. Comorbidity status was 
obtained using the Charlson Comorbidity Index (CCI). 
The CCI is a comorbidity measurement tool that is widely 
utilized to measure patients’ burden of diseases, which 
includes cardiovascular, neurologic, pulmonary, renal, 
and other chronic diseases (14). Additional comorbidities 
collected included obesity, smoking history, CAD, 
hypertension (HTN), hyperlipidemia, alcohol use disorder, 
depression, anxiety, atrial fibrillation, iron deficiency anemia, 
osteoporosis, valvular heart disease, a remote history of 
DVT or PE (>6 months prior to surgery), and a chronic 
hypercoagulable state. A chronic hypercoagulable state 
was defined as patients with a diagnosis of protein C or S  
deficiency, Factor V Leiden, antiphospholipid antibody, 
lupus anticoagulant, or other thrombophilia. 

The primary outcome for this study was the diagnosis of 
VTE (including DVT and PE) within 90 days after surgery. 
Longitudinal tracking within the database allowed us to 
identify patients who had a 90-day VTE; as a result, patients 
were grouped as either having a VTE after surgery or no 
VTE after surgery. Comorbidities and complications were 
queried utilizing the ninth and tenth edition International 
Classification of Diseases (ICD) diagnostic codes (Table S1 
and Table S2, respectively) (15). 

Statistical analyses and predictive model construction

Descriptive statistics were generated based on demographics 

and CCI score between the two cohorts. Chi-squared tests 
were used to determine differences in categorical variables, 
and Student’s t-tests were used to analyze differences 
in continuous variables. To evaluate differences in each 
comorbidity collected, multivariable logistic regressions 
were performed, controlling for sex and age. Patients that 
had no VTE served as the reference group. All statistical 
analyses were conducted using R Studio (PBC, Boston, MA, 
USA). Statistical significance was defined as P<0.05 for all 
tests. 

Five ML models were utilized to predict patient risk 
factors for VTE within 90 days after surgery: XGBoost 
Tree, logistic regression, random forest, linear support 
vector machine (LSVM), and neural networks. XGBoost 
is an advanced implementation of a gradient boosting 
algorithm with a tree model as the base model (16). 
Multiple decision trees are trained to make predictions and 
identify feature importance. Logistic regression is a well-
known method for building clinical prediction models 
utilizing general linear models (17). Random forest is a 
popular ML algorithm also utilizing decision tree models to 
construct classification tasks. LSVM is a robust classification 
technique that maps data to a high-dimensional feature 
space and incorporates a linear separator to classify data 
into separate categories. It is particularly suited for use with 
wide datasets (18). Neural networks are also a popular ML 
model that relies on interconnected nodes and hidden layers 
to accurately classify data. 

Prior to ML analysis, the data was randomly down-
sampled to half of the patients in the no VTE group. This 
was done in order to balance the data, as prediction models 
with heavily weighted sample sizes in one cohort can create 
skewed results (19). For instance, since 96.19% of patients 
in our study population had no VTE within 90 days after 
surgery, a ML model that predicts “no VTE” every time will 
still have 96.19% of correct predictions; thus, the predictive 
values may not be represented accurately. Furthermore, 
in order to minimize overfitting of our models, due to the 
large number of potential variables, we performed feature 
selection utilizing Pearson’s correlation to remove variables 
that were not categorized as highly predictive of VTE 
within the dataset. 

The data was then randomly partitioned in an 80:20 
ratio of training and testing groups, where the testing data 
was evaluated after completion of the ML training process. 
Five-fold cross validation was used for the purposes of 
hyperparameter optimization. For each ML algorithm, 
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four-fifths of the encounters within the 80% training split 
were randomly selected to train the corresponding model, 
and the remaining one-fifth was used as a validation set to 
determine model performance. This process gets repeated 
in total 5 times utilizing a new training and validation set. 
The combination of hyperparameters that performed the 
best across all 5 iteration was selected for incorporation into 
the final testing model, in which the entire 80% training 
split was trained on by the corresponding ML model before 
being tested on the 20% testing set. In order to assess each 
ML prediction model, we computed the area under the 
receiving operative curve (AUROC) and derived sensitivity, 
specificity, positive predictive value, negative predictive 
value, diagnostic odds ratio (OR), positive likelihood ratio, 
and negative likelihood ratio from each confusion matrix. 
ML models were performed using SPSS Modeler version 
18.4 (IBM, Chicago, IL, USA).

Finally, the model with the highest AUROC and 
diagnostic OR was then utilized to quantify the risks for 
developing 90-day VTE based on the top five feature 
selection derived from the respective model. VTE rates 
were incrementally calculated for patients with none of 
the top five risk factors to patients with all of the top five 
risk factors. Multivariable logistic regressions, controlling 
for age, sex, and all collected comorbidities were then 
performed to identify the ORs for developing a 90-day 
VTE in patients with increasing numbers of top five risk 
factors. Patients that did not have any of the top five risk 
factors served as the reference group. 

Results

Population demographics

A total of 141,697 adult patients who underwent posterior 
spinal fusion with segmental instrumentation (3–6 levels) 
were identified in the database from 2009 to 2021. Of the 
141,697 patients, 5,400 patients (3.81%) were found to 
have a VTE within 90-day after surgery (Table 1). Patients 
that had a 90-day VTE were older (61.75 vs. 58.31 years; 
P<0.001), less likely to be female (49.74% vs. 53.43%; 
P<0.001), and had a higher CCI score (2.77 vs. 1.83; P<0.001) 
compared to patients that did not have a 90-day VTE.

Multivariable analyses of comorbidities 

Comparisons of patient comorbidities between the VTE 
and no VTE groups are shown in Table 2. Utilizing 
multivariable logistic regressions controlling for age and 
sex, patients that experienced a 90-day VTE were more 
likely to have a remote history of DVT or PE (OR 11.53; 
P<0.001), chronic hypercoagulability (OR 4.80; P<0.001), 
metastatic cancer (OR 2.81; P<0.001), hemiplegia (OR 
2.33; P<0.001), atrial fibrillation (OR 1.73; P<0.001), 
congestive heart failure (OR 1.61; P<0.001), dementia (OR 
1.58; P<0.001), chronic renal disease (OR 1.53; P<0.001), 
and many other additional comorbidities. Interestingly, 
patients with a smoking history (OR 0.83; P<0.001) had 
lower odds of developing a VTE after surgery. Based on 
individual multivariable logistic regressions, patients with 
a remote history of DVT/PE, those in a hypercoagulable 
state, patients with metastatic cancer, hemiplegia, and 
atrial fibrillation had the highest ORs for a 90-day VTE, 
respectively. 

Predictive model parameters and assessment 

Prior to performing the ML models, feature selection 
utilizing Pearson’s correlation was performed which 
removed human immunodeficiency virus or acquired 
immunodeficiency syndrome (HIV/AIDS), depression, 
anxiety, alcohol use disorder, moderate/severe liver disease, 
and peptic ulcer disease as inputs for the ML models. 
Variable rankings from the five ML models can be seen in 
Table 3. In all models, a remote history of DVT or PE was 
selected as the most important variable for predicting a  
90-day  VTE a f t e r  pos te r io r  fu s ion  w i th  sp ina l 
instrumentation. Furthermore, chronic hypercoagulability, 
and hemiplegia were consistently featured by the different 

Table 1 Baseline demographic data by 90-day VTE cohort

Characteristics No VTE VTE P value

Total patients, n (%) 136,297 (96.19) 5,400 (3.81) –

Age (years), mean (SD) 58.31 (11.87) 61.75 (11.70) <0.001

Age groups, n (%) <0.001

18–34 years 4,717 (3.46) 109 (2.02)

35–44 years 11,865 (8.71) 295 (5.46)

45–54 years 29,645 (21.75) 887 (16.43)

55–64 years 53,955 (39.59) 2,060 (38.15)

65+ years 36,115 (26.50) 2,049 (37.94)

Female patients, n (%) 72,827 (53.43) 2,686 (49.74) <0.001

CCI score, mean (SD) 1.83 (2.25) 2.77 (2.87) <0.001

VTE, venous thromboembolism; SD, standard deviation; CCI, 
Charlson Comorbidity Index.
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Table 2 Ninety-day venous thromboembolism rates with multivariable odds ratios by patient comorbidities

Comorbidity No VTE (%) VTE (%) Odds ratio 95% CI P value

Remote history of DVT/PE 1.20 12.67 11.53 10.49–12.67 <0.001

Chronic hypercoagulable state 1.54 6.78 4.80 4.28–5.39 <0.001

Metastatic cancer 1.25 3.85 2.81 2.43–3.26 <0.001

Hemiplegia 2.73 6.54 2.33 2.08–2.61 <0.001

Atrial fibrillation 5.15 10.54 1.73 1.58–1.90 <0.001

Congestive heart failure 6.77 12.35 1.61 1.48–1.76 <0.001

Dementia 0.54 1.13 1.58 1.21–2.06 <0.001

Chronic renal disease 7.31 12.69 1.53 1.41–1.68 <0.001

Valvular heart disease 12.98 20.35 1.48 1.38–1.58 <0.001

Cerebrovascular disease 13.52 21.22 1.44 1.34–1.54 <0.001

Myocardial infarction 5.01 8.29 1.42 1.28–1.57 <0.001

Iron deficiency anemia 6.18 8.93 1.42 1.29–1.56 <0.001

Peripheral vascular disease 13.52 21.09 1.41 1.32–1.51 <0.001

Solid malignancy 9.04 14.28 1.41 1.31–1.53 <0.001

Obesity 27.77 33.83 1.39 1.32–1.48 <0.001

Chronic lung disease 27.53 35.20 1.38 1.29–1.46 <0.001

Osteoporosis 8.78 12.55 1.34 1.23–1.46 <0.001

Coronary artery disease 20.52 28.91 1.29 1.21–1.38 <0.001

Diabetes w/ complication 8.05 11.31 1.25 1.15–1.36 <0.001

Mild liver disease 7.12 8.72 1.23 1.11–1.35 <0.001

Peptic ulcer disease 2.31 2.93 1.18 1.00–1.39 0.04

Diabetes w/o complication 22.69 28.17 1.18 1.11–1.26 <0.001

Hypertension 67.52 74.94 1.18 1.01–1.26 <0.001

Rheumatic disease 20.59 23.44 1.16 1.09–1.24 <0.001

HIV/AIDS 0.18 0.18 1.08 0.57–2.04 0.81

Depression 27.83 27.65 1.08 1.01–1.15 0.02

Hyperlipidemia 59.85 64.09 1.01 0.97–1.07 0.63

Anxiety 13.56 12.65 1.01 0.93–1.09 0.89

Alcohol use disorder 3.43 3.33 1.00 0.85–1.15 0.90

Moderate/severe liver 0.29 0.30 0.94 0.56–1.54 0.79

Smoking history 17.97 13.87 0.83 0.77–0.90 <0.001

Multivariable logistic regression controlled for by age, sex (reference is No VTE group). VTE, venous thromboembolism; CI, confidence 
interval; DVT, deep vein thrombosis; PE, pulmonary embolism; HIV/AIDS, human immunodeficiency virus/acquired immunodeficiency 
syndrome.
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models (≥3) as top predictors of 90-day VTE. The model 
with the highest AUROC was the LSVM, which predicted 
that patients with a remote history of DVT or PE, chronic 
hypercoagulability, metastatic cancer, hemiplegia, and 
chronic renal disease were the most important variables for 
predicting a VTE within 90 days after surgery. 

Assessment of the testing sets from each ML model is 
shown in Table 4. Three of the five models had an AUROC 
of ≥0.65. All of the models demonstrated strong specificity 
for predicting patients with a 90-day VTE but demonstrated 
weak sensitivity. The LSVM was selected as the model with 
the highest accuracy due to the having the largest AUROC 
(0.68) and diagnostic OR (31.40). 

VTE risk stratification

In order to understand the VTE risks associated with the 

ML model rankings, patients with any top five risk factors 
for VTE from the LSVM model were compared to patients 
that did not have any of the respective comorbidities  
(Table 5). Patients with no top five risk factors (n=122,651) 
had a 90-day VTE rate of 2.95%. Patients with any one of 
the top five risk factors (n=16,880) had a 90-day VTE rate 
of 7.86%, which was associated with a 2.80 greater OR 
of developing a VTE compared to patients with no risk 
factors (P<0.001). Furthermore, patients with any two of 
the top five risk factors (n=1,968) had a 90-day VTE rate 
of 19.82%, which was associated with an 8.12 greater OR 
after multivariable logistic regression (P<0.001). Patients 
with any three of the top five risk factors (n=181) had a 
90-day VTE rate of 27.62%, which was associated with 
a 12.54 greater OR compared to patients with no risk 
factors (P<0.001). Patients with four of the top five risk 
factors (n=17) had a 90-day VTE rate of 58.82%, which 

Table 3 Top five important variables for risk of 90-day venous thromboembolism by model

Model AUROC Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

XGBoost tree 0.53 Remote history of 
DVT/PE

Chronic 
hypercoagulability

Male Osteoporosis Myocardial 
infarction

Logistic regression 0.66 Remote history of 
DVT/PE

Chronic 
hypercoagulability

Hemiplegia Metastatic cancer Atrial fibrillation

Random forest 0.58 Remote history of 
DVT/PE

Male Rheumatic disease Chronic pulmonary 
disease

Hyperlipidemia

Linear support 
vector machine

0.68 Remote history of 
DVT/PE

Chronic 
hypercoagulability

Metastatic cancer Hemiplegia Chronic renal 
disease

Neural networks 0.65 Remote history of 
DVT/PE

Chronic 
hypercoagulability

Hemiplegia Atrial fibrillation Chronic renal 
disease

AUROC, area under receiver operating characteristic curve; DVT, deep vein thrombosis; PE, pulmonary embolism.

Table 4 Confusion matrices by machine learning model

Method XGBoost tree Logistic regression Random forest Linear support vector machine Neural network

AUROC 0.53 0.66 0.58 0.68 0.65

Sensitivity (%) 5.28 4.00 3.66 1.85 0.77

Specificity (%) 98.67 99.72 98.08 99.94 99.96

Positive predictive value (%) 22.38 51.09 22.40 56.66 60.00

Negative predictive value (%) 93.47 93.45 93.39 93.27 93.26

Diagnostic odds ratio 4.14 14.84 1.94 31.40 19.39

Positive likelihood ratio 3.96 14.35 3.97 33.10 20.61

Negative likelihood ratio 0.96 0.96 0.97 0.98 0.99

AUROC, area under receiver operating characteristic curve.
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represented a 46.92 greater OR compared to patients with 
no risk factors (P<0.001). There were no patients within the 
data population that had all five risk factors. 

Discussion

Our study represents the largest cohort of 141,697 patients 
who underwent spinal fusion with posterior instrumentation 
(3–6 levels) analyzed with ML methodologies to create 
predictive models that identify and stratify key risk factors 
for developing VTE. Our study identified the LSVM model 
as having the best prediction of VTE risk with an area 
under the curve (AUC) value of 0.68. Within this model, 
five key variables were identified that constituted a simple 
VTE risk model with additive ORs ranging from 2.80 to 
46.92 (Table 5): remote history of VTE, diagnosis of chronic 
hypercoagulability, metastatic cancer, hemiplegia, and 
chronic renal disease. It is important to note that while these 
variables were identified as being most closely associated 
with VTE in our models, other pertinent variables such as 
estimated blood loss, hospital length-of-stay, or operative 
time, were not available within the dataset. 

In comparing our results to other studies, chronic renal 
disease has been found to be a significant risk factor for 
VTE after spine surgery, given the elevated inflammatory 
and hypercoagulable systemic state (8). The 13-point 
VTE risk score developed by Piper et al. via multivariable 
regression analysis similarly found and incorporated 
paraplegia/quadriplegia into their risk calculations (10). 
Their AUC value of 0.756 is within range of our LSVM 
model, although our model incorporates predictive ML 
methodologies and streamlines the risk calculator with a 
simpler 5-tiered system (Table 5). Furthermore, our models 
incorporate complex networks and non-linear relationships 

that are advantageous with large, complex datasets. 
The studies by Katiyar et al., Wang et al., and Hopkins 

et al. represent the only other attempts to incorporate 
ML methodologies into VTE risk prediction after spine 
surgery (11-13). Katiyar et al. studied a much smaller cohort 
of 63 patients and utilized several models. Their Simple 
Logistic model had an accuracy of 84% and, like our study, 
incorporated prior VTE risk, amongst other variables (11).  
The study by Wang et al. incorporated a much larger 
cohort of 13,500 patients from the National Surgical 
Quality Improvement Program (NSQIP) database focused 
on 1-level lumbar fusions. They utilized a multivariable 
logistic regression model in addition to a similar XGBoost 
tree-based algorithm. They similarly identified 5 significant 
risk factors: age >65 years, obesity grade II or above, CAD, 
functional status, and prolonged operative time (13). 
Although they similarly found an increase in risk with 
each added risk factor, the differences in the nature of the 
risk factors between our two studies likely relate to both 
the difference in patient sample size as well as inherent 
differences in the source databases. It is also likely that 
differences in the procedure and differences in the patient 
population factor into differences in their findings with 
ours. Our study is also the first to formally incorporate 
a hypercoagulable condition into a VTE risk prediction 
model for spine surgery. Hopkins et al. utilized DNN with 
synthetic minority oversampling technique (SMOTE) to 
predict VTE after spine surgery at a single institution. 
They similarly identified a history of DVT or PE within 
12 months of surgery as the top risk factor for VTE after 
surgery. Their best model had an AUC of 0.90, however, 
this was a single center study of 6,869 patients, which also 
utilized an oversampling technique to balance the dataset, 
thus potentially introducing data that can skew the model 

Table 5 Risk calculator for 90-day VTE based on number of comorbidities within the top 5 per the LSVM model 

No. of risk factors No. of patients 90-day VTE rate (%) Odds ratio 95% CI P value

0 122,651 2.95 Reference

1 16,880 7.86 2.80 2.62–2.98 <0.001

2 1,968 19.82 8.12 7.23–9.11 <0.001

3 181 27.62 12.54 9.04–17.39 <0.001

4 17 58.82 46.92 17.85–123.33 <0.001

5 0 N/A N/A N/A N/A

Top 5 risk factors included remote history of DVT/PE, chronic hypercoagulable state, metastatic cancer, hemiplegia, and chronic renal 
disease. VTE, venous thromboembolism; LSVM, linear support vector machine; CI, confidence interval; N/A, not available; DVT, deep vein 
thrombosis; PE, pulmonary embolism.
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results (12). 
Current rates for VTE after spine surgery published in 

the literature range from 0.2% to 31% (6). The retrospective 
cohort study by Ngan et al. studied a similarly large cohort 
of 121,000 patients undergoing elective lumbar surgery, 
finding a 30-day VTE rate of 1.1% overall (7). Our study 
identified an overall rate of 90-day VTE of 3.81% across 
our entire patient cohort of >140,000 patients. The true 
overall VTE rate potentially lies closer to the lower end of 
published ranges in a posterior spinal instrumented fusion 
population, although further study would certainly have to 
support this. 

There are several limitations to this study. First, we 
are limited to the data available to us through the source 
IBM MarketScan Database. We, for example, did not have 
access to specific variables such as pre- or post-operative 
medication use or VTE mechanical or chemoprophylaxis 
that could have confounded the results of this study. We 
also were unable to cross-reference CPT code 22842 with 
formal fusion codes to stratify our dataset across cervical, 
thoracic, and lumbar procedures. However, given that we 
removed all trauma, infection, and malignancy diagnoses, 
we assumed posterior spinal instrumentation would refer 
to a degenerative fusion. We also were unable to cross-
reference with staged anterior fusion codes. Although we 
assumed this was too small a subpopulation to specifically 
control for, this remains a limitation. Utilizing 22842 
necessarily focused our study population on patients 
with 3–6 levels of fusion. Although not including single 
level non-segmental fusions may introduce some level 
of selection bias, this subpopulation has been previously 
studied and allowed us to increase our VTE capture rate 
and to limit variability and potential bias. Likewise, the 
incidence of VTE in our study is based on assigned ICD 
codes, which only reflects symptomatic VTE in patients 
with consistent follow-up. While patients were required to 
be continuously enrolled in the database for the full 90-day  
period postoperatively, it is still possible that patients 
did not have documented follow-up or had follow-up 
at another institution not included within the database. 
Although our dataset incorporated proxy variables for 
functional status (e.g., hemiplegia), it does not collect 
formal functional outcomes scores or variables that could 
be used to accurately measure functional status, which can 
influence post-operative VTE risk. We acknowledge that 
the individual risk factors associated with the 5-tiered model 
may not hold equal risk: for instance, remote history of 

VTE may have an inherently higher risk. We have provided 
individual ORs in Table 2 through our multivariable analysis 
that can act as an additional risk stratifying tool. Another 
limitation of our study pertains to the nature of ML. While 
our models are able to perform complex analyses within 
a large dataset, the incorporation of a large number of 
variables potentially introduces covariance, which may skew 
predictions. In order to mitigate this, our study utilizes a 
down-sampling technique, though due to the low rates of 
VTE, it is difficult to mitigate any innate bias in the training 
data without compromising the integrity of the data. This 
limitation has been consistent across several other studies, 
and Hopkins et al. incorporated oversampling techniques 
to correct for innate model training bias (12). Similarly, the 
overall low VTE rate, combined with the limited variables 
available through the source database, likely contributed to 
the overall low sensitivity and positive predictive value of 
our models. An up-sampling technique may be beneficial in 
future studies to better capture patients with VTE, although 
this too contains risks of overfitting and data noise. Finally, 
we limited our model to a singular dataset, which could 
compromise its generalizability. Further study to externally 
validate our model and its results is warranted. 

Conclusions

Our study represents the largest cohort of >140,000 patients 
who underwent spinal fusion with posterior instrumentation 
(3–6 levels) analyzed with ML methodologies to create a 
simple VTE risk model that incorporates 5 key variables 
with additive ORs: remote history of VTE, diagnosis of 
chronic hypercoagulability, metastatic cancer, hemiplegia, 
and chronic renal disease. With current variability in timing 
and usage of anticoagulation after surgery, clinicians and 
surgeons can utilize these findings to identify patients 
who may benefit from more aggressive mechanical and 
chemoprophylactic agents.

Acknowledgments

Funding: None.

Footnote 

Reporting Checklist: The authors have completed the 
STROBE checklist. Available at https://jss.amegroups.com/
article/view/10.21037/jss-24-8/rc

https://jss.amegroups.com/article/view/10.21037/jss-24-8/rc
https://jss.amegroups.com/article/view/10.21037/jss-24-8/rc


Heo et al. ML approach to predict VTE after spinal fusion222

© Journal of Spine Surgery. All rights reserved. J Spine Surg 2024;10(2):214-223 | https://dx.doi.org/10.21037/jss-24-8

Data Sharing Statement: Available at https://jss.amegroups.
com/article/view/10.21037/jss-24-8/dss

Peer Review File: Available at https://jss.amegroups.com/
article/view/10.21037/jss-24-8/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://jss.amegroups.
com/article/view/10.21037/jss-24-8/coif). The authors have 
no conflicts of interest to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The present study 
utilized a publicly available database with de-identified 
data; therefore, institutional review board approval was not 
required. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Alvarado AM, Porto GBF, Wessell J, et al. Venous 
Thromboprophylaxis in Spine Surgery. Global Spine J 
2020;10:65S-70S.

2. NASS Evidence-Based Guideline Development 
Committee. Evidence-Based Clinical Guidelines for 
Multidisciplinary Spine Care. Antithrombotic Therapies 
in Spine Surgery. 2009.

3. Zuckerman SL, Berven S, Streiff MB, et al. Management 
of Anticoagulation/Antiplatelet Medication and Venous 
Thromboembolism Prophylaxis in Elective Spine Surgery: 
Concise Clinical Recommendations Based on a Modified 
Delphi Process. Spine (Phila Pa 1976) 2023;48:301-9.

4. Recommendations from the ICM-VTE: Spine. J Bone 
Joint Surg Am 2022;104:309-28.

5. Tran KS, Issa TZ, Lee Y, et al. Impact of Prolonged 

Operative Duration on Postoperative Symptomatic Venous 
Thromboembolic Events After Thoracolumbar Spine 
Surgery. World Neurosurg 2023;169:e214-20.

6. Solaru S, Alluri RK, Wang JC, et al. Venous 
Thromboembolism Prophylaxis in Elective Spine Surgery. 
Global Spine J 2021;11:1148-55.

7. Ngan A, Song J, Katz AD, et al. Venous Thromboembolism 
Rates Have Not Decreased in Elective Lumbar Fusion 
Surgery from 2011 to 2020. Global Spine J 2023. [Epub 
ahead of print]. doi: 10.1177/21925682231173642.

8. Chen HW, Wu WT, Wang JH, et al. The Risk of Venous 
Thromboembolism after Thoracolumbar Spine Surgery: A 
Population-Based Cohort Study. J Clin Med 2023;12:613.

9. Massaro AM, Frier S, Strot SM, et al. Revisiting 
Anticoagulation in Spine Surgery: Balancing Venous 
Thromboembolic Events and Epidural Hematoma. 
Global Spine J 2023. [Epub ahead of print]. doi: 
10.1177/21925682231190616.

10. Piper K, Algattas H, DeAndrea-Lazarus IA, et al. Risk 
factors associated with venous thromboembolism in 
patients undergoing spine surgery. J Neurosurg Spine 
2017;26:90-6.

11. Katiyar P, Chase H, Lenke LG, et al. Using Machine 
Learning (ML) Models to Predict Risk of Venous 
Thromboembolism (VTE) Following Spine Surgery. Clin 
Spine Surg 2023;36:E453-6.

12. Hopkins BS, Cloney MB, Dhillon ES, et al. Using 
machine learning and big data for the prediction of venous 
thromboembolic events after spine surgery: A single-
center retrospective analysis of multiple models on a 
cohort of 6869 patients. J Craniovertebr Junction Spine 
2023;14:221-9.

13. Wang KY, Ikwuezunma I, Puvanesarajah V, et al. Using 
Predictive Modeling and Supervised Machine Learning to 
Identify Patients at Risk for Venous Thromboembolism 
Following Posterior Lumbar Fusion. Global Spine J 
2023;13:1097-103.

14. Charlson ME, Pompei P, Ales KL, et al. A new method 
of classifying prognostic comorbidity in longitudinal 
studies: development and validation. J Chronic Dis 
1987;40:373-83.

15. Heo KY, Bonsu JM, Muffly BT, et al. Complications 
Rates Among Revision Total Knee Arthroplasty 
Patients Diagnosed With COVID-19 Postoperatively. J 
Arthroplasty 2024;39:766-771.e2.

16. Inoue T, Ichikawa D, Ueno T, et al. XGBoost, a Machine 
Learning Method, Predicts Neurological Recovery in 

https://jss.amegroups.com/article/view/10.21037/jss-24-8/dss
https://jss.amegroups.com/article/view/10.21037/jss-24-8/dss
https://jss.amegroups.com/article/view/10.21037/jss-24-8/prf
https://jss.amegroups.com/article/view/10.21037/jss-24-8/prf
https://jss.amegroups.com/article/view/10.21037/jss-24-8/coif
https://jss.amegroups.com/article/view/10.21037/jss-24-8/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Spine Surgery, Vol 10, No 2 June 2024 223

© Journal of Spine Surgery. All rights reserved. J Spine Surg 2024;10(2):214-223 | https://dx.doi.org/10.21037/jss-24-8

Patients with Cervical Spinal Cord Injury. Neurotrauma 
Rep 2020;1:8-16.

17. Deo RC. Machine Learning in Medicine. Circulation 
2015;132:1920-30.

18. IBM. IBM SPSS Modeler 18.3 User’s Guide. Available 
online: https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/

ModelerUsersGuide.pdf
19. Pittman B, Buta E, Krishnan-Sarin S, et al. Models for 

analyzing zero-inflated and overdispersed count data: an 
application to cigarette and marijuana use. Nicotine Tob 
Res 2018. [Epub ahead of print]. doi: 10.1093/ntr/nty072.

Cite this article as: Heo KY, Rajan PV, Khawaja S, Barber LA,  
Yoon ST. Machine learning approach to predict venous 
thromboembolism among patients undergoing multi-
level spinal posterior instrumented fusion. J Spine Surg 
2024;10(2):214-223. doi: 10.21037/jss-24-8

https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerUsersGuide.pdf
https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerUsersGuide.pdf

