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tions or hypoxia environment.

Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-kB) effects are alleviated through
differential posttranslational modification of NF-kB phosphorylation after pretreatment with 5’-AMP-activated protein ki-
nase (AMPK) activators such as 5 -aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent met-
formin. We found that AICAR or metformin acts as a regulator of LPS/NF-kB-or hypoxia/NF-kB-mediated cyclooxygenase
induction by an AMPK-dependent mechanism with interactions between p65-NF-kB phosphorylation and acetylation, in-
cluding in a human bladder cancer cell line (T24). In summary, we highlighted the regulatory interactions of AMPK activity
on NF-kB induction, particularly in posttranslational phosphorylation and acetylation of NF-kB under inflammatory condi-
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NUCLEAR FACTOR-KAPPA B ACTIVATION:
PHOSPHORYLATION AND ACETYLATION

The transcriptional factor nuclear factor kappa B (NF-kB) is a
main regulator of the induction of several genes including in-
flammatory and immune response genes and the proliferation
and death of cancer cells [1-4]. Cellular stimulation by pro-in-
flammatory cytokines, gram-negative bacterial lipopolysaccha-
ride (LPS), viral infection, radiation, and hypoxia is induced by
IkB kinase (IKK) complex-mediated IkB phosphorylation (pre-

dominant form, IKKp) and ubiquitination, and degradation [5-
10]. The mammalian NF-«B family consists of 5 subunits, p50-
NF-kB1, p52-NF-kB2, c-Rel, p65-RelA, and RelB, which forms
homo- or heterodimers of functional complexes.

NE-kB activity is regulated by its subcellular localization in
the cytoplasm or nucleus. The NF-kB dimer is mainly seques-
tered in the cytoplasm as a complex associated with the IxB in-
hibitor in unstimulated resting cells, or rarely in the nucleus as a
transcriptionally inactive complex shuttle [11]. In activated
cells, IxB-free NF-«B translocates into the nucleus where it acti-
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vates the transcription of several genes, including newly synthe-
sized IkB. In addition to translocation of NF-«B, the transcrip-
tional activities of NF-«B are regulated by posttranslational
modifications such as phosphorylation and acetylation of p65-
NF-«B subunit for full activation [12-14]. The transcriptional
activities of p65-NF-kB, which are specifically targeted by sev-
eral kinases, are highly enhanced by phosphorylation of Ser**,
or Ser””®, and Ser’"' (by zetaPKC) in association with the coacti-
vator CBP/p300 [15,16]. Additionally, Anrather et al. [17] re-
ported 3 phosphorylation sites at Ser”” (induced by LPS), Ser*”
(by MSK1), and Ser*®" (by LPS and unknown kinase) as essen-
tial phosphorylation sites for transcriptional activity.

Phosphorylation of p65-NF-kB at Ser” leads to nuclear
translocation or cytoplasmic priming, and the transactivation
mechanism is the target of several kinases including the impor-
tant kinase IKKp [18-20]. Phosphorylation of Ser** has been
studied with other related phosphorylation sites, including
Ser’” and Ser”®, to evaluate transactivation [17,21-23]. Anrath-
er etal. [17] identified Ser*”, Ser””®, and Ser* as potential phos-
pho-acceptor sites within the p65 Rel homology domain, and
found that both Ser*” and Ser””® can be mediated by Ser/Thr ki-
nases, but Ser’®' Ser-specific kinases alter transcriptional NF-«B
activities when Ser is substituted with Thr. They suggested that
the phosphorylation levels of these potential sites can affect the
interaction of NF-kB with coactivators, and to acetylation pat-
terns for the full NF-kB transcriptional activities. Additionally,
p65-NF-kB phosphorylation levels reflect the differential NF-
kB transcriptional activity of related gene subsets; however,
phosphorylation is not essential for NF-kB DNA binding [23].
It was previously shown that the transcriptional coactivators
p300 and CBP mainly acetylate p65-NF-kB Lys™*, Lys*', and
Lys™'* [24,25]. Particularly, p65-NF-kB Lys’"° acetylation stimu-
lates the full transcriptional activity of p65-NF-kB, but is only
minimally related to DNA binding or IkB assembly.

AMPK ACTIVATION

5’-AMP-activated protein kinase (AMPK) is a highly conserved
serine/threonine protein kinase that regulates energy homeo-
stasis and metabolic stress, and exists in all eukaryotic cells as
heterotrimeric complexes comprising catalytic a-subunits and
regulatory (8- and y-subunits. Phosphorylation of the Thr'”> res-
idue of the o subunit is important for maximum AMPK activity
[26-28]. Three upstream kinases have been shown to activate

AMPK. LKBI stimulates AMPK in response to changes in the
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cellular AMP/ATP ratio, calmodulin-dependent protein kinase
kinase [ in response to intracellular Ca** concentration, and
transforming growth factor-beta-activating kinase 1 by immu-
nological cytokines [29-32].

INTERACTIONS BETWEEN NF-xB INDUCTION
AND AMPK ACTIVATION

In recent years, numerous studies have reported the effects of
AMPK activities on inflammatory NF-kB activity [33-48]. The
major function of AMPK in inhibiting inflammation has been
demonstrated using a known AMPK activator and the pharma-
cological mimetic 5’-aminoimidazole-4-carboxamide ribonu-
cleotide (AICAR). Other studies showed that AICAR inhibits
tumor necrosis factor (INF)-a and interleukin-f3-induced NF-
kB activities in immune cells [49-52] and inducible nitric oxide
synthase and cyclooxygenase (COX-2) expression levels in LPS-
or cytokine-stimulated myocytes, adipocytes, or macrophages
grown in culture [53,54]. However, the anti-inflammatory ef-
fects of AICAR were also found to be AMPK-independent or
nonspecific activators of AMPK in several studies [52,55].

In addition to AICAR, there are several AMPK activators;
metformin, used to treat type 2 diabetes; berberine, a natural
product used in traditional Chinese medicine; and A-769662,
derived from a high-throughput screen for AMPK activators
[56,57]. Aspirin and salicylate also inhibit the inflammatory
NEF-kB pathway, and it has been proposed that this results from
inhibition of the upstream kinase IKK-p [58]. However, they
suggested that inhibition of the NF-«xB pathway is mediated by
AMPK activation, rather than by direct inhibition of IKK-p.
Opverall, all AMPK activators described above have been report-
ed to inhibit inflammatory responses in various model systems.

Example 1 (Unpublished): Effects of AMPK Activator on
LPS- or Hypoxia-Induced NF-«kB Phosphorylation and
Acetylation Activities in the Human Bladder Cancer Cell
LineT24

We recently investigated the effects of LPS and the AMPK acti-
vator AICAR on COX-2 induction, two specific p65-NF-«kB
phospho-activities (Ser* and Ser*), and the acetylation activity
of p65-NF-kB Lys*. Particularly, we proposed that the expres-
sion levels of p65-NF-kB Ser’® phosphorylation and p65-NF-
kB Lys’' acetylation were inversed, suggesting potential inhibi-
tory activity of p65-NF-kB Ser* phosphorylation. Both LPS-
and hypoxia-induced NF-«B activities in a human bladder can-
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cer line T24 were alleviated by pretreatment with AICAR. Ad-
ditionally, AMPK siRNA-mediated suppression enhanced NF-
kB-mediated COX-2 induction by LPS or hypoxia. Particularly,
we suggested that direct interactions and colocalization occur
between p-AMPK (at phospho-activation site Thr'”?) (p-
AMPK) and IkBa-free NF-kB, especially in nucleus. LPS-in-
duced full transcriptional activity of NF-kB, as indicated by a
critical acetylation level (Ac-K310 p65-NF-kB), was decreased
by AICAR pretreatment, whereas the phosphorylation level at
p65-NF-kB Ser*™ was increased [35].

Example 2 (Unpublished): Transient Inactivation of AMPK
and ROS Participation After LPS Treatment in the Human
Bladder Cancer Line T24

We also found that AMPK phosphorylation as well as the abili-
ty of AICAR to enhance phosphorylation of AMPK was de-
creased only at the early time (~1 hour) after LPS stimulation.
This effect of LPS stimulation on p-AMPK levels was abolished
or showed a greater increase at the later time (after 16 hours).
Recently, Sag et al. [59] and Tadie et al. [60] demonstrated that
the transient suppression of AMPK phosphorylation dimin-
ished the ability of AICAR to increase AMPK phosphorylation
in LPS-stimulated cells. In particular, Tadie et al. [60] suggested
that HMGBI released form injured or necrotic cells was in-
volved in decreasing LPS-treated AMPK phospho-activity
based on their results showing an inverse relationship between
accumulated HMGBI in cytoplasm and AMPK phosphoryla-
tion levels. Furthermore, we examined N-acetyl cystein (NAC)
pretreatment under the above experimental conditions to im-
mediately inhibit reactive oxygen species (ROS) release at the
early time, which resulted in increased p-AMPK levels and de-
creased COX-2 induction. Thus, our finding may also be ex-
plained by the influence of early released ROS on AMPK phos-
pho-activity in LPS-stimulated bladder cancer cells.

Based on our findings, AICAR pretreatment partially de-
creased both LPS- and hypoxia-treated COX-2 induction. Ad-
ditionally, LPS-induced NF-kB p65 Ser”* phospho-activity was
decreased by AICAR pretreatment, but highly increased by
AMPK-siRNA, suggesting an AMPK-dependent mechanism.
Consistent with this result, recent studies reported the ability of
AICAR to suppress NF-xB activation in response to LPS or
pro-inflammatory cytokines through an AMPK-dependent or
-independent mechanism [52,59-61].
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Example 3 (Unpublished): Differential Activities of AMPK
and Activation of NF-kB Signaling Pathways Under
Inflammatory or Hypoxia Conditions

It is generally known that the TLR4/NF-«B signaling pathway
is activated under hypoxic conditions, increasing the gene ex-
pression of downstream inflammatory mediators [7,8,57,62-
67]. Additionally, hypoxia induces AMPK activation in cancer
cells as a survival mechanism by ATP-depletion (Laderoute et
al. [66], 2006; Miller et al. [67], 2008; Kim et al. [57], 2012). In
contrast, the phospho-activities of the serial enzymes p-LKB1,
p-AMPK, and p-ACC in our study were time-dependently di-
minished under hypoxia conditions and HIF1a expression was
increased (unpublished). In addition, p-AMPK levels after LPS,
AICAR, or NAC treatment and even in untreated cells were de-
creased under hypoxia conditions, and hypoxia-induced COX-
2 expression was synergistically enhanced by additional treat-
ment with LPS and blocked or decreased by AICAR pretreat-
ment; these results are similar to those of other recent reports
[9,10].

CONCLUSIONS

In this short review, we highlighted the regulatory interactions
of AMPK activity on NF-kB induction, particularly in post-
translational phosphorylation and acetylation of NF-«kB under
inflammatory conditions or in hypoxia environments, provid-
ing examples in the human bladder cancer cell line T24.
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