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Abstract

Nitriles are found in many bioactive compounds, and are among the most versatile functional 

groups in organic chemistry. Despite many notable recent advances, however, there are no 

approaches that may be used for preparation of di- or trisubstituted alkenyl nitriles. Related 

approaches which are broad in scope and can deliver the desired products in high stereoisomeric 

purity are especially scarce. Here, we describe the development of several efficient catalytic cross-

metathesis strategies, which provide direct access to a considerable range of Z- or E-disubstituted 

cyano-substituted alkenes or their corresponding trisubstituted variants. Depending on the reaction 

type, a molybdenum-based monoaryloxide pyrrolide (MAP) or chloride (MAC) complex may be 

the optimal choice. The utility of the approach, enhanced by an easy-to-apply protocol for 

utilization of substrates bearing an alcohol or a carboxylic acid moiety, is highlighted in the 

context of applications to synthesis of biologically active compounds.
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Nitrile compounds are important to chemistry, medicine1, and materials research2. Cyano-

substituted alkenes are particularly attractive, as these robust and highly polarized alkenes3 

may be the source of biological activity, or provide a site for irreversible and covalent 

inhibition4. Alkenyl nitriles may be readily modified at the olefin site (e.g., catalytic 

enantioselective hydrogenation5,6,7, or conjugate additions8) and/or the nitrile moiety. Z- and 

E-Disubstituted variants can be used in stereoselective preparation of medicinally relevant 

compounds, such as LR5182 (Fig. 1a)9. A nitrile unit can be the key component of a 

biologically active molecule, examples being anti-HIV reverse transcriptase inhibitors 

rilpivirine10, and fosdevirine11 (Fig. 1a). Stereochemically defined trisubstrituted alkenyl 

nitriles are found within anti-cancer agents CC-507912,13, phorboxazoles and their 

analogues14,15, where the alkenyl oxazole moiety may also be generated by modification of 

a cyano-substituted olefin16,17, and calyculin A18 (Fig. 1b). Sequential addition of two 

different nucleophiles may be induced to occur to an alkenyl nitrile at the CN bond, 

generating N-H amines19 without oxidation-state adjustments or protection/deprotection 

schemes.

There are catalytic protocols for synthesis of disubstituted alkenyl nitriles involving 

palladium-20,21, nickel-22,23, iron-24, gallium-25, copper-26,27,28, or rhodium-based29 

complexes. Major shortcomings remain to be addressed however. Toxic24,25 or costly 

reagents28 or catalysts bearing a precious metal20,21,29 are required in several cases. Some 

reactions produce hydrogen cyanide21,27,29. Limitations in scope is another significant issue, 

as methods that furnish alkyl-substituted alkenyl nitriles are uncommon21,23,27,29. Effective 

control of stereochemistry can be problematic. Wittig-30,31 and Peterson-type reactions32,33 

have been used to obtain Z-alkenyl nitriles, but stereoselectivities can be moderate30,32, and 

stoichiometric amounts of a strong base (i.e., n-butyllithium or hexamethyldisilazide) and 

cryogenic conditions (–78 °C)30,33 are often needed. Only two reported procedures offer 

access to a cyano-substituted Z olefin selectively21,27; these require a stereochemically 

defined Z-alkenyl bromide or iodide, stereoselective synthesis of which is non-trivial.

There are catalytic approaches for stereoselective preparation of trisubstituted alkenyl 

nitriles but these are confined to aryl- or polyaryl-substituted products21,24,34,35,36,37, or 

demand forcing conditions (≥120 °C)38,39. In some instances high loadings of precious 
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metal salts39,40, or excess amounts (2.0 equiv.) of a strong Lewis acid (BCl3)36 are needed. 

To synthesize aliphatic trisubstituted alkenyl nitriles, expensive reagents must be used, slight 

structural variations can result in low stereoselectivity28, or substrates are valuable 

stereochemically defined trisubstituted alkenyl iodides27.

The large majority of the above protocols, regardless of the degree of substitution in the 

product olefin, require an acetylenic compound as the starting material22–23,25,29,35–40; 

methods that involve alkenes as starting materials would be strategically distinct and 

especially desirable, as olefins are more abundant and less costly.

Catalytic cross-metathesis represents an attractive strategy for preparation of 

stereochemically defined alkenyl nitriles. However, such methods are scarce. The first 

examples were disclosed more than two decades ago by Crowe and Goldberg, who showed 

that Mo bis-alkoxide complexes can be used to synthesize Z-1,2-disubstituted alkenyl 

nitriles41. Later studies with Ru-based complexes led protocols that are either similarly42,43 

or less stereoselective44. Regardless of the catalyst type, Z:E ratios were variable, depended 

on the olefin type, and did not exceed 90:10. What is more, only reactions of unhindered n-

alkyl-substituted olefins were reasonably efficient. There are only three reported instances 

where a trisubstituted alkenyl nitrile has been prepared by cross-metathesis (again, from n-
alkyl olefins)45,46,47, and stereoselectivity was minimal in every case (e.g., 66:34 Z:E).

Results

Key challenges and their origins.

Because cyano group is small, development of a highly stereoselective cross-metathesis that 

generate alkenyl nitriles is especially challenging. The energy difference between the 

isomers of cyano-propene has been calculated by Wiberg et al.48 to be just 0.26±0.04 

kcal/mol in favor of the Z isomer (61:39 Z:E). It is not surprising then that, whereas most 

cross-metathesis reactions generate E isomers preferentially, cyano-substituted alkenes are 

formed with low to moderate Z selectivity, an attribute that was recently attributed to 

stereoelectronic factors49.

Another complication originates from the strongly electron-withdrawing nature of a nitrile 

unit. With an alkenyl halide50,51 the electron-withdrawing effect of a C–halogen bond is 

partially offset by electron–electron repulsion caused by the halide’s non-bonding electrons 

and the accumulated electron density at the carbon atom of a strongly polarized Mo 

alkylidene (see I, Fig. 2). In contrast, the presence of a cyano moiety has one overarching 

effect: stabilization of electron density at the alkylidene carbon (II), which translates to 

diminished catalyst activity. The small size of a nitrile group and the strongly polarized C=C 

bond in acrylonitrile further complicate matters, as these factors favor reaction via the 

electronically matched III (Fig. 2), which is precursor to the symmetrical 

metallacyclobutane IV, an intermediate for nonproductive self-metathesis.

Z-Disubstituted alkenyl nitriles.

We began by examining a model transformation that could generate a Z-alkenyl nitrile, 

opting to use a terminal alkene (1a) and commercially available acrylonitrile (Fig. 3a). To 
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minimize homo-metathesis of 1a, we initially used excess acrylonitrile (i.e., 3.0 equiv.). 

Among Mo MAP complexes, Mo-1a emerged as the most effective. Z-Alkenyl nitrile 2a 
was formed with complete stereochemical control (<2% E isomer), but there was only 45% 

consumption of 1a after four hours at ambient temperature, with no further progress after 

extended periods. On the basis of the hypothesis vis-à-vis the adventitious influence of 

nonproductive self-metathesis (via IV, Fig. 2), we probed the effect of lower acrylonitrile 

concentration on efficiency. With equimolar amounts of the two olefin substrates, there was 

81% conversion to 2a, which was isolated in 71% yield as the pure Z isomer (Fig. 3a). It is 

noteworthy that, typically, excess amounts of one reaction partner is needed for high 

conversion, especially in kinetically Z-52,53 or E-selective51,54 cross-metathesis.

Various linear alkenes were transformed to the corresponding Z-alkenyl nitriles under the 

conditions used to access 2a (Fig. 3a). Products bearing a sulfide (2b-c), an epoxide (2d), an 

alkyne (2e), a silyl ether (2f), or a Lewis basic carbonyl unit (2g-h) were isolated in 63–86% 

yield. Linear alkenes wherein a relatively long C–Si or C–Sn bond separates a large 

substituent and the alkene were similarly efficient (2i-j). A bulky and/or an electron-

withdrawing olefin substituent, however, had an adverse effect on efficiency. tert-
Butyl(dimethyl)silyl ether 2k was isolated in 42% yield (compared to 74% and 71% yield 

for 2i and 2j, respectively), and there was no conversion to allylic boronate 2l. This last 

finding underscores the greater difficulty associated with the formation of alkenyl nitrile 

products in comparison to alkenyl halides, since Mo-1a, despite bearing a bulkier 2,6-

bis(2,4,6-triethylphenyl)phenoxy ligand, was effective in generating Z-γ-chloroallyl 

boronates (5.0 mol % loading, 22 °C, 4 h, 66% yield, >98:2 Z:E)50. β-Branched secondary 

homoallyl silyl ether 2m, and 2n, containing a benzylic substituent, were isolated in 41% 

and 46% yield, respectively. While 2o, a Z-alkenyl nitrile with an unprotected indole, was 

obtained in 69% yield, there was <2% conversion when styrene was used as the substrate. 

Complete Z selectivity was observed in all cases (<2% E; more on this later).

The more challenging Z-alkenyl nitriles.

To address the limitations in scope noted above, we turned to Mo monoaryloxide chloride 

(MAC) complexes55, recently demonstrated to exhibit greater reactivity than the MAP 

systems. Because MAC species decompose readily in the presence of a terminal alkene55, a 

Z-alkene must be used as the starting material. We have shown that many such substrates 

can be prepared readily and in high yield by single-vessel operations, often involving an 

efficient catalytic cross-coupling of an alkenyl boronate. Furthermore, a mixture of easily 

separable fumaronitrile and maleonitrile (E- and Z-3) can be obtained by treatment of the 

commercially available E isomer with 5.0 mol % iodine (160 °C, 6 h)55. Therefore, 

subjection of commercially available Z-crotyl–B(pin) to 1.5 equivalents of maleonitrile and 

5.0 mol % Mo-2a afforded cyano-substituted Z-allyl–B(pin) product 2l (Fig. 3b) in 64% 

yield and >98:2 Z:E ratio after four hours at ambient temperature. When the same 

transformation was carried out with Mo-1a, under otherwise identical conditions, the major 

product was derived from self-metathesis of Z-crotyl-B(pin) (72% conv.) while 2l was the 

minor component (25% conv., >98:2 Z:E). This is likely because, unlike Mo-2a, Mo-1a is 

unable to react with the severely electron-deficient maleonitrile (Z-3). The approach is 
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applicable to α-branched alkenes (2q-s), which are among the most challenging substrates in 

cross-metathesis.

Unlike when MAC complex Mo-2a was used, attempts to generate amine 2t, 1,3-diene 2u, 

and 1,4-diene 2v with a MAP species (Mo-1a) led to much less favorable results (<30% 

conv. to the desired product). Intramolecular N→Mo chelation may be responsible for the 

diminished conversion to 2t, whereas the MAC catalyst is probably reactive enough such 

that even a low concentration of the active four-coordinate alkylidene species can be 

sufficient for efficient cross-metathesis. When a MAP complex was used to prepare 1,3-

diene 2u, there was <2% conversion to the desired product. In the case of diene 2v, 

significant amounts of byproducts from transformation at the substrate’s E-alkene could be 

observed. As noted previously55, MAC complexes react with Z alkene isomers 

preferentially.

Equally notable are the transformations that generate different aryl- and heteroaryl-

substituted Z-alkenyl nitriles (2p-2ae; Fig. 3b). Thus, regardless of the position or the 

electronic attributes of the aryl substituent, the desired products were isolated in 55–98% 

yield and 92:8 to >98:2 Z:E ratio. In certain cases, slight heating to 40 °C led to a higher 

yield, but the duration of all transformations was just four hours. Two additional points merit 

note: 1) With a MAC species reaction with unprotected indole-containing substrate (cf. 2ad) 

did not lead to any significant conversion (<5%). 2) This set of products (Fig. 3b) is not in 

the purview of any existing cross-metathesis methods, where a more traditional Mo-41 or 

Ru-based42 complex is used. The case of ortho-tolyl-substituted alkenyl nitrile 2ac, which 

was secured in 98% yield (93:7 Z:E), is especially noteworthy, considering the steric 

pressure that probably exists within the corresponding metallacyclobutane intermediate.

Nevertheless, a set of substrates that we were unable to transform to their corresponding 

alkenyl nitriles efficiently were allylic ethers, regardless of the nature of the Mo complex 

used or the nature of the protecting unit (e.g., tert-butyldimethyl silyl, benzyl). This 

shortcoming is reflected in the yield with which primary allyl silyl ether 2k was obtained 

(42% yield); unlike other instances mentioned above (Fig. 3b), efficiency did not improve in 

the corresponding stereoretentive process involving a MAC complex. The steric hindrance 

imposed by the allylic substituent together with diminution of alkene Lewis basicity, caused 

by the adjacent C–O bond, and the relative stability of a CN-substituted Mo alkylidene (see 

Fig. 2), are likely responsible for the lack of reactivity.

E-Alkenyl nitriles.

Next, we investigated reactions that would generate an E-disubstituted alkenyl nitrile (Fig. 

4). As in the past, we chose to focus on stereoretentive51 processes (vs. stereoselective). To 

identify an effective catalyst, we studied the reaction of aryl olefin E-4a with commercially 

available fumaronitrile (E-3; Fig. 4a). The transformation with pentafluorophenyl imido 

MAP complexes Mo-1a and Mo-1b, while highly stereoretentive (>98:2 E:Z), were 

moderately efficient, despite the elevated temperature (47% and 52% conv. to E-4a, 

respectively, at 80 °C). To improve efficiency, we again turned to MAC alkylidenes, mindful 

that this class of complexes were not formerly used for reactions that generate E alkenes. We 
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began with Mo-2a, which proved effective for the processes with hindered alkyl- and aryl-

substituted olefins and leading to Z-alkenyl nitriles (Fig. 3b). Although there was only 20% 

conversion to E-5a, we were encouraged for several reasons. Firstly, the reaction was 

completely stereoretentive. Secondly, the transformation was more efficient than when a 

MAP species was used, as a considerably greater portion of the product mixture consisted of 

the desired product (22% conv., 20% to E-5a compared to 82% conv., 52% to E-5a for 

Mo-1b). Thirdly, whereas Mo-1b is already a pentafluoro-imido complex, Mo-2a is an 

adamantyl imido derivative, leaving room for the possibility of achieving better efficiency 

through incorporation of an activating polyfluoroaryl imido ligand.

To promote cross-metathesis between E-3 and E-4a, we probed the ability of the 

pentafluoro-imido MAC alkylidenes derived from Mo-2b, most efficiently prepared and 

isolated as a dimethylphenylphosphine complex56. We used 15 mol % 

tris(pentafluorophenyl)borane as the additive to generate the active four-coordinate species 

(after loss of the phosphine) and to cap the hydroxy group of residual free 2,6-(2,4,6-

triisopropyl)phenol (remainder from catalyst synthesis), a strategy that we would later use to 

address another important issue (see below). After 12 hours at 40 °C, there was 67% 

consumption of E-4a, with 49% conversion to E-5a, representing a notable boost in 

reactivity. Unexpectedly, though, there was significant diminution in the E:Z ratio (88:12). 

Usually, the reason for lower product stereoisomeric purity in stereoretentive olefin 

metathesis is adventitious isomerisation of the starting alkene. We surmised that E-3, an 

exceedingly electrophilic reagent, might interconvert with its similarly favored Z isomer (as 

noted above) through an addition/elimination sequence. The likely nucleophilic promoter for 

this event, considering the complete retention of stereochemistry with the acetonitrile 

complex Mo-2a, would be an uncoordinated dimethylphenylphosphine. This led us to 

subject E-3 to 5.0 mol % of tricyclohexylphosphine (easier to handle than PhMe2P) and 15 

mol % (C6F5)3B (22 °C, 4 h), which resulted in just 3% isomerisation (i.e., from >98:2 to 

97:3 E-3:Z-3). This might seem insignificant, but, considering that Z alkenes generally react 

faster with this catalyst class55, particularly with a larger aryloxide ligand, this could indeed 

be the source of the 12% loss in stereochemical purity. To confirm, we prepared Mo-2c, a 

complex that bears a less nucleophilic 3-bromopyridyl ligand, and, under otherwise identical 

conditions as was used for Mo-2b, we isolated 5a in 78% yield and 96:4 E:Z ratio after 12 

hours at 40 °C [6.0 mol % (C6F5)3B was used as there was less contaminating phenol 

remaining from preparation of the Mo-2b]. Control experiments indicated that there is no 

post-metathesis alkene isomerisation.

The method is applicable to E-aryl-substituted and E-heteroaryl-substituted alkenes of 

disparate steric and/or electronic properties (5b-i, Fig. 4b); products were obtained in up to 

87% yield, with stereoselectivity ranging from 90:10 to 97:3 E:Z ratio. In the case of o-tolyl-

substituted 5c, with the substrate bearing a particularly hindered substituent, the reaction 

was much more efficient when the less sterically demanding Mo-2d was employed (50% 

yield, 96:4 E:Z; compared to 34% conv., 84:16 E:Z with Mo-2c).

E-Alkenyl nitriles with an n-alkyl substituent were most efficiently generated by catalytic 

stereoretentive reactions with E-β-alkyl styrenes (Fig. 4c)51; 6a-c were thus obtained in 69–

75% yield and 93:7–96:4 E:Z ratio. As in the case of sterically hindered 5c, the reaction of 
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α-branched alkene E-7 to generate 6d was more efficient with Mo-2d (60% yield, 97:3 E:Z 
compared to 20% conv., 54:46 E:Z with Mo-2c); the smaller aryloxide ligand might better 

accommodate the sizeable alkyl moiety, which would be projected towards it in the 

corresponding metallacyclobutane.

The stereoisomeric purity of the E-alkenyl nitrile products, although generally high, is 

slightly lower than the related Z isomers accessed through stereoretentive cross-metathesis 

(Fig. 3b); this difference may be attributed to increased steric pressure between an E-

disubstituted alkene and the large aryloxide ligand of a Mo complex (e.g., Mo-2c). 

Consequently, fumaronitrile-to-maleonitrile isomerization (E-3 → Z-3), despite the lower 

nucleophilicity of the released 3-bromopyridine, can become more competitive, especially at 

40 °C, and diminution in E:Z product ratios ensues. This scenario is supported by the finding 

that more Z-alkenyl nitrile is generated when the more sterically demanding ortho-

substituted substrates are used (i.e., 84:16–90:10 E:Z for 5b-c when Mo-2c was used). In the 

case of less hindered alkyl-substituted alkenyl nitriles (6a-c), substrate self-metathesis and 

E-to-Z isomerization are probably more facile, and stereoisomeric purity suffers.

Trisubstituted E- and Z-alkenyl nitriles.

We then turned to determining whether a catalytic method for stereoretentive synthesis of 

trisubstituted alkenyl nitriles is feasible. What distinguishes this set of transformations, other 

than the involvement of a more congested metallacyclobutane, is that they probably involve 

a cyano-substituted alkylidene exclusively, as opposed to a 1,1-disubstituted variant arising 

from initial reaction with a trisubstituted olefin. This means that reaction with either Z- or 

E-3 should lead to the same degree of stereochemical purity, although, as already noted, 

reaction involving the former isomer would probably be more efficient.

Trisubstituted alkene 8 was prepared by a single-vessel operation from a silyl ether of 

allylestrenol (see the Supplementary Information for details). Subjection of 8 to Mo-2b (5.0 

mol %), 15 mol % (C6F5)3B and Z-3 (1.5 equiv.) afforded 9a in 66% yield and 92:8 E:Z 
selectivity (Fig. 5a). The E:Z ratio was the same with 3-bromopyridine-containing MAC 

complex Mo-2c, in line with predominant intermediacy of the cyano-substituted syn-

alkylidene, regardless of whether E- or Z-3 is involved. Assorted aliphatic E-trisubstituted 

alkenyl nitriles were accessed similarly (9b-e, in 53–86% yield and 92:8–93:7 E:Z). The 

approach is applicable to preparation of Z-trisubstituted alkenyl nitriles (see 11a-c). A 

rationale for the lower stereochemical control in the formation of the Z isomers was 

provided recently in connection with the synthesis of trisubstituted alkenyl chlorides and 

bromides57.

Perhaps the most challenging aspect of this study was designing efficient reactions between 

relatively stabilized cyano-substituted alkylidenes and hindered trisubstituted alkenes; 

particularly difficult would be processes involving an aryl olefin. Yet again, in the case of 

alkenyl chlorides, the corresponding products were obtained when MAP complex Mo-1b57 

was used. However, the same strategy was ineffective when applied to reactions proceeding 

via a more stabilized/less reactive cyano-substituted alkylidene species (compare I to II, Fig. 

2). There was <2% conversion to 13a with MAC complex Mo-2c or Mo-2d. To address this 
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issue, we synthesized Mo-2e (Fig. 5c), which bears an aryloxide with 3,5-di-t-butylphenyl 

groups at its C2 and C6 sites. We expected reduced steric pressure in the corresponding 

metallacyclobutane (mcb-1). Through the use of 10 mol % Mo-2e and 12 mol % (C6F5)3B, 

and at 80 °C for four hours, we were able to isolate 13a in 57% yield and 93:7 E:Z 
selectivity. As indicated by the synthesis of 13b-e, the approach is applicable to different 

aryl alkenes. Reactions were slower with the more electron-withdrawing aryl alkenes, as 

synthesis of 13b-c required 15 mol % Mo-2e and 18 mol % (C6F5)3B to reach 55–60% 

conversion (with 10 mol% Mo-2e: 36% and 41% conv., 32% and 35% yield, 91:9 and 89:11 

E:Z, respectively).

Under the same conditions and with a Z-trisubstituted aryl olefin, there was only ca. 20% 

conversion to the desired alkenyl nitrile, formed with minimal stereoisomeric purity (~60:40 

Z:E). Development of a more effective solution to these important but difficult cross-

metathesis reactions is a goal of future investigations.

Utility.

The present advance provides a convenient entry to many otherwise difficult-to-prepare 

stereochemically defined alkenyl nitriles, facilitating the synthesis of a large variety of 

biologically active compounds. 3,4-Dichloroaryl-substituted Z-alkenyl nitrile 2af (Fig. 6a), 

obtained in 98% yield and 97:3 Z:E ratio, is an intermediate en route to LR5182 (Fig. 1). 

The cross-metathesis approach is more efficient than the previously utilized Knoevenagel 

condensation (aryl aldehyde and cyano acetic acid)/decarboxylation at elevated temperature, 

which generated an 80:20 E:Z mixture9.

The union of glycosyl bromide 14 and allylic alcohol 15, both commercially available, 

followed by catalytic stereoretentive cross-metathesis delivered alliarinoside peracetate in 

39% overall yield as a single olefin isomer (>98:2 Z:E) (Fig. 6a). Previously reported 

protocols either generate a near-equal mixture of alkene isomers (Horner-Wadsworth-

Emmons-type processes)58,59, or demand initial generation of a Z-alkenyl iodide (catalytic 

cross-coupling), requiring at least two additional operations27. Also noteworthy is bis-

alkenyl nitrile 2ag, accessed by a double-cross-metathesis in 57% yield and >98:2 Z,Z’:Z,E’ 
(Fig. 6a), and utilized in total synthesis of perhydrohistrionicotoxin (via 16)60. This 

compound was formerly accessed by a route that included synthesis of an alkene via the 

corresponding bis-aldehyde, the preparation of which necessitated an additional deprotection 

step (acetal removal) and highly toxic HMPA (hexamethylphosphoramide) was required to 

facilitate alkylation.

E-Alkenyl nitriles 5n and 5o were isolated in 82% and 60% yield, and 95:5 and 97:3 E:Z 
ratio, respectively (Fig. 6b). These compounds have been converted to anti-cancer agent 

CC-507913 by catalytic Heck reaction, and to anti-depressant indatraline61, via 17, by a 

similar process, followed by catalytic enantioselective hydrogenation6. The Z isomer of 

CC-507962 is more potent and must therefore be synthesized selectively. Furthermore, the 

cross-coupling processes are considerably more efficient with an E alkene6; in line with such 

findings, we were unable to detect any of the desired trisubstituted alkene when Z-5n was 

subjected to the conditions used for the reaction of the corresponding E isomer (Fig. 6b). In 

Mu et al. Page 8

Nat Chem. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previous studies the requisite 1,2-disubstituted alkenes could only be generated as 80:20 E:Z 
mixtures by Wittig-type reactions13,6, and removal of stoichiometric amounts of phosphine–

oxide side product often required difficult chromatographic procedures.

We then set out to address another major shortcoming, namely, the instability of such species 

to an alcohol or a carboxylic acid moiety. In the case of a substrate that bears a hydroxy 

group, we find that simply by treating the alkenes with 1.1 equivalents of commercially 

available HB(pin) (pin, pinacolato) at ambient temperature for 15 minutes, and then the 

requisite amount of the Mo complex for 4 hours, followed by silica gel chromatography, the 

desired alkenyl nitrile product can be obtained in high yield and stereochemical purity. The 

conversion of oleyl alcohol to 2ah is a case in point (85% yield, >98:2 Z:E; Fig. 6c). For a 

starting material containing a carboxylic acid moiety, the most effective approach is to use 

HB(trip)2 (trip, 2,4,6-triisopropylphenyl)63, a reagent that can be prepared easily on gram 

scale from commercially available materials in two steps (70–75% overall yield). 

Transformation of oleic acid to alkenyl nitrile 2ai is representative (60% yield, >98:2 Z:E vs. 

47% yield, >98:2 Z:E with HB(pin)). This development promises to expand the practical 

utility of Mo-based catalysts considerably.

Conclusions

We have developed a broadly applicable set of catalytic methods for the preparation of Z- 

and E-disubstituted and trisubstituted alkenyl nitriles in high stereoisomeric purity. We have 

shown that by considering various attributes of the Mo-based complex (MAP or MAC), and 

the electronic and steric attributes of the intermediate alkylidenes and metallacyclobutanes, 

catalysts providing access to stereoisomerically enriched alkenyl nitriles, from those that 

bear a linear aliphatic substituent to those that contain a hindered α-branched or aryl moiety, 

can be identified. Similarly notable is that an equimolar amount of the two cross partners is 

not only sufficient, but is optimal, for achieving high efficiency in a cross-metathesis 

reaction. We introduce the use of easily accessible boron hydride compounds for in situ 

temporary protection of hydroxy and carboxylic acid groups, which can otherwise quickly 

deactivate a Mo-based catalyst. The ability to access an alkenyl nitrile isomer with high 

stereochemical purity allows for significant enhancement in the efficiency with which many 

biologically active entities are prepared.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Biologically active compounds with an alkenyl nitrile or a related moiety.
a, Stereoisomerically pure 1,2-disubstituted olefins bearing a nitrile substituent may be used 

to prepare medicinally relevant agents, such as LR5182, a polycyclic tertiary amine used to 

battle cocaine abuse. Furthermore, stereochemically defined alkenyl nitriles reside in a range 

of biologically active molecules. Examples are rilpivirine and fosdevirine, entities relevant to 

the fight against AIDS. b, Stereoisomerically pure trisubstituted alkenyl nitriles are desirable 

as well. These moieties are found in biologically active entities, represented by anti-cancer 

agents CC-5079, various phorboxazoles, and calyculin A. In the case of phorboxazoles, the 

oxazole ring and its adjacent olefin may be generated from an alkenyl nitrile as well.

Mu et al. Page 14

Nat Chem. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Challenges in designing reactions that deliver stereodefined alkenyl nitriles.
Unlike other types of Mo alkylidenes, such as those that contain a chlorine atom (I), a 

nitrile-substituted variant (II) is more strongly stabilized due to electronic factors, and is 

therefore less reactive. The higher polarizability of Mo=C bond of a CN-substituted 

alkylidene and the alkene of acrylonitrile facilitates reaction via III, generating 

metallacyclobutane IV and causing nonproductive olefin metathesis. Ar, aryl.
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Figure 3. A broadly applicable approach to Z-disubstituted alkenyl nitriles.
a, In the presence of Mo-1a, Z-selective cross-metathesis between a terminal alkene and 

acrylonitrile may be performed efficiently and with high stereoselectivity. Transformations 

are more efficient with equimolar amounts of the alkene substrates (vs. excess acrylonitrile), 

probably because nonproductive metathesis is minimized. The method is applicable to an 

assortment of α-olefins. However, reactions with sterically demanding olefins are severely 

inefficient (e.g., 2l and 2p). b, The latter shortcoming may be addressed by stereoretentive 

processes involving easily accessible Z-disubstituted alkenes and maleonitrile (Z-3), and a 

monoaryloxide chloride (MAC) catalyst (Mo-2a). See the Supplementary Information 

Section 3 for experimental and analytical details. Bn, benzyl; pin, pinacolato; Boc, tert-
butoxycarbonyl; TBS, tert-butyldimethylsilyl; TES, triethylsilyl.
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Figure 4. E-Disubstituted alkenyl nitriles.
a, Cross-metathesis between an E-disubstituted olefin and fumaronitrile was more efficient 

with Mo-2b, but E:Z ratios were low compared to when Mo-1b or Mo-2a were used (88:12 

vs. >98:2, respectively). Control experiments indicated that this is probably due to 

isomerization of E-3 to Z-3, catalysed by the released PMe2Ph by Mo-2b. Thus, with Mo-2c 
(3-bromopyridine ligand), 4a was obtained with 96:4 E:Z selectivity. b, The approach can be 

used to access aryl-substituted E-alkenyl nitriles. c, E-β-Alkyl-styrenyl precursors can be 

converted to E-alkyl-substituted alkenyl nitriles. With a bulky aliphatic alkene higher 

efficiency was observed with Mo-2d (smaller aryloxide ligand). See the Supplementary 

Information Section 3 for experimental and analytical details. Bn, benzyl; Ts, para-
toluenesulfonyl.

Mu et al. Page 17

Nat Chem. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. E- and Z-Trisubstituted alkenyl nitriles.
a, Readily accessible stereochemically defined E-trisubstituted alkenes, bearing a relatively 

diminutive methyl group terminus, can be converted in the presence of Mo-2b and Z-3 to the 

corresponding E-alkenyl nitriles. The method is applicable to various alkyl-substituted 

olefins (9a-e). b, Z-Trisubstituted alkenyl nitriles can be obtained similarly. c, An even more 

difficult process is one that might deliver a trisubstituted alkenyl nitrile with a sizeable aryl 

unit. This may be accomplished with 10 mol % Mo-2e at 80 °C (via mcb-1 to give 13a-e). 

*15.0 mol % Mo-2e, 18 mol % B(C6F5)3 was used. See the Supplementary Information 

Section 3 for experimental and analytical details.
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Figure 6. Utility of the method in chemical synthesis.
a, The possibility of synthesizing aryl- or alkyl-substituted Z-alkenyl nitriles by catalytic 

cross-metathesis is likely to have a notable impact on the efficiency with which many 

bioactive compounds can be prepared. Representative cases are agent for cocaine abuse 

treatment LR5182, agrochemical agent alliarinoside, and perhydrohistrionicotoxin (step 2ag 
to 1661), which has been used for probing mechanisms of neuromuscular impulses. b, E-

Alkenyl nitriles are crucial for stereoselective generation of a variety of bio-active 

molecules. Anti-cancer agent CC-5079 and anti-depressant indatraline are two examples. 5o 
to 17 – catalytic Heck reaction6. c, In situ protection/deprotection of a neighbouring hydroxy 

and carboxylic acid group may be carried out, significantly enhancing the scope of the 

method. See the Supplementary Information Sections 4–9 for experimental and analytical 

details. pin, pinacolato; trip, 2,4,6-triisopropylphenyl; Ac, acetyl.

Mu et al. Page 19

Nat Chem. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Results
	Key challenges and their origins.
	Z-Disubstituted alkenyl nitriles.
	The more challenging Z-alkenyl nitriles.
	E-Alkenyl nitriles.
	Trisubstituted E- and Z-alkenyl nitriles.
	Utility.

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

