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NUCLEAR FACTOR-KAPPA B ACTIVATION: 
PHOSPHORYLATION AND ACETYLATION

The transcriptional factor nuclear factor kappa B (NF-κB) is a 
main regulator of the induction of several genes including in-
flammatory and immune response genes and the proliferation 
and death of cancer cells [1-4]. Cellular stimulation by pro-in-
flammatory cytokines, gram-negative bacterial lipopolysaccha-
ride (LPS), viral infection, radiation, and hypoxia is induced by  
IκB kinase (IKK) complex-mediated IκB phosphorylation (pre-

dominant form, IKKβ) and ubiquitination, and degradation [5-
10]. The mammalian NF-κB family consists of 5 subunits, p50-
NF-κB1, p52-NF-κB2, c-Rel, p65-RelA, and RelB, which forms 
homo- or heterodimers of functional complexes.  
  NF-κB activity is regulated by its subcellular localization in 
the cytoplasm or nucleus. The NF-κB dimer is mainly seques-
tered in the cytoplasm as a complex associated with the IκB in-
hibitor in unstimulated resting cells, or rarely in the nucleus as a 
transcriptionally inactive complex shuttle [11]. In activated 
cells, IκB-free NF-κB translocates into the nucleus where it acti-
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Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-κB) effects are alleviated through 
differential posttranslational modification of NF-κB phosphorylation after pretreatment with 5´-AMP-activated protein ki-
nase (AMPK) activators such as 5´-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent met-
formin. We found that AICAR or metformin acts as a regulator of LPS/NF-κB-or hypoxia/NF-κB-mediated cyclooxygenase 
induction by an AMPK-dependent mechanism with interactions between p65-NF-κB phosphorylation and acetylation, in-
cluding in a human bladder cancer cell line (T24). In summary, we highlighted the regulatory interactions of AMPK activity 
on NF-κB induction, particularly in posttranslational phosphorylation and acetylation of NF-κB under inflammatory condi-
tions or hypoxia environment.
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vates the transcription of several genes, including newly synthe-
sized IκB. In addition to translocation of NF-κB, the transcrip-
tional activities of NF-κB are regulated by posttranslational 
modifications such as phosphorylation and acetylation of p65-
NF-κB subunit for full activation [12-14]. The transcriptional 
activities of p65-NF-κB, which are specifically targeted by sev-
eral kinases, are highly enhanced by phosphorylation of Ser536, 
or Ser276, and Ser311 (by zetaPKC) in association with the coacti-
vator CBP/p300 [15,16]. Additionally, Anrather et al. [17] re-
ported 3 phosphorylation sites at Ser205 (induced by LPS), Ser276 
(by MSK1), and Ser281 (by LPS and unknown kinase) as essen-
tial phosphorylation sites for transcriptional activity. 
  Phosphorylation of p65-NF-κB at Ser536 leads to nuclear 
translocation or cytoplasmic priming, and the transactivation 
mechanism is the target of several kinases including the impor-
tant kinase IKKβ [18-20]. Phosphorylation of Ser281 has been 
studied with other related phosphorylation sites, including 
Ser205 and Ser276, to evaluate transactivation [17,21-23]. Anrath-
er et al. [17] identified Ser205, Ser276, and Ser281 as potential phos-
pho-acceptor sites within the p65 Rel homology domain, and 
found that both Ser205 and Ser276 can be mediated by Ser/Thr ki-
nases, but Ser281 Ser-specific kinases alter transcriptional NF-κB 
activities when Ser is substituted with Thr. They suggested that 
the phosphorylation levels of these potential sites can affect the 
interaction of NF-κB with coactivators, and to acetylation pat-
terns for the full NF-κB transcriptional activities. Additionally, 
p65-NF-κB phosphorylation levels reflect the differential NF-
κB transcriptional activity of related gene subsets; however, 
phosphorylation is not essential for NF-κB DNA binding [23]. 
It was previously shown that the transcriptional coactivators 
p300 and CBP mainly acetylate p65-NF-κB Lys218, Lys221, and 
Lys310n [24,25]. Particularly, p65-NF-κB Lys310 acetylation stimu-
lates the full transcriptional activity of p65-NF-κB, but is only 
minimally related to DNA binding or IκB assembly. 

AMPK ACTIVATION

5’-AMP-activated protein kinase (AMPK) is a highly conserved 
serine/threonine protein kinase that regulates energy homeo-
stasis and metabolic stress, and exists in all eukaryotic cells as 
heterotrimeric complexes comprising catalytic α-subunits and 
regulatory β- and γ-subunits. Phosphorylation of the Thr172 res-
idue of the α subunit is important for maximum AMPK activity 
[26-28]. Three upstream kinases have been shown to activate 
AMPK. LKB1 stimulates AMPK in response to changes in the 

cellular AMP/ATP ratio, calmodulin-dependent protein kinase 
kinase β in response to intracellular Ca2+ concentration, and 
transforming growth factor-beta-activating kinase 1 by immu-
nological cytokines [29-32]. 

INTERACTIONS BETWEEN NF-κB INDUCTION 
AND AMPK ACTIVATION

In recent years, numerous studies have reported the effects of 
AMPK activities on inflammatory NF-κB activity [33-48]. The 
major function of AMPK in inhibiting inflammation has been 
demonstrated using a known AMPK activator and the pharma-
cological mimetic 5´-aminoimidazole-4-carboxamide ribonu-
cleotide (AICAR). Other studies showed that AICAR inhibits 
tumor necrosis factor (TNF)-α and interleukin-β-induced NF-
κB activities in immune cells [49-52] and inducible nitric oxide 
synthase and cyclooxygenase (COX-2) expression levels in LPS- 
or cytokine-stimulated myocytes, adipocytes, or macrophages 
grown in culture [53,54]. However, the anti-inflammatory ef-
fects of AICAR were also found to be AMPK-independent or 
nonspecific activators of AMPK in several studies [52,55]. 
  In addition to AICAR, there are several AMPK activators; 
metformin, used to treat type 2 diabetes; berberine, a natural 
product used in traditional Chinese medicine; and A-769662, 
derived from a high-throughput screen for AMPK activators 
[56,57]. Aspirin and salicylate also inhibit the inflammatory 
NF-κB pathway, and it has been proposed that this results from 
inhibition of the upstream kinase IKK-β [58]. However, they 
suggested that inhibition of the NF-κB pathway is mediated by 
AMPK activation, rather than by direct inhibition of IKK-β. 
Overall, all AMPK activators described above have been report-
ed to inhibit inflammatory responses in various model systems. 

Example 1 (Unpublished): Effects of AMPK Activator on 
LPS- or Hypoxia-Induced NF-κB Phosphorylation and 
Acetylation Activities in the Human Bladder Cancer Cell 
Line T24

We recently investigated the effects of LPS and the AMPK acti-
vator AICAR on COX-2 induction, two specific p65-NF-κB 
phospho-activities (Ser536 and Ser281), and the acetylation activity 
of p65-NF-κB Lys310. Particularly, we proposed that the expres-
sion levels of p65-NF-κB Ser281 phosphorylation and p65-NF-
κB Lys310 acetylation were inversed, suggesting potential inhibi-
tory activity of p65-NF-κB Ser281 phosphorylation. Both LPS- 
and hypoxia-induced NF-κB activities in a human bladder can-
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cer line T24 were alleviated by pretreatment with AICAR. Ad-
ditionally, AMPK siRNA-mediated suppression enhanced NF-
κB-mediated COX-2 induction by LPS or hypoxia. Particularly, 
we suggested that direct interactions and colocalization occur 
between p-AMPK (at phospho-activation site Thr172) (p-
AMPK) and IκBα-free NF-κB, especially in nucleus. LPS-in-
duced full transcriptional activity of NF-κB, as indicated by a 
critical acetylation level (Ac-K310 p65-NF-κB), was decreased 
by AICAR pretreatment, whereas the phosphorylation level at 
p65-NF-κB Ser281 was increased [35].

Example 2 (Unpublished): Transient Inactivation of AMPK 
and ROS Participation After LPS Treatment in the Human 
Bladder Cancer Line T24

We also found that AMPK phosphorylation as well as the abili-
ty of AICAR to enhance phosphorylation of AMPK was de-
creased only at the early time (~1 hour) after LPS stimulation. 
This effect of LPS stimulation on p-AMPK levels was abolished 
or showed a greater increase at the later time (after 16 hours). 
Recently, Sag et al. [59] and Tadie et al. [60] demonstrated that 
the transient suppression of AMPK phosphorylation dimin-
ished the ability of AICAR to increase AMPK phosphorylation 
in LPS-stimulated cells. In particular, Tadie et al. [60] suggested 
that HMGB1 released form injured or necrotic cells was in-
volved in decreasing LPS-treated AMPK phospho-activity 
based on their results showing an inverse relationship between 
accumulated HMGB1 in cytoplasm and AMPK phosphoryla-
tion levels. Furthermore, we examined N-acetyl cystein (NAC) 
pretreatment under the above experimental conditions to im-
mediately inhibit reactive oxygen species (ROS) release at the 
early time, which resulted in increased p-AMPK levels and de-
creased COX-2 induction. Thus, our finding may also be ex-
plained by the influence of early released ROS on AMPK phos-
pho-activity in LPS-stimulated bladder cancer cells. 
  Based on our findings, AICAR pretreatment partially de-
creased both LPS- and hypoxia-treated COX-2 induction. Ad-
ditionally, LPS-induced NF-κB p65 Ser536 phospho-activity was 
decreased by AICAR pretreatment, but highly increased by 
AMPK-siRNA, suggesting an AMPK-dependent mechanism. 
Consistent with this result, recent studies reported the ability of 
AICAR to suppress NF-κB activation in response to LPS or 
pro-inflammatory cytokines through an AMPK-dependent or 
-independent mechanism [52,59-61]. 

Example 3 (Unpublished): Differential Activities of AMPK 
and Activation of NF-κB Signaling Pathways Under 
Inflammatory or Hypoxia Conditions 

It is generally known that the TLR4/NF-κB signaling pathway 
is activated under hypoxic conditions, increasing the gene ex-
pression of downstream inflammatory mediators [7,8,57,62-
67]. Additionally, hypoxia induces AMPK activation in cancer 
cells as a survival mechanism by ATP-depletion (Laderoute et 
al. [66], 2006; Miller et al. [67], 2008; Kim et al. [57], 2012). In 
contrast, the phospho-activities of the serial enzymes p-LKB1, 
p-AMPK, and p-ACC in our study were time-dependently di-
minished under hypoxia conditions and HIF1α expression was 
increased (unpublished). In addition, p-AMPK levels after LPS, 
AICAR, or NAC treatment and even in untreated cells were de-
creased under hypoxia conditions, and hypoxia-induced COX-
2 expression was synergistically enhanced by additional treat-
ment with LPS and blocked or decreased by AICAR pretreat-
ment; these results are similar to those of other recent reports 
[9,10]. 

CONCLUSIONS

In this short review, we highlighted the regulatory interactions 
of AMPK activity on NF-κB induction, particularly in post-
translational phosphorylation and acetylation of NF-κB under 
inflammatory conditions or in hypoxia environments, provid-
ing examples in the human bladder cancer cell line T24. 
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