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Abstract

Despite the extensive knowledge of pollen limitation in angiosperms, its assessment within tropical forests is still limited.
Especially lacking are large scale comparisons of species within this biome – one that is highly diverse but also becoming
increasingly threatened. In fact, many tropical plant species depend upon pollinators for reproduction but evaluation of the
impact of this dependence via different levels of pollination specialization has yet to be made at the biome scale. We
assessed the occurrence and magnitude of pollen limitation for species in the Brazilian Atlantic forest and tested the
association of pollination specialization, breeding system, and life habit with pollination efficiency. We compiled data from
studies published between 1985 and 2012. We calculated species’ effect size (d) from data on fruit set after hand cross-
pollination and natural pollination and conducted standard and phylogenetically independent meta-analysis. Overall pollen
limitation was moderate, with magnitude of 0.50, and 95% confidence interval [0.37, 0.62] for 126 species. Pollen limitation
was observed in 39% of species. Pollination specialization was the factor that best explained the occurrence of pollen
limitation. Specifically, phenotypic and ecological specialists (plants with zygomorphic flowers and pollinated by one
species of pollinator, respectively) had higher pollen limitation than generalist plants (actinomorphic flowers and pollination
by two or more species). Functional generalists (plants pollinated by three or more functional groups) were not pollen
limited. On the other hand, breeding system and life habit were not associated to pollen limitation. Pollen limitation was
observed in the Atlantic forest and its magnitude was comparable to that for angiosperms as a whole. The finding that
pollination specialization was the strongest predictor of pollen limitation suggests that specialist plants in this biome may
be most prone to the reproductive failure as a result of pollinator loss.
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Introduction

Several synthetic and quantitative reviews have assessed the

frequency and degree to which flowering plant reproductive

performance (seed or fruit set) is reduced by inadequate receipt of

pollen on the stigma, i.e., pollen limitation of reproduction (PL)

[1–4]. Drawing on large data sets of angiosperms (e.g., 306 species

[4]), these studies have established that PL is widespread. And

while these syntheses have included a broad range of biomes (e.g.,

forests, grasslands, deserts), only a small percentage (15% of studies

[3]) of the studies reviewed were conducted on species in the

tropics. However, one review suggests that tropical species may be

more prone to PL than temperate ones (e.g., the subset of self-

incompatible species [2]). This may be due to the fact that more

tropical species are animal-pollinated than temperate species (94%

versus 78% [5]), or that plants in tropical forests tend to be

outcrossing and have low density of adults (at least among trees [6–

10]) – both phenomena that may place a premium on efficient

cross-pollination to achieve maximal reproductive success. More-

over, the tropics support high biodiversity and pronounced levels

of endemism [11], and their forests are severely threatened by

human activities, for instance, by logging and agriculture [10]. In

fact, PL has been seen to increase with plant diversity [12–13] and

even more so for endemics [14]. The effects of diversity may result

from greater interspecific competition for pollinators [4,12] or

greater heterospecific pollen transfer [14], while those of

endemism may derive from smaller population sizes, reduced

density and/or stronger habitat specificity [14–16]. The variation

in PL for plants within tropical forests has not been widely assessed

at least not at the biome scale. Such an analysis, however, will be

informative as the putative causal traits can be assessed in the

context of the shared evolutionary history of the tropical flora, and

their ecological interactions with fauna.

The Atlantic forest is a major global biodiversity hotspot [17]

with a remaining forest area of only 11% of its original cover [18]

(Figure 1). Unique climatic and geographic history provided

heterogeneous environmental conditions for evolution of species

and interactions leading to a high level of endemism in this biome.

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e89498

of Pittsburgh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

http://creativecommons.org/licenses/by/4.0/


For instance, Orchidaceae has the highest species richness and

endemism in the Brazilian Atlantic forest flora followed by

Fabaceae, Asteraceae, and Bromeliaceae [19]. Despite consider-

able information on plant reproduction and pollination in this

biome, synthetic studies of pollination sufficiency are lacking [20],

but see [21]. In this descriptive review [21], PL was higher for

species in the Orchidaceae and Fabaceae compared to other

families but the patterns may be driven by phylogenetic non-

independence in PL.

Given the extent of PL among angiosperms, previous review

studies sought to identify factors (e.g., mating system and plant

growth form) that explain its variation. Among them, pollinator

specialization is expected to increase PL because specialist plants

are more sensitive to stochasticity in pollination as a result of

variation in pollinator abundance [22–23]. However, the term

pollinator specialization refers to distinct concepts [24–26] that

may relate to PL in different ways leading to conflicting results

[27]. For instance, the number of pollinator species, or ecological

specialization (after [26]), was positively related to the level of PL

Figure 1. Geographic distribution of the species included in the meta-analysis. Map of Brazil with the Atlantic Forest delimited (grey)
following [18], forest remnants (red) following [66], and studied sites (black circles) for 132 species.
doi:10.1371/journal.pone.0089498.g001
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[4,28], however, this association was not corroborated by studies

that included visitation rates as measure of pollinator diversity

[27,29]. Phenotypic specialization (after [26]), on the other hand,

predicts that complex floral architecture can limit pollinator access

to floral rewards. Accordingly, pollinator richness was lower in

zygomorphic than actinomorphic species, however, flower sym-

metry did not explain PL in a review of 26 angiosperms [27].

Nectar production may also indicate pollinator generalization, yet

nectariferous species did not show lower PL than nectarless

species, except when self-compatible species were excluded from

the analysis [2]. Thus, tests of the relationship of PL and

specialization on particular functional or taxonomic groups of

pollinators (i.e., functional specialization after [26]) are needed, yet

few studies have taken this approach [29].

Other life-history traits may be associated with PL. The most

prominent relationship is between PL and self-incompatibility [1–

4,30]. For self-incompatible species, self-pollen fails to germinate

or self-pollen tubes are arrested in the style due to the presence of

genetic incompatibility systems [31]. Thus, self-incompatible

species rely on pollinators to receive outcross pollen and achieve

sexual reproduction. In contrast, the ability to self-fertilize in

general decreases the likelihood of PL and the capacity for

autogamy even more so (i.e., ability to set fruits after spontaneous

self-fertilization) [2–3]. In fact, selfing ability is considered one

adaptive response to chronic PL [32]. Plant lifetime may also

negatively correlate with the occurrence of PL, as short-lived

species may be less prone to PL than long-lived species. The

reduction in seed production in one reproductive season may have

a greater impact on lifetime fitness for short-lived species than

long-lived ones who are able to compensate during other

reproductive episodes. Thus, selection should favor traits that

minimize PL in short-lived species. Indeed, woody species

experience PL more often than herbs [2,4]. However, this

prediction was not upheld by the more general comparison of

polycarpic versus monocarpic species [2,4]. All together, the

occurrence of PL among angiosperms has shown inconsistent

associations with life-history traits tested thus far. It may be that

this weak association results from combining studies across diverse

biomes instead of considering species within a biome – which

allow a comparative analysis at a large scale and in a relatively

uniform abiotic and biotic environment (see also studies at

community level [29,33–34]).

In this study, we assessed the occurrence and magnitude of PL

in large set of plants from a single biome, the Brazilian Atlantic

forest. Furthermore, we tested if the phylogenetic relatedness

affects the occurrence and extent of PL and whether pollination

specialization, breeding system, and life habit explain variation in

pollination sufficiency. Specifically, we sought to answer the

questions:

(1) Does PL increase with pollination specialization? For this, we

consider three types of pollination specialization after [26]:

(a) Ecological – Does PL decrease with number of

pollinator species?

(b) Phenotypic – Is PL higher in zygomorphic than

actinomorphic species? And is PL lower in nectariferous

than nectarless species?

(c) Functional – Does PL decrease with number of

pollinator functional groups? And does PL differ

between species pollinated by invertebrates and verte-

brates?

(2) Is PL associated with plant breeding system?

(a) Is PL higher in self-incompatible species than self-

compatible?

(b) Is PL higher in non-autogamous than autogamous

species?

(3) Does plant habit reflect higher PL in woody species than

herbs?

Materials and Methods

Literature Review And Dataset
A review of published studies was conducted primarily using the

databases ‘Institute for Scientific Information Web of Science’ and

‘Scientific Electronic Library Online – SciELO’. The following

keyword combination (in Portuguese and English) was used:

‘‘reproductive biology’’ or ‘‘reproductive system’’ or ‘‘breeding

system’’ or ‘‘mating system’’ or ‘‘self-incompatibility’’ or ‘‘pollina-

tion’’. In the Web of Science the above terms were crossed with

‘Brazil’. Other papers, dissertations, and theses from personal

library collections of the authors were added. Our search included

papers published from 1985 through August 2012. The following

criteria were used to select the studies: 1) conducted on native and

bioticly pollinated species (only one study with one wind-pollinated

species was found and it was not included); 2) conducted within the

Atlantic forest domain (after [35] for Atlantic forest sensu lato, i.e.,

studies conducted within semi-deciduous and rain forests); 3)

contained data on fruit set after hand cross-pollination and natural

pollination (flowers exposed to pollinators). The following criteria

were used to exclude species from the analysis: 1) species with fruit

set after apomixis greater than 15%; 2) species with fruit set after

natural pollination two-times (or more) greater than cross-

pollination as these studies could reflect error induced by flower

emasculation or flower manipulation. We used fruit set as the

response variable because it is the most frequently reported

measure in the pollination experiments located by our search (e.g.,

less than 10 studies reported seeds per flower or fruit) and fruit set

can be a proxy of PL [36–37], but note that it comes with caveats

(see [3,38]).

In total our dataset was composed of 66 studies (one book

chapter, 22 dissertations and theses, and 43 published papers) that

performed hand cross- and natural pollination experiments in

native and bioticly pollinated species within the Atlantic forest

domain during the period 1985–2011. These studies quantified

173 records of 132 plant species (Table S1). Plant families

Bromeliaceae (13% of species), Orchidaceae (11%), Rubiaceae

(11%), and Fabaceae (10%) (Figure 2) had strong representation in

the data set and most species (79%) were studied within the

southeastern region of Brazil (Figure 1, Table S1). Species studied

in more than one study or site (nine species) had an entry for each

study/site and species with heteromorphic flowers (14 species) had

an entry for each morph (but see DATA ANALYSIS). For all

species, pollination experiments were performed at the partial-

plant level (i.e., flowers, sensu [38]). For each entry we compiled

data on number of flowers treated per treatment, number of

developed and undeveloped fruits per treatment, and values of

fruit set (treatments: autonomous self-pollination, hand self-

pollination, hand cross-pollination and natural pollination) when

available. We calculated species’ compatibility system using the

Index of Self-incompatibility (ISI, [39]), autogamy using the Index

of Autogamy (IA, [40]), and the effect size of PL (see below) from

these treatments. We also recorded other information regarding

plant features used in the analyses (see in details below).

Pollen Limitation in the Atlantic Forest
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Data Analysis
Pollen limitation of each species was estimated as the effect size

based on the log odds ratio (ln(o)) obtained from 262 contingency

table [41] of the numbers of developed and undeveloped fruits of

cross- and natural pollination. The variance of ln(o) (Vln(o)) was

estimated as the sum of inverses of the number of developed and

undeveloped fruits of cross- and natural pollination. The ln(o) and

Vln(o) were transformed to d (standardized mean difference) and

variance of d respectively, to facilitate interpretation and

comparison with other studies (cf. [41] for detailed information

on the calculations and equations). For species with more than one

entry we selected the study/site with the lower variance value to

designate the effect size for that species. For species with

heteromorphic flowers, we calculated the species’ effect size from

the sum of the number of developed and undeveloped fruits per

treatment per morph. For a given species (or overall), PL was

interpreted as significant when the effect size was positive and its

95% confidence intervals did not overlap zero [42]. Negative

values of effect size or 95% confidence intervals that overlapped

zero represent no PL.

Overall effect size was estimated by random-effects models,

which take in to account the deviation from the true effect size that

may be generated by differences between the studies (e.g., sample

size) [41]. Model assumptions and publication bias were analyzed

by a variety of methods (normal Q-Q plot, influence plot, funnel

plot, symmetry test, and Rosenberg fail-safe number) with the

metafor package [43] in R.15.0 [44]. The normal Q-Q plot was

used to evaluate normality (i.e., points should fall within the

confidence bands) whereas the influence plot can indicate the

presence of outliers in the dataset (e.g., studies with large residuals

are showed as red points). Funnel plot, symmetry test, and

Rosenberg fail-safe number are complementary methods and were

used to identify and examine the potential impact of publication

bias in meta-analysis. Because Rosenberg fail-safe number (18690)

was much larger than the critical value (660), there was no

evidence of publication bias in the dataset. Specifically, fail-safe

number indicates the number of non-significant, unpublished, or

missing studies that would need to exist to overturn the results

[41]. However, visual inspection of normal Q-Q plot, funnel plot,

and influence plot, and the symmetry test (t = 2.08, df = 130,

P = 0.04) for 132 species indicated six outliers in the dataset

Figure 2. Distribution of pollen limitation across the phylogeny of plants in the Atlantic forest of Brazil. Occurrence of pollen limitation
for the 132 species represented on the phylogeny obtained from the angiosperm APGIII [46] consensus tree (R20091110) in Phylomatic [47]. Pollen
limitation was interpreted as significant if the effect size (d) was higher than zero and 95% confidence interval (CI) did not overlapped zero (black
circles). Effect size (d) equal or lower than zero or 95% confidence interval (95% CI) that overlapped zero mean no pollen limitation (white circles).
doi:10.1371/journal.pone.0089498.g002

Pollen Limitation in the Atlantic Forest

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e89498



(Figure S1). For the subset without outliers, normality and

symmetry (t = 0.90, df = 124, P = 0.37) were acceptable (Fig-

ure S1), thus, we conducted the following meta-analyses with this

subset of 126 species.

We calculated overall effect size by traditional and phylogenet-

ically independent meta-analyses in Phylometa 1.3 beta [45].

Traditional and phylogenetically independent meta-analyses had

comparable Akaike’s information criterion (AIC) values (absolute

difference lower than 5 units, Table S2), thus we focus our

description and interpretation of results on the phylogenetically

independent random-effects models.

The phylogenetic hypothesis was obtained using the angiosperm

APG III [46] consensus tree (R20091110) from Phylomatic [47].

Branch lengths were calibrated from the minimum age of clade

divergence [48] using the branch length adjuster function (BLADJ)

from Phylocom [49].

The effect of categorical plant features on PL was tested in

Phylometa. We conducted one meta-analysis for each categorical

plant feature because the number of species with data on a given

plant feature differed among them. Within each plant feature, a

category was included in the analysis if number of species for a

given level of that category was equal or greater than eight. The

following eight features (with two or more levels) were tested:

Figure 3. Effect size and 95% confidence interval of pollen limitation in the Atlantic forest of Brazil. Overall effect size (d) and 95%
confidence interval of pollen limitation and per category based on phylogenetically independent meta-analysis. Heterogeneity between categories of
plant features (Qb) and P value (N = number of species per category) are presented.
doi:10.1371/journal.pone.0089498.g003
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flower symmetry (actinomorphic, zygomorphic); floral reward

(nectariferous [nectar or nectar and others rewards], nectarless

[others rewards]); number of pollinator functional groups (1, 2, $3

from the following functional groups: bat, bird, bee, beetle,

butterfly, hawkmoth, hoverfly, other fly, moth, wasp, other);

pollinator group (vertebrate, invertebrate, mixed); number of

pollinator species (1, 2–5, .5, following [4]); mating system (self-

compatible [ISI $0.30], self-incompatible [ISI ,0.30], following

[50]); autogamy (autogamous [IA $0.30], non-autogamous [IA ,

0.30], following [50]); and plant habit (herbs, woody plants

[shrubs, treelets, trees], vines).

Results

Occurrence And Magnitude Of Pollen Limitation
The magnitude of PL was moderate, 0.50, and significantly

different from zero, 95% confidence interval [0.37, 0.62], for

plants in the Brazilian Atlantic forest. PL was observed in 39% (49)

of species (Figure 2, Table S1). The overall heterogeneity of effect

size was large and statically significant (Q = 727.83, df = 25, P,

0.001), indicating that PL varied among species and the influence

of plant features was warranted (see below).

Pollen Limitation And Association With Plant Features
The association of PL with plant features was evaluated by

phylogenetically independent meta-analysis to avoid interpretation

bias due to phylogenetic relatedness among species (Figure 3,

Table S2). The heterogeneity among groups was significant for

ecological pollination specialization (i.e., number of pollinator

species), and marginally significant for phenotypic pollination

specialization (exclusively for floral symmetry) (Figure 3). This

means that extreme ecological specialists (plants pollinated by one

species) had higher PL than more generalists (two or more species

of pollinators) and zygomorphic species had higher PL than

actinomorphic species. However, PL was not lower in nectarifer-

ous than nectarless species. Even though heterogeneity was not

significant for functional pollination specialization, functional

generalist plants pollinated by three or more pollinator functional

groups were not pollen limited (Figure 3). Heterogeneity among

groups was not significant for other plant features, i.e., breeding

system and life habit. However PL was significant for most

categories within each plant feature (e.g., both self-compatible and

self-incompatible species were pollen limited) (Figure 3).

Discussion

Pollen limitation was frequently observed among plants of the

Brazilian Atlantic forest. The magnitude of PL was moderate

(0.50) and comparable to previous meta-analytical studies (0.52

[4]), although the proportion (39%) of species with PL was lower

than the 62–73% recorded for angiosperms as a whole [1,3].

While overestimation of PL may be due to publication bias,

experimental design, or the response variable measured [38], none

seem to be influential here. First, publication bias was not found in

this study, possibly due to inclusion of theses and dissertations in

the dataset. Second, while whole-plant level experiments estimate

higher levels of PL than partial-plant level experiments [38], as a

result of resource reallocation among flowers and inflorescences

[51–53], in this review, PL was estimated from fruit set at the

partial-plant level (i.e., flowers), which does not differ from whole-

plant level estimation across angiosperms [38]. Lastly, even though

fruit set may estimate greater magnitude of PL than seed set

measures [38], both response variables are correlated [2,38] and

fruit set is the most reported response variable both in previous

meta-analyses and the studies included in this review. The

magnitude of PL can increase when quality measures are included

[29,32,38,54–55]. Although both quantity and quality components

are complementary measures of PL [29,32,38,54], only quantity

variables have been widely included in review studies thus far.

Pollinator specialization had the strongest effect on PL effect

size in the Atlantic forest. But of the three approaches of pollinator

specialization [26] explored only two were significant indicators of

PL. Ecological specialists (i.e., plants with one pollinator species)

had higher levels of PL than generalist species pollinated by two or

more species corroborating other studies [4,56]. Likewise,

phenotypic specialization measured by floral symmetry, showed

that specialist (zygomorphic) species experienced marginally more

PL than generalist (actinomorphic) species. These results suggest

that plants with zygomorphic flowers may depend upon precise

pollen deposition [57–58], but when pollinators with the right ‘fit’

are a minor part of the assemblage other visitors pollinate these

plants. Plants with zygomorphic flowers, thus, may be more prone

to the effects of heterogeneous pollination environments. Lastly,

although functional specialization did not significantly explain

variation in PL, functional generalization alleviated PL when

number of pollinator functional groups was high. Vertebrate and

invertebrate pollinators were equally effective and the extent of PL

was similar between nectariferous and nectarless species – results

that differ from our expectations but corroborates results of

reviews across angiosperms [2].

Phenotypic and ecological specializations lead to high levels of

PL under a scenario of pollination decay or unpredictability [59–

60]. Under this scenario, generalist species will be more

competitive when reproductive success is achieved by replacement

of pollinator species with similar pollination efficiency. Hence

generalist pollination systems are more resistant to fluctuations in

pollination service [61]. Thus, our findings plus the fact that

tropical plants may have relatively more specialized pollination

systems than temperate ones [24] suggest that plants which depend

on a single pollinator species in this biome may be most prone to

the reproductive failure as a result of pollinator loss.

Deviating from expectation [2,4,27], self-compatible species

were not less prone to PL than self-incompatible species in the

Atlantic forest. This may result from the fact that most (84%) of

the species (71% of the self-compatible ones) in this review were

non-autogamous system (i.e., have a low ability to set fruit after

spontaneous self-fertilization). Thus, species in the Brazilian

Atlantic forest depend upon pollinators to achieve reproductive

success regardless of breeding system.

Lack of association of PL and life habit was also reported [4].

Here this may reflect herbaceous species not being as short-lived

plants as traditionally thought. For instance species in Bromelia-

ceae and Orchidaceae while not woody do exhibit clonal

propagation [62] and thus may be long-lived and have many

opportunities for sexual reproduction. Thus, PL in a given season

may not significantly affect fitness across the whole lifespan.

Studies assessing the occurrence of PL over time and in non-

woody clonal plants would be needed to separate the effects of

woodiness and longevity.

Conclusions

Pollen limitation was observed in the Brazilian Atlantic forest

and its magnitude was comparable with angiosperms as a whole.

Despite the large dataset analyzed here, it represents approx-

imately only 1% of the plant richness in the Atlantic forest [19].

Indeed, tropical regions are the areas with highest species richness

and where the fewest pollen supplementation studies have been

Pollen Limitation in the Atlantic Forest
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conducted [12]. Moreover, our knowledge is concentrated in

southeastern Brazil, so reproductive and pollination studies or

species in the richest sites across the Atlantic forest (e.g., Bahia and

Espirito Santo states [63–64]) are still needed. Furthermore, we

strongly recommend that future studies assess both quantity and

quality components of PL, and especially pre-zygotic measures to

avoid bias due to resource reallocation [32,54].

Pollination specialization was the most powerful predictor of PL

among plants in the Brazilian Atlantic forest. Although other plant

traits (breeding system and life habit) did not affect PL in this

review, analysis that includes the interaction between factors could

facilitate deeper understanding of the determinants of PL [13].

Nevertheless, results presented here indicate a stochastic compo-

nent in pollen receipt [13] so it will be important for future studies

of PL in the Atlantic forest to consider the evolution of excess

ovules [65] in the context of pollination specialization.

Supporting Information

Figure S1 Diagnostic of random-effects models. Diag-

nostic for model assumptions and publication bias: normal Q-Q

plot, funnel plot, influence plot, symmetry test, overall effect size,

heterogeneity, Rosenberg fail-safe number, and critical value for

the dataset with (132 species) and without outliers (126).

(PDF)

Table S1 Data, location (longitude and latitude), and
reference for the studies included in this review.
Percentage of fruit set after hand cross-pollination (CP) and

natural pollination (NP), effect size (d), variance (v), and 95%

confidence interval (95% CI) for 132 species in the Atlantic forest

of Brazil.

(PDF)

Table S2 Results of traditional and phylogenetically
independent meta-analyses based on random-effects
models. Heterogeneity between categories (Qb), degrees of

freedom (df), P value, and Akaike’s information criterion (AIC)

per plant feature. Effect size (d) and 95% confidence interval (95%

CI), Z value, degrees of freedom (df), and P value per category of

plant feature.

(PDF)
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