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Summary
Background The diagnosis of hepatocellular carcinoma (HCC) often experiences latency, ultimately leading to un-
favorable patient outcomes due to delayed therapeutic interventions. Our study is designed to develop and validate a
model that employs triple-phase computerized tomography (CT)-based deep learning radiomics and clinical variables
for early warning of HCC in patients with cirrhosis.

Methods We studied 1858 patients with cirrhosis primarily from the PreCar cohort (NCT03588442) between June
2018 and January 2020 at 11 centres, and collected triple-phase CT images and laboratory results 3–12 months prior
to HCC diagnosis or non-HCC final follow-up. Using radiomics and deep learning techniques, early warning model
was developed in the discovery cohort (n = 924), and then validated in an internal validation cohort (n = 231), and an
external validation cohort from 10 external centres (n = 703).

FindingsWe developed a hybrid model, named ALARMmodel, which integrates deep learning radiomics with clinical
variables, enabling early warning of the majority of HCC cases. The ALARM model effectively predicted short-term
HCC development in cirrhotic patients with area under the curve (AUC) of 0.929 (95% confidence interval
0.918–0.941) in the discovery cohort, 0.902 (0.818–0.987) in the internal validation cohort, and 0.918 (0.898–0.961)
in the external validation cohort. By applying optimal thresholds of 0.21 and 0.65, the high-risk (n = 221, 11.9%)
and medium-risk (n = 433, 23.3%) groups, which covered 94.4% (84/89) of the patients who developed HCC, had
significantly higher rates of HCC occurrence compared to the low-risk group (n = 1204, 64.8%) (24.3% vs 6.4% vs
0.42%, P < 0.001). Furthermore, ALARM also demonstrated consistent performance in subgroup analysis.
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Interpretation The novel ALARM model, based on deep learning radiomics with clinical variables, provides reliable
estimates of short-term HCC development for cirrhotic patients, and may have the potential to improve the precision
in clinical decision-making and early initiation of HCC treatments.
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Evidence before this study
We searched PubMed from database inception to April 2024,
for publications on triple-phase CT-based deep learning
radiomics and clinical variables for early warning of HCC in
patients with cirrhosis. We used the search terms “artificial
intelligence” or “machine learning” or “deep learning”,
“radiomics”, “latency period” or “prediction”, “aMAP”,
without language restrictions. We also reviewed reference lists
of eligible articles. Our search did not identify any previous
studies on the use of radiomics, deep learning techniques, and
aMAP HCC risk score for predicting HCC occurrence of
cirrhotic patient 3–12 months before HCC diagnosis.

Added value of this study
We developed and externally validated the first clinical
decision tool, called ALARM model, capable of accurately early

warning HCC development for patients with cirrhosis 3–12
months before the HCC clinical diagnosis in a large
multicenter cohort of 1858 patients. ALARM, serving as a
comprehensive model that integrates radiomics and deep
learning scores along with aMAP HCC risk score, could identify
the majority of individuals with HCC occurrence in advance.

Implications of all the available evidence
ALARM holds the potential for practical implementation in
clinical settings, allowing for the early warning of
tumorigenesis in cirrhotic patients. This novel addition is
poised to significantly refine the precision of clinical decision-
making, fostering proactive and personalized anti-tumor
interventions. Moving forward, forthcoming efforts should
concentrate on prospectively validating the model’s clinical
utility.
Introduction
Early diagnosis and effective treatment of hepatocellular
carcinoma (HCC) represents a momentous challenge
for global health organizations, placing an enormous
burden on healthcare systems worldwide.1,2 In China,
this is particularly significant for hepatitis B virus
(HBV)-related cirrhotic patients, as HBV infection is the
main etiology for HCC development. The diagnosis of
HCC often has an latency period, and the lack of timely
treatment measures ultimately leads to poor patient
outcomes, thus early warning contributes to a favorable
prognosis and opens up the possibility for curative
treatment.3

Substantial efforts have been made towards
developing a robust, sensitive, and non-invasive test
for the detection of HCC.4 Radiomics as a promising
technology for cancer detection that has gained sig-
nificant attention in recent years.5–8 It combines
expertise from medical imaging, computer science,
and statistics to analyze medical image findings us-
ing computer-assisted methods. Deep learning algo-
rithms have improved the accuracy and efficiency of
Radiomics, enabling the identification of subtle im-
age signatures that were previously undetectable,
resulting in better sensitivity and specificity in diag-
nosing HCC.9–11

Recently, a novel aMAP HCC risk score, which was
calculated by five common clinical variables, was
developed to predict the likelihood of HCC development
in patients with chronic hepatitis. It has demonstrated
remarkable accuracy in identifying patients with chronic
hepatitis at high risk of developing HCC, thereby
providing opportunities for early detection by intensive
surveillance.12,13

Considering the recent advances of above methods,
we conducted this nationwide multicenter study, aiming
to develop and validate a novel model (called ALARM),
by integrating deep learning-based radiomics and aMAP
risk score, to identify early changes indicative of HCC in
patients with cirrhosis, thereby providing early warning
information to patients and physicians.
Methods
Study design and patients
This is a retrospective, multicentre, cohort study. The
patients enrolled in this study were mainly from PreCar
cohort. PreCar cohort is a prospective multicentre
www.thelancet.com Vol 74 August, 2024
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observational cirrhotic cohort conducted in mainland
China (NCT03588442), in which 4692 adult liver
cirrhotic patients were enrolled from June 2018 to
January 2020 from 16 centres in 11 provinces across
China.13 At screening period, they all had enhanced
computerized tomography (CT) scans done to provide a
thorough assessment of their baseline physical condi-
tion and detect any underlying abnormalities. The
biannual protocol follow-up for all patients included
ultrasound examinations as well as routine clinical as-
sessments to monitor the occurrence of HCC. In the
current study, inclusion criteria were as follows: (i) pa-
tients diagnosed with cirrhosis; (ii) for patients diag-
nosed with HCC during follow-up, having enhanced CT
image taken within a 3–12 month window prior to HCC
diagnosis; (iii) patients without HCC diagnosis, having
enhanced CT images taken within a 3–12 month win-
dow prior to their last follow-up. In brief, all the CT
images included in the analysis were those without
clinically diagnosing HCC. Exclusion criteria included:
(i) patients under the age of 18; (ii) patients who had
undergone previous liver-related surgeries, such as
hepatectomy or liver transplantation; (iii) patients who
had undergone previous chemotherapy or immuno-
therapy; (iv) patients with poor-quality CT image. (v) par-
tial or complete data is missing. Besides, due to the
scarcity of HCC patients who met the above inclusion
criteria, we additionally included HCC patients from the
Search-B cohort (NCT02167503)13,14 and outpatient from
Nanfang hospital in the current study. The diagnosis of
cirrhosis and HCC were based on standard histological
and/or compatible radiological findings. For detailed
diagnostic information, please refer to Supplementary A1.

Ethics
This study was approved by the Ethics Committee of
Nanfang Hospital, with reference number NFEC-
201808-101, and was conducted in accordance with the
guidelines of the Declaration of Helsinki and the prin-
ciples of good clinical practice. All patients provided
written informed consent to have their data used
(anonymously) for research purposes.

CT imaging
All patients in the study underwent CT scans in the
arterial phase, venous phase and delayed phase.
Supplementary A2 provides further details regarding
the specific parameters utilized for CT image acquisi-
tion. Before the analysis, the images underwent pre-
processing, including resampling voxel size and
discretization of Hounsfield Units. The voxel di-
mensions were resampled to 1 × 1 × 1 mm (x-, y-, and z-
axes) to correct for acquisition-related voxel resolution
variations. To emphasize the liver in abdominal CT
scans and reduce interference from surrounding or-
gans, we set the window width to 200 and the window
level to 40 (Supplementary A3).
www.thelancet.com Vol 74 August, 2024
Regions of interest segmentation
For patients with cirrhosis, since the occurrence and
development of HCC involve extensive areas of the liver
and various complex factors, comprehensively under-
standing the condition of the liver helps to assess the
risk more accurately. Therefore, accurately identifying
the region of interest (ROI) encompassing the entire
liver is crucial. In addition, to expedite the time-
consuming and labor-intensive process of defining
ROI, we employed the nnU-Net-based automatic delin-
eation method (Supplementary A4).15 Leveraging this
approach allowed us to utilize an automatic contouring
method and capitalize on the relative stability of liver
contour and position to consistently obtain the same
ROI for each contouring.

Image feature extraction and selection
To extract radiomics signature, the Pyradiomics pack-
age16 was utilized. We customized the deep residual
network in a three-dimensional fashion (3D-ResNet)
to devise our Fine-tuned 3D-ResNet50 aimed at
effectuating profound learning feature extraction
(Supplementary A5).17 The process of feature normali-
zation was conducted using the z-score method to
standardize the value range, with the aim of identifying
the most significant signatures associated with HCC.
Mann–Whitney U test was performed for each feature to
select the signatures that were significantly associated
with the outcome and had a P-value below the threshold
of 0.05, and Spearman’s rank correlation coefficient was
used to identify highly correlated features. Lastly, the
Lasso regression model with 10-fold cross-validation
was utilized to remove features with zero weight,
ensuring the feature selection process was robust and
reducing the risk of overfitting (Supplementary A6).

Model construction and validation
The Lasso regression model was utilized to identify
pertinent features, with their coefficients being assigned
weights to produce the corresponding radiomics score
and deep learning score. This methodology enables the
calculation of scores that assess the significance and
quality of radiomics and deep learning within the
framework of imaging analysis. In our study, univariate
and multivariate analyses were implemented to identify
independent markers for differentiating liver which
would transit to malignance or not, and these markers
were subsequently integrated into a combine model.
The discovery cohort, which constituted 80% of the
primary cohort (Nanfang Hospital) was used to develop
the model. To rectify the imbalance between positive
and negative samples in the discovery cohort, we
employed the Borderline-1 SMOTE method18

(Figure S1). After oversampling, we obtained a new
discovery cohort to develop the model. An internal
validation cohort representing 20% of the primary
cohort, and an external validation cohort composed of
3
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patients from the other 10 centers in the PreCar cohort,
were utilized to evaluate the detection performance and
robustness of the ALARM model. The study flowchart is
depicted in Figure S2. The modeling pipeline is illus-
trated in Fig. 1.

Statistics
Categorical variables were expressed as counts and
percentages and analyzed using the Chi-square test or
Fisher exact test, as appropriate. Continuous variables
were expressed as median (inter-quartile range [IQR]) or
mean ± standard deviation and compared using the
Mann–Whitney U test and the Kruskal–Wallis test, as
appropriate. We consider a two-tailed P-value below 0.05
to indicate statistical significance. The performance of
the model was evaluated using receiver operating char-
acteristic (ROC) curves, and the area under the curve
(AUC) was calculated to compare its efficacy with that of
single-signature models across all cohorts. Delong test,
Net Reclassification Index (NRI), and Integrated
Discrimination Improvement (IDI) were used to
compare the performance of various models. Further-
more, decision curve analysis was conducted to evaluate
the clinical usefulness of the model by quantifying the
net benefit at various threshold probabilities. Calibration
curves were used to evaluate the model’s accuracy and
reliability. To address potential confounding factors and
Fig. 1: Workflow of the current study. f/u, Follow-up; mo, Month; HCC,
Archiving and Communication System; U-test, Mann–Whitney U test
regression.
ensure the robustness of the findings, we conducted
subgroup analysis based on age, sex, and alpha-
fetoprotein (AFP) levels. In the discovery cohort, X-tile
plots were used to generate two optimal cut-off values
with the highest χ2 value to separate patients into three
deterioration trends, corresponding to the high-risk,
medium-risk, and low-risk.19 The above process was
carried out using R software (version 4.2) and Python
(version 3.7 and 3.9).

Role of the funding source
The funder had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.
Results
Patient characteristics
A total of 1858 eligible patients from 11 centers were
included in the current study, among which 1836
(98.82%) patients with 67 cases of HCC were from
PreCar cohort, and the other 22 patients (1.18%, all
HCC cases) from the outpatients and Search-B cohort in
Nanfang Hospital (Figure S3). Among these patients,
924 were allocated to the discovery cohort, 231 to the
internal validation cohort, and 703 to the external vali-
dation cohort. 45 participants (4.9%) in the discovery
Hepatocellular carcinoma; CT, Computed Tomography; PACS, Picture
; Spearman, Spearman’s rank correlation coefficient; Lasso, Lasso
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cohort, 13 participants (5.6%) in the internal validation
cohort and 31 participants (4.4%) in the external vali-
dation cohort were diagnosed with HCC after 3–12
months after CT scans. The average time intervals from
CT examination to the diagnosis of HCC for stage 0, A,
B, C, and D were 6.0, 6.8, 7.2, 11.0, and 9.7 months,
respectively. Characteristics of the patients are shown in
Table 1.

Image signature analysis
From a single liver phase per patient, we extracted a total
of 1223 signatures, resulting in 3669 signatures across
three phases (Figure S4, Table S2, and Supplementary
A7). Additionally, we obtained 100 × 3 deep learning
signatures from the average pooling layer of the Fine-
tuned 3D ResNet50 for each patient. After feature se-
lection process, we identified 6 radiomics signatures
and 17 deep learning signatures for building single-
signature models and calculating radiomics and deep
learning scores, respectively (Supplementary A5, Fig. 2
and Figures S5–S11). The formula and the distribu-
tion of radiomics score and deep learning score are
presented in Supplementary A8. The Mann–Whitney U
test indicated that there were significant differences in
the radiomics score, deep learning score and aMAP
score between patients who would develop HCC or not
(Figure S12). Additionally, multivariable linear regres-
sion analysis revealed that these signature scores all
served as independent markers to distinguish malignant
progression in patients with cirrhosis (Figure S13).

Construction and validation of ALARM model
The ALARM model was developed by fitting a logistic
regression model using the clinical score, radiomics
score, and deep learning score as three individual
covariates. For clinical score, we attempted various
combinations of clinical variables with radiomics score
and deep learning score, including aMAP, age, sex, total
bilirubin, albumin, platelet counts, and AFP. The results
indicate that the combination of radiomics score, deep
learning score and aMAP score performed significantly
better than the other combinations in terms of AUC.
Even with AFP included in these variables, according to
the Delong test, their performance did not significantly
improve (Table S3). Hence, aMAP score was selected as
the variable included in the clinical score. Then, it was
encouragingly found that ALARM exhibited great
discriminatory performance, with an AUC of 0.929
(95% confidence interval [CI]: 0.918–0.941) in the dis-
covery cohort, 0.902 (95% CI: 0.818–0.987) in the in-
ternal validation cohort, and 0.918 (95% CI:
0.898–0.961) in the external validation cohort, as
confirmed by bootstrapping validation (Fig. 3). We also
performed cross-validation in each cohort and demon-
strated the stable performance of the model under
different folds, further confirming the reliability of our
approach (Figure S14). The DeLong test revealed a
www.thelancet.com Vol 74 August, 2024
statistically significant disparity (P < 0.05) between
ALARM and single-signature models, signifying that
ALARM exhibited superior performance in predicting
short-term HCC development among cirrhotic patients
(Table S4). The performance of the ALARM was also
compared with that of single-signature models using the
NRI and IDI analyses, which demonstrated that the
ALARM had superior performance (Table S5 and S6).
The calibration curve generated from our study revealed
a strong agreement between the predicted probabilities
generated by the ALARM and the actual outcomes
(Fig. 4A). In addition, our decision curve analysis re-
sults, presented in Fig. 4B, demonstrated that the
ALARM offers superior benefits in clinical decision-
making when compared to single-signature model.
Furthermore, the subgroup analysis showed that the
performance of ALARM was consistent regardless of
age, sex, and AFP levels (Supplementary A9 and
Figure S15).

Risk stratification in patients with cirrhosis
After determining the optimal thresholds of 0.21 and
0.65 using the x-tile software (Figure S16) in the newly
generated discovery cohort after SMOTE oversampling,
the patients were divided into three groups: high-risk,
medium-risk, low-risk groups. The results revealed
that the high-risk (n = 221, 11.9%) and medium risk
(n = 433, 23.3%) groups, which covered 94.4% (84/89)
of the patients who developed HCC, had significantly
higher rates of HCC occurrence in comparison to low-
risk group (n = 1204, 64.8%) (24.3% vs 6.4% vs
0.42%, P < 0.001) (Fig. 5). Moreover, ALARM achieved
an average lead time of 7.2 months for early warning of
HCC development by employing a threshold of 0.21,
with 33.3% of patients being warned less than 6 months
prior to clinical diagnosis, 32.1% between 6 and 9
months, and 34.5% between 9 and 12 months. At the
upper threshold, the specificity values for discovery
cohort, internal validation cohort, and external valida-
tion cohort were 0.899 (95% CI: 0.879–0.918), 0.889
(95% CI: 0.850–0.930), and 0.926 (95% CI: 0.906–0.945),
respectively. At the lower threshold, the sensitivity
values for discovery cohort, internal validation cohort,
and external validation cohort were 0.933 (95% CI:
0.917–0.949), 0.923 (95% CI: 0.889–0.957), and 0.944
(95% CI: 0.955–0.981), respectively (Table 2).
Discussion
In this multicenter study, we developed and validated a
multi-omics model called ALARM, which integrated
triple-phase CT deep learning radiomics with common
clinical variables, enabling enhance the accuracy and
confidence in early warning HCC development for pa-
tients with cirrhosis 3–12 months before the HCC
clinical diagnosis. The ALARM model exhibited a
notable AUC, ranging from 0.902 to 0.929, and the
5
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All (n = 1858) Discovery cohort (n = 924) Internal validation cohort (n = 231) External validation cohort (n = 703)

Non-HCC HCC P-
value

Non-HCC HCC P-
value

Non-HCC HCC P value Non-HCC HCC P-
value

(n = 1769) (n = 89) (n = 879) (n = 45) (n = 218) (n = 13) (n = 672) (n = 31)

Age, years 49.9 (43.2, 56.4) 58.2 (50.9, 64.0) <0.001 48.3 (42.0, 55.2) 57.8 (52.3, 62.9) <0.001 48.6 (41.5, 54.2) 58.6 (49.5, 64.4) 0.012 52.3 (45.5, 59.8) 58.2 (51.9, 66.9) 0.002

Sex (Male), n
(%)

1411 (79.8) 78 (87.6) 0.093 742 (84.4) 41 (91.1) 0.314 191 (87.6) 0 (0.0) 0.365 478 (71.1) 24 (77.4) 0.579

aMAP HCC score 58.3 (53.9, 63.1) 64.3 (59.4, 69.0) <0.001 57.4 (52.8, 62.0) 64.2 (59.5, 68.3) <0.001 56.7 (53.0, 62.8) 65.0 (61.9, 68.6) 0.003 59.4 (55.0, 64.4) 64.7 (57.8, 69.1) 0.004

AST, U/L 29.0 (23.0, 40.2) 38.0 (26.0, 54.0) <0.001 28.0 (22.0, 38.0) 35.0 (26.0, 54.0) 0.001 28.0 (23.0, 36.0) 36.0 (21.0, 44.0) 0.689 32.4 (24.5, 45.1) 39.0 (29.0, 55.0) 0.034

ALT, IU/L 29.0 (21.0, 41.0) 33.0 (24.0, 46.0) 0.096 28.0 (21.0, 40.0) 34.0 (24.0, 46.0) 0.157 28.0 (21.0, 39.0) 30.0 (23.0, 33.0) 0.871 29.0 (21.0, 43.4) 34.6 (24.5, 56.5) 0.105

Total bilirubin,
μmol/L

16.5 (12.1, 24.5) 19.1 (13.4, 32.9) 0.003 15.6 (11.2, 22.1) 20.7 (14.1, 34.9) 0.001 16.1 (11.9, 24.8) 17.9 (11.6, 32.9) 0.431 17.8 (13.1, 27.1) 18.7 (13.8, 30.6) 0.568

Albumin, g/L 43.0 (38.8, 46.0) 40.0 (33.3, 45.2) <0.001 43.2 (40.0, 46.1) 40.6 (33.3, 44.8) 0.001 44.0 (40.3, 46.7) 34.5 (34.2, 41.9) 0.004 42.2 (37.0, 45.4) 42.1 (33.1, 45.8) 0.688

Platelet, × 103/
mm3

114.0 (76.6, 157.0) 95.0 (68.0, 134.0) 0.007 122.0 (81.0, 163.5) 95.0 (68.0, 132.0) 0.008 118.5 (76.0, 164.8) 95.0 (66.0, 138.0) 0.321 104.0 (75.0, 142.0) 95.0 (71.0, 135.5) 0.374

Creatinine,
μmol/L

71.0 (60.0, 82.0) 74.0 (64.0, 83.7) 0.048 74.0 (63.5, 84.0) 76.0 (64.0, 84.0) 0.683 74.0 (65.2, 84.0) 72.0 (63.0, 94.0) 0.760 65.0 (54.0, 76.0) 69.0 (57.0, 79.5) 0.149

Bun, mmol/L 4.6 (3.8, 5.5) 4.8 (4.1, 5.8) 0.061 4.5 (3.8, 5.4) 4.9 (4.2, 6.4) 0.005 4.5 (3.8, 5.4) 4.6 (4.5, 5.5) 0.270 4.7 (3.9, 5.7) 4.8 (4.1, 6.0) 0.488

Glucose, mmol/L 5.3 (4.9, 5.9) 5.4 (5.0, 5.8) 0.539 5.3 (4.9, 5.8) 5.4 (5.1, 6.0) 0.075 4.5 (3.8, 5.4) 5.4 (4.9, 5.8) 0.998 5.4 (4.9, 6.0) 5.4 (4.9, 5.6) 0.269

AFP, μg/L 2.9 (1.8, 5.3) 7.3 (3.0, 14.7) <0.001 2.7 (1.6, 4.8) 6.2 (2.9, 13.2) <0.001 2.6 (1.6, 4.4) 8.1 (2.7, 14.7) 0.005 3.4 (2.1, 6.5) 8.0 (4.2, 15.9) <0.001

LSM, kPa 13.7 (9.4, 21.1) 17.4 (11.8, 26.4) <0.001 13.5 (9.3, 21.8) 21.8 (14.7, 38.5) <0.001 13.4 (8.5, 22.4) 16.7 (10.5, 24.9) 0.218 14.0 (9.9, 20.7) 13.2 (11.2, 20.0) 0.775

ALBI score −2.6 (−3.0, −2.2) −2.3 (−2.8, −1.5) <0.001 −2.9 (−3.2, −2.6) −2.5 (−3.0, 11.9) <0.001 −3.0 (−3.2, −2.6) −2.1 (−2.7, −1.8) 0.006 −2.8 (−3.1, −2.2) −2.9 (−3.1, −2.5) 0.004

Cirrhosis
etiology, n (%)

HBV 1563 (88.4) 82 (92.1) 814 (92.6) 42 (93.3) 208 （95.4） 13 (100.0) 541 (80.8) 27 (87.1)

HCV 59 (3.3) 3 (3.4) 29 (3.3) 1 (2.2) 4 (1.8) 0 (0.0) 26 (3.9) 2 (6.5)

NASH 9 (0.5) 0 (0) 1 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 8 (1.2) 0 (0.0)

Alcohol 49 (2.8) 2 (2.2) 20 (2.3) 1 (2.2) 3 (1.4) 0 (0.0) 26 (3.9) 1 (3.2)

Other 89 (5.0) 2 (2.2) 15 (1.7) 1 (2.2) 3 (1.4) 0 (0.0) 71 (10.6) 1 (3.2)

HCC BCLC stage,
n (%)

0 / 32 (36.0) / 13 (28.9) / 8 (61.5) / 11 (35.5)

A / 20 (22.5) / 14 (31.1) / 2 (15.4) / 4 (12.9)

B / 14 (15.7) / 3 (6.7) / 0 (0.0) / 11 (35.5)

C / 16 (18.0) / 11 (24.4) / 1 (7.7) / 4 (12.9)

D / 7 (7.9) / 4 (8.9) / 2 (15.4) / 1 (3.2)

Data are reported as median and IQR, unless otherwise specified. AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALB, serum albumin; AFP, serum alpha-fetoprotein; Bun, blood urea nitrogen. HBV, hepatitis B virus; HCV, hepatitis
C virus; NASH, non-alcoholic steatohepatitis; HCC, Hepatocellular Carcinoma; LSM, Liver stiffness measurement; ALBI, albumin-bilirubin. aMAP HCC score = (0.06 × Age + 0.89 × Sex (Male: 1; Female: 0) + 0.48 × (((log10 Total
bilirubin) × 0.66) + (Albumin × −0.085))–0.01 × PLT+ 7.4)/14.77 × 100.

Table 1: Clinical characteristics of enrolled patients.
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Fig. 2: (A) Comparison of patterns of signatures between subgroups. The y-axis of Ridgeline Plot represents the frequency or density,
while the x-axis represents the range of signatures. Distinct peaks and differences in spread between the groups suggest potential
variations in the signature patterns. (B) Feature importance in Lasso regression model. The length of the lollipop represents the
importance of signatures in the Lasso model. A longer lollipop indicates a greater impact on the outcome, while shorter or nonexistent
lollipops suggest a smaller or negligible effect on the target variable. HLL, High Level Features; glszm, Gray Level Size Zone Matrix; HHH,
High-Order Histogram of Homogeneous; gldm, Gray Level Dependence Matrix; HLH, Histogram of Local Homogeneity; DL, Deep
learning.

Articles
calibration and decision curve analyses results further
reinforced the model’s robustness and clinical applica-
bility. To our knowledge, this is the first model that can
accurately predict the risk of carcinogenesis in patients
with cirrhosis 3–12 months prior to the traditional
clinical diagnosis of HCC.
Fig. 3: Prediction performance of ALARM vs single-signature models ac
prediction performance of HCC is compared among the three single-mod
internal validation cohort (B), and the external validation cohort (C).

www.thelancet.com Vol 74 August, 2024
Artificial intelligence has revolutionized medical
practice through faster, precise data analysis, trans-
forming diagnostics and treatment. This advancement
has also prompted a reevaluation of conventional
screening methods. Traditionally, HCC surveillance has
been recommended to be conducted semiannually,
ross all cohorts. The receiver operating characteristic curves for early
ality prediction models and ALARM in the discovery cohort (A), the

7
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Fig. 4: (A) Calibration curves of ALARM on discriminating HCC and non-HCC. (B) Decision curve analysis based on ALARM, radiomics
score, deep learning score and aMAP score to guide clinical practice.
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approximately every 6 months, utilizing ultrasound and
AFP tests, as per guidelines.20 Previous studies have
indicated that ultrasound exhibits a sensitivity of 84%
for detecting HCC in patients with cirrhosis, but this
sensitivity drops to 47% for early-stage detection. Addi-
tionally, combining ultrasound with AFP testing en-
hances its limited sensitivity (88%), especially for
early-stage HCC.21 Currently, HCC risk assessment is
shifting towards personalized approaches, focusing on
individual-level risk using patient-specific characteris-
tics. Several risk scores have been created for patients,
using clinical and lab data to stratify risk.12,22–25 The
aMAP score, derived from five commonly used clinical
Fig. 5: (A) Risk stratification and threshold analysis. Composite chart d
actual results, along with a risk stratification system based on optimal thre
revealing significantly different incidence between each patient status cla
illustrates the incidence of HCC and their corresponding 95% confidence
parameters, reliably predicts HCC development across
diverse populations, despite originating from tertiary
hospital patients.12 Its widespread validation un-
derscores its effectiveness.26,27 Hence, in this study, we
harnessed the synergy between the strengths of deep
learning and radiomics analysis with the aMAP score
information to construct a model that outperformed
traditional methods without significantly increasing the
economic burden.

We selected a 3–12 months’ timeframe for short-
term prediction of HCC in cirrhotic patients is based
on the need for early detection and timely intervention.
This period is long enough to capture early HCC signals
epicting the relationship between ALARM prediction outcomes and
shold values. (B) Comparing of the incidence of HCC. Error bar chart
ssification, highlighting variations in risk levels. This error bar chart
intervals.

www.thelancet.com Vol 74 August, 2024
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Cut-off value: 0.21 Cut-off value: 0.65

Value 95% CI Value 95% CI

ALARM Discovery cohorta

Sensitivity 0.933 (0.917–0.949) 0.600 (0.568–0.632)

Specificity 0.671 (0.641–0.702) 0.899 (0.879–0.918)

PPV 0.127 (0.105–0.148) 0.233 (0.206–0.260)

NPV 0.995 (0.990–0.999) 0.978 (0.968–0.987)

Internal validation cohort

Sensitivity 0.923 (0.889–0.957) 0.692 (0.633–0.752)

Specificity 0.693 (0.633–0.752) 0.889 (0.850–0.930)

PPV 0.152 (0.106–0.198) 0.273 (0.215–0.330)

NPV 0.993 (0.983–0.999) 0.979 (0.962–0.998)

External validation cohort

Sensitivity 0.944 (0.955–0.981) 0.645 (0.610–0.681)

Specificity 0.684 (0.662–0.730) 0.926 (0.906–0.945)

PPV 0.130 (0.103–0.153) 0.286 (0.252–0.319)

NPV 0.996 (0.994–0.999) 0.983 (0.973–0.992)

Data are mean (95% CI). NPV, negative predictive value; PPV, positive predictive
value. aThe discovery cohort is the original discovery cohort before SMOTE
oversampling.

Table 2: Diagnostic performance of ALARM in different cohorts at
cutoff values of 0.21 and 0.65.

Articles
yet short enough to ensure model accuracy, thereby
bolstering physician confidence in implementing in-
terventions. We found that ALARM could identify high-
risk and medium-risk groups, accounting for around
35.2% (654/1858) of the whole cirrhotic population but
covered as high as 94.4% (84/89) of the future HCC
cases. Based on the model’s prediction of HCC inci-
dence in different strata, we may be able to make the
following recommendations to prevent HCC progres-
sion. For high-risk individuals, immediate magnetic
resonance imaging (MRI) examination or biopsy may be
recommended to determine the nature of the lesion.
Those at medium-risk are advised to undergo repeat
short-interval CT scans approximately every 3–6
months, while individuals at low-risk are advised to have
screenings spaced at intervals of 6 months. We
acknowledge that these proposed strategies may not be
exhaustive or optimal. The proposal of the optimal
management strategy would need additional clinical
investigation and cost-effective analysis.

Within HCC surveillance, LIRADS-3 lesions
(20–40% chance of HCC) are frequently identified on
initial CT.20 However, the delineation of these lesions is
often impeded by economic constraints and nonspecific
clinical signs, leading to diagnostic ambiguity that can
result in deferred clinical intervention. In our study,
among the 89 patients with HCC, we encountered 3
cases where the CT scans exhibited features indicative of
LIRADS-3 (without encountering LIRADS-4 or LIRADS-
5). Of these 3 cases, 2 of them were classified as high-
risk, and the remaining one was categorized as
medium-risk by the model. The predictive insight of
www.thelancet.com Vol 74 August, 2024
models may increase the confidence of clinicians to
further confirm the diagnosis by means of advanced
imaging modalities such as MRI or to perform biopsies.
Our Nomograph (Figure S17) and dynamic web pages
(https://dlrasn.shinyapps.io/dynnomapp/) could facili-
tate the more effective application of ALARM model in
clinical practice.

Despite the significant findings, the present study
has certain limitations. Firstly, the included population
mainly consisted of patients with HBV-related cirrhosis,
which is more prevalent among Asian populations,
potentially limiting the generalizability of our model to
other etiologies. Histological variations can significantly
influence the appearance of lesions on CT scans. For
instance, non-alcoholic steatohepatitis (NASH)-related
cirrhosis commonly exhibits widespread hepatic stea-
tosis,28 whereas HBV-induced cirrhosis may result in
irregularities in liver structure. These histopathological
differences not only affect the visual characteristics of
lesions but also impact the overall texture and archi-
tecture of the liver as observed through imaging mo-
dalities like CT scans. These factors can impact lesion
detection accuracy and subsequently affect the perfor-
mance of prediction models. Our future research strat-
egy will involve expanding the sample range to include a
more extensive representation of patients with cirrhosis
caused by different etiologies and from different
geographical areas. Secondly, one drawback of the
aMAP score is that patients were recruited from tertiary
hospitals, where they were particularly prone to having
active disease before treatment. In future research, we
will further explore the model’s performance in primary
care settings and integrate other risk scores to provide a
more comprehensive risk assessment. Thirdly, we
avoided end-to-end techniques,29 focusing on integrating
clinical scores to enhance the model’s interpretability.
This option helps medical professionals better under-
stand the predictions, but it can lead us to fail to take full
advantage of complex patterns in the data, which can
reduce the model’s ability to capture potential predictive
signals, which in turn affects the model’s accuracy.
Future research is needed to further explore how to
improve the accuracy of the model while maintaining its
usefulness and simplicity in clinical practice.

In summary, the novel ALARM model, based on
deep learning radiomics with clinical variables, provides
reliable estimates of short-term HCC development for
cirrhotic patients, and may have the potential for iden-
tifying the early changes transitioning from cirrhosis to
HCC. Integrating this tool into clinical decision-making
processes is expected to yield substantial progress in the
precision clinical decision-making for HCC and indi-
vidualized preemptive treatments.
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