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A B S T R A C T   

This study analyses the factors driving CO2 emissions from electricity generation in Ghana from 
1990 to 2020. Employing Logarithmic Mean Divisia Index (LMDI) and Autoregressive Distributed 
Lag (ARDL) techniques, the research decomposes electricity generation into different factors and 
assesses their impact on CO2 emissions, considering both short and long-run effects. The LMDI 
analysis reveals that the total CO2 emissions from electricity generation amount to 3.33%, with all 
factors contributing positively in each subperiod. Notably, fossil fuel intensity, production, and 
transformation factors exhibit substantial contributions of about 1.16%, 0.49%, and 0.48%, 
respectively. Contrastingly, the ARDL results highlight that only electricity intensity and pro-
duction factors significantly increase CO2 emissions by about 0.20% and 0.09% (0.38% and 
0.10%) in the short-run (long-run), while other factors contribute to a reduction in electricity 
generation emissions. Overall, we conclude that electricity intensity and production factors are 
the primary drivers of CO2 emissions from electricity generation in Ghana. Nevertheless, effective 
measures to address all decomposition factors is crucial for effective mitigation of electricity 
generation CO2 emissions.   

1. Introduction 

The escalating global warming crisis has brought about a deep concern on the level of climate change worldwide. Reliance on fossil 
fuel for energy production is unquestionably the source of this crisis. Economies cannot function very efficiently without energy. 
Energy is one of the fundamental forces that drives economies and is required for society’s successful functioning, such as lighting, 
heating, and transportation. Access to energy is critical for social and economic development [1]. Because of the benefits of energy use 
for human development, the seventh target of the Sustainable Development Goals (SDGs) was created to improve universal access to 
affordable, dependable, and modern energy services [2]. The most used kind of energy in Ghana is electricity, which was produced 
mostly by hydropower in the 1960s and supplemented by thermal power generation in the 1980s due to the harsh and drought-prone 
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weather changes that oscillated production. 
At the forefront of CO2 emissions, the energy sector stands out, contributing a staggering 80% of the global total. Within this sector, 

electricity generation holds the largest share, accounting for 42% of emissions [3]. Transportation and industry follow closely behind, 
contributing 25% and 18%, respectively [4,5]. The predominant use of coal, oil, petroleum products, and natural gas play a greater 
role in explaining climate change. Therefore, countries have made frantic efforts under these global agreements to create policy 
frameworks that are expected to mitigate these worrying climate changes, and Ghana is not an exception [6]. This has led to significant 
empirical studies on how electricity production and generation mitigate this problem in both developed and developing countries with 
the literature on the former economies dominating the discussion [7–15]. 

Electricity generation tends to increase as a result of increasing demands for it when the country’s population grows, which 
consequently leads to high CO2 emissions. According to the International Energy Association (IEA) [16], electricity generation and 
heat production account for nearly half of global CO2 emissions. Owusu and Asumadu-Sarkodie [1] also stated that in Ghana, there has 
been a consistent exponential increase in population coupled with the dominance of fossil-fuel based power generation, resulting in 
greenhouse emissions over the last decade. Simultaneously, Ghana’s electricity sector has been plagued by recurring blackouts, 
prompting government to employ diesel generators in residential and industrial settings. These diesel-powered generators pose more 
severe environmental drawbacks [17]. Ghana’s Environmental Protection Agency (EPA) underscores the significant contribution of 
electricity generation and to greenhouse gas (GHG) emissions, causing detrimental environmental impacts. Ghana’s government also 
failed to achieve its 2020 target of incorporating 10% renewable energy. Renewable energy goals can be realized through the 
implementation of clean technology for power generation. Fig. 1 (see Section 4) shows that electricity generation and CO2 emissions 
over the years have exhibited a positive association in Ghana. This is an indication that electricity generation has a possible influence 
on CO2 emissions in Ghana. 

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), "continued emissions of 
greenhouse gases will cause further warming and long-term changes in all components of the climate system, increasing the likelihood 
of severe, pervasive, and irreversible impacts for people and ecosystems." Given this, the goal of the twenty-first Conference of the 
Parties (COP26) was to highlight the potential and imminent irreversible dangers of climate change to human society and the planet as 
a whole, Ghana’s condition is not immune to the global challenges of climatic change caused by rising CO2 emissions and their negative 
impact on its people and ecology. 

Furthermore, this study is driven by recent concerning events that impact Ghana’s efforts to achieve carbon neutrality. Horizontal 
and vertical environmental cooperation is flexible and reliable in Ghana, but they are ineffective, per the 2021 Climate Action Tracker 
(CAT) governance assessment for the country. Even though research claims that the government of Ghana has the necessary mech-
anisms in place to mobilize and manage climate money, so far it has been unable to secure sufficient funds for climate action [18]. The 
various studies also note that Ghana lacks a comprehensive plan to reduce carbon emissions over time. Its low-carbon economy 
strategy only applies to the period leading up to 2030 and does not go into effect until then. In addition, the administration has not 
shown any signs that it plans to create any new climate-related laws beyond the Green Energy Act, which creates the outline for the 
generation of green energy. While the authorities have tried to educate the public about global warming, the CAT report shows that 
only about 20% of people are aware of the problem and its detrimental effects. From the CAT assessment, it can be inferred that 
Ghana’s efforts to reduce GHG emissions and strengthen its ability to withstand and adapt to climate change have been less successful 
than those of other developing nations. So, it is important to do this research to help the country’s motivation to fight the bad impact of 
climate change on the current global environment. As a result, investigating the drivers of electricity energy generation on CO2 
emissions becomes critical. 

Unraveling the driving forces behind CO2 emissions and comprehending the interplay between electricity generation and CO2 
emissions is crucial to mitigate environmental concerns and attain sustainable development objectives. This study stems from the 
desire to address these critical questions: Which driving factor exerts a more pronounced influence on CO2 emissions in Ghana? And 
how does the form of electricity generation impact CO2 emissions in Ghana? This research endeavor to pursues three primary ob-
jectives: (1) to conduct a decomposition analysis of CO2 emissions arising from electricity generation fueled by primary fossil fuels in 
Ghana over the 1990–2020 period; (2) to gain a deeper understanding of the decoupling dynamics between CO2 emissions from 
electricity generation and economic growth in Ghana; and (3) to provide valuable insights to policymakers formulating strategies 
pertaining to global warming, climate change, and sustainable development. This is critical because, first, identifying the paths of CO2 
pollution and electricity generation over the study period allows future prediction and policy direction to mitigate emissions. Second, 
by decomposing electricity generation into different factors and examining their contributions to pollution in Ghana, policy makers 
may identify the relevant causes and propose effective policies to mitigate these pollution. Ghana is considered in this study because it 
is not only stable small-opened economy, but it is endowed with relatively large reserves of fossil fuel for exports. Thus, the country’s 
contribution to carbon dioxide emissions cannot be ignored. More so availability of data is another factor. Thus, the innovation of this 
paper which is an empirical one is the decomposition of electricity generation on CO2 emissions using the Logarithmic Mean Divisia 
Index (LMDI) and Autoregressive Distributed Lag Model (ARDL) which is virtually nonexistent in studies on Ghana. 

The ensuing sections of the paper embark on a comprehensive exploration of the research’s foundations, including a discussion of 
the theories presented in Section 2; a detailed explanation of the methodology applied to test the hypothesis in Section 3; the pre-
sentation of the research findings and their implications in Section 4; and the formulation of policy recommendations in Section 5, the 
final component. 
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2. Literature review 

The mounting pressure of environmental problems on social and economic advancement is a stark reality in today’s world. Serving 
as the foundation of these challenges is CO2 emissions, the primary contributor to GHG emissions. To effectively address this pressing 
matter, numerous scientists have extensively employed decomposition and decoupling analyses to analyze the factors influencing CO2 
emission patterns and examine the relationship between CO2 emissions and economic growth [19–22]. 

Decomposition analysis (DA) has emerged as a valuable tool for scrutinizing the underlying forces driving carbon emissions and 
industry-related emissions [19,20,23]. DA can also be coupled with economic growth and energy structure scenarios to forecast the 
future impact of these driving forces [24]. A prominent area of application has been carbon emissions from the electricity sector, with 
numerous studies published in recent times [23,25–29]. Their results suggest that improvements in steam efficiency in power plants 
have played a crucial role in reducing carbon intensity. 

2.1. Decomposition analysis focusing on Ghana 

Given the potency that energy (both consumption and production) can have on climate change through its effect on CO2 emissions, 
a large body of literature in both developed and developing countries has focused on the effect of energy consumption and production 
(or generation) on CO2 emissions. For example, in Ghana, Asumadu-Sarkodie and Owusu [30] used ARDL to analyze how electricity 
consumption and production in Ghana influence CO2 emissions. The study found energy production from combustible renewables and 
waste and electric power consumption to induce higher CO2 emissions whereas electricity production from hydroelectric sources 
reduces emissions levels in Ghana. Similarly, Kwakwa and Alhassan [31] empirically revealed that combustible renewables and waste 
and electricity production from hydro are associated with a reduction in CO2 emissions. However, they found that fossil fuel con-
sumption and the production of electricity from fossil fuels are among the key factors driving CO2 emissions. In fact, other studies in 
Ghana [32–34] have also indicated that energy consumption in Ghana causes CO2 emissions, consistent with the studies by 
Asumadu-Sarkodie and Owusu [30] and Kwakwa and Alhassan [31]. More recently, Nyasapoh et al. [15] examined CO2 emissions 
from fossil fuel power plants in Ghana applying quantitative modelling and simulation techniques. The study revealed that the in-
clusion of technologies for the conversion of energy, such as renewable and nuclear energy, is important to limit CO2 emissions in the 
energy sector. This is an indication that renewable energies have the potential to contribute to a sustainable environment in Ghana. 

Although reviewed studies in Ghana have shown the connection between energy consumption or production and CO2 emissions, 
these studies failed to capture the analysis of the breakdown (decomposition) of electricity generation on CO2 emissions in Ghana. The 
decomposition analysis of electricity generation on CO2 emissions helps to specifically assess which form of electricity generation 
contribute to CO2 in Ghana and thus, must be targeted in terms of policy formulation for a sustainable environment. Though Asumadu- 
Sarkodie and Owusu [30] and Kwakwa and Alhassan [31] employed electricity production from fossil fuels and hydro, they used 
aggregated data of electricity production, which fails to identify the drivers of electricity generation. Therefore, the present study filled 
these gaps in the literature on energy-CO2 emissions in Ghana by offering a decomposition analysis of electricity generation on CO2 
emissions using recent LMDI techniques, which deviate from previous studies in Ghana and therefore provide a contribution. 

2.2. Decomposition analysis beyond Ghana 

Regarding other studies beyond Ghana, several studies have shown that energy consumption and production have the capacity to 
either improve (or deplete) the environment by limiting (increasing) CO2 emissions. Starting with Malaysia, Gul et al. [35] used the 
maximum entropy bootstrap method to show the existence of unidirectional causality from energy consumption to CO2 emissions. 
Such causality analysis has been supported by Mohiuddin et al. [36] and Shahbaz et al. [37]. In the case of Mohiuddin et al. [36], the 
study revealed that energy consumption and electricity energy production from oil, coal and natural gas induces CO2 emissions in 
Pakistan. Furthermore, using the ARDL approach, Anwar and Alexander [38], Cetin et al. [39] and Bekun et al. [40] have postulated 
that energy consumption significantly depletes the environment by increasing CO2 emissions in Vietnam, Turkey and South Africa, 
respectively. Contrary to the ARDL method, Awodumi and Adewuji [41] employed the nonlinear ARDL (NARDL) technique in five oil 
producing economies in Africa and found that nonrenewable energy consumption (petroleum and natural gas) reduces CO2 emissions 
in Nigeria and Gabon, while its effect in Angola was mixed (positive and negative). The study also shows that nonrenewable energy 
consumption has no impact on CO2 emissions in Egypt and Algeria. 

Although there are virtually no studies on the analysis of the decomposition of electricity generation on CO2 emissions in Ghana, 
studies in other countries have shown the relevance of the analysis of the decomposition of energy or electricity generation on CO2 
emissions. For example, studies in China [42–46] have used the LMDI for decomposition analysis of China aggregate electricity in-
tensity (CAEI), electricity generation and thermal electricity generation, respectively. Specifically, Yongxiu et al. [42] shows that the 
intensity effect has a role in declining CAEI during 1995–1999. However, since 2000 both the intensity and structure effects have 
contributed to an increase in CAEI. Zhang et al. [43] also indicated that coal product is the main fuel type in thermal power generation 
and accounted more than 90% of CO2 emissions in China. Furthermore, Zhou et al. [44] found that China’s intensity effect and the 
energy mix effect positively contribute to the reduction of CO2 emissions. Also, Yan et al. [45] noticed that regional energy efficiency 
and changes in regional energy structure reduce CO2 emissions resulting from thermal electricity generation. However, Wang et al. 
[46] observed that utilization efficiency effect and thermal power proportion effect have the largest share in the aggregate carbon 
intensity of China. On the contrary, Yan et al. [47] used index decomposition analysis (IDA) via generalized divisia index model 
(GDIM) to investigate the driving factors on China’s CO2 emission changes in thermal electricity generation. The study showed that 
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among the factors contributing to CO2 emission, economic activity is the highest whiles the least is energy use. Furthermore, the study 
indicated that the change in carbon intensity exerts the highest negative effects (− 17.7%), followed by technology (− 11.3%) on CO2, 
and the effect of energy efficiency has the least effect on CO2 emissions. 

In Korea, Kim and Kim [48] examined the analysis of GHG emissions decomposition in Korea’s electricity generation sector. Using 
the same LMDI factor decomposition method, the study decomposed the emission into five factors and argued that the production 
effect, electricity generation structure, fossil-fuel mix, and the electricity generation efficiency have contributed to increased GHG 
emissions at different levels. However, the emission factor effect has a decreasing GHG emissions effect. Similarly, Oryani et al. [49] 
evaluate the impact of renewable electricity generation mix on economic growth and CO2 emissions in Iran. The study indicated that 
the share of renewable electricity in the energy combination is not at a desirable level to decrease CO2 emissions. Furthermore, 
Alcántara et al. [50] investigated the elements that contribute to CO2 emissions from energy generation in Spain. Empirical data 
revealed that fossil intensity, electricity intensity, and production effects contributed to CO2 emissions during 1999–2005, while 
carbonization and fossil intensity effects were the main factors in the reduction of CO2 emissions from 2006 to 2010. 

2.3. Gaps in literature 

From the empirical review, while a number of studies have focused on the analysis of energy generation decomposition, Ghanaian 
studies have failed to consider such an analysis. While its relevance is widely recognized, gaps in the literature warrant further 
research. Existing studies have primarily focused on single-year or short-term analyses, limiting insights into long-term trends and the 
impact of policy interventions. A more comprehensive study spanning a longer timeframe, considering subsectors like thermal and 
renewable energy generation, would provide deeper insights into specific drivers of emissions and policy effectiveness. Specifically, 
analysis of the decomposition of electricity generation on CO2 emissions is virtually nonexistent in Ghana. Therefore, the present study 
contributes to knowledge in that direction. We do so, by studying the trends in total electricity generation and CO2 emissions in Ghana. 
Further, we deconstruct electricity generation into several components through the LMDI method and investigate the effect of those 
factors on CO2 emissions. Furthermore, the study offers the short and long run effects of the deconstructed power generating com-
ponents on CO2 emissions. Additionally, more detailed analyses of the relationship between economic growth and electricity con-
sumption patterns, and direct comparisons of Ghana’s emissions trends with other countries, are needed to guide policy formulation 
and inform international cooperation. By addressing these gaps, a comprehensive study on DA in Ghana would provide crucial insights 
for policymakers and stakeholders to effectively reduce carbon emissions and pursue sustainable development. 

3. Empirical methodology 

In this section, we discuss the methods employed for decomposition analysis and the estimation of both short and long-term im-
pacts of the decomposition factors influencing CO2 emissions. Initially, we utilize the LMDI to decompose electricity generation factors. 
This helps us discern the significant contributors to CO2 emissions. Subsequently, we employ the ARDL model to evaluate the short and 
long-term effects of the identified decomposition factors. To ensure the appropriateness of the ARDL model, we conduct preliminary 
tests such as unit root and cointegration tests. 

Several methods have been proposed in the empirical literature for decomposing the change in a variable, such as an environmental 
pressure indicator into multiple components in order to determine the influence of various factors in an identity. The STIRPAT model, 
LMDI decomposition, Tapio elasticity approach, and structural decomposition analysis (SDI) are some of these methodologies [50]. 
This study uses the LMDI to break down electricity generation into separate components. We choose the LMDI over the other 
decomposition strategies due to its advantages. For example, LMDI allows for the quantification of the impact of the various electricity 
generation factors on CO2 emissions. It also allows for the identification of the main driving forces behind changes in CO2 emissions 
from electricity generation. Most researchers examining the connection between environmental concerns and economic growth 
employ the LMDI decomposition approach [42,50]. Furthermore, the LMDI technique breaks down power generation into multiple 
components and evaluates the numerous elements that contribute to or drive CO2 emissions in a given economy. Ang [51] compares 
and contrasts the various decomposition methods, highlighting their benefits and drawbacks and found that the LMDI approach has the 
best features because of its strong theoretical underpinning, adaptability, and ease of use and interpretation compared to the others. 
The fact that the method guarantees flawless decomposition and thus eliminates the problem of unallocated residues in the decom-
position stands out among its benefits. Again, the ARDL method was employed for the long- and short run analysis. 

3.1. LMDI decomposition specification 

This study follows the Kaya [52] identity to express CO2 emissions [in kilotonnes (Kt)] resulting from the use of fossil fuels in 
electricity generation (CO2E) based on different explanatory factors, as shown in equation (1). 

CO2E =
CO2E
FEI

×
FEI
FEG

×
FEG
TEG

×
TEG
GDP

× GDP (1)  

where FEI, FEG,TEG, and GDP denotes fossil fuel energy input used in electricity production (measured in Kt of oil equivalent, ktoe), 
electricity generation from fossil fuel origins (Ktoe), total electricity generation (Kt) and gross domestic products (measured in constant 
prices), respectively. Therefore, following Alcántara et al. [50], the right-hand side of equation (1), CO2E

FEI ,
FEI
FEG,

FEG
TEG,

TEG
GDP , and GDP denote 
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the carbonization factor (c), transformation factor (e), fossil intensity factor (s), electricity intensity factor (w), and production factor 
(y), respectively. CO2 emissions from electricity generation are classified into five (5) explanatory elements as shown in Equation (1). 
This signifies the driving forces of CO2 emissions, according to Alcántara et al. [50] extension of Kaya’s [52] identification. Table 1 
shows the description of these variables. 

Equation (1) is then expressed in identity given in equation (2). For simplicity, we denote CO2E = C,CO2E
FEI = c, FEI

FEG = e,FEG
TEG = s,TEG

GDP =

w, and GDP = y. 

C≡ ct × et × st × wt × yt (2) 

However, accounting for changes in CO2 emission over time from equation (2) gives equation (3). 

Ct − Ct− 1 = ct × et × st × wt × yt − ct− 1 × et− 1 × st− 1 × wt− 1 × yt− 1 (3) 

LMDI is defined by Ang [53] as a change in CO2 emissions from the base year to the target year. The LMDI technique of total CO2 
emissions can be stated using the additive approach as follows from equations (4)–(9). 

ΔCTOT =Ct − C0 = ΔCc− effect + ΔCe− effect + ΔCs− effect + ΔCw− effect + ΔCy− effect (4)  

where 

ΔCc− effect =
∑

i

Ct
i − C0

i

ln Ct
i − ln C0

i
× ln

(
c − effectt

c − effect0

)

(5)  

ΔCe− effect =
∑

i

Ct
i − C0

i

ln Ct
i − ln C0

i
× ln

(
e − effectt

e − effect0

)

(6)  

ΔCs− effect =
∑

i

Ct
i − C0

i

ln Ct
i − ln C0

i
× ln

(
s − effectt

s − effect0

)

(7)  

ΔCw− effect =
∑

i

Ct
i − C0

i

ln Ct
i − ln C0

i
× ln

(
w − effectt

w − effect0

)

(8)  

ΔCy− effect =
∑

i

Ct
i − C0

i

ln Ct
i − ln C0

i
× ln

(
y − effectt

y − effect0

)

(9)  

where ΔCTOT represents the total change of CO2 emission from electricity generation in a given period been decomposed into five (5) 
factors such as change in carbonization index (ΔCc− effect), change in transformation effect (ΔCe− effect), change in fossil intensity of 
electricity effect (ΔCs− effect), change in electricity intensity of GDP effect (ΔCw− effect) and change in economic activity effect (ΔCy− effect). 

3.2. Model specification 

Following the decomposition factors of the LMDI, we specified a linear model of CO2 emissions from electricity generation as a 
function of the decomposition factors (c-effect, e-effect, s-effect, w-effect, and y-effect). This helps to determine the long-and short-run 
impacts of the decomposition factors. Therefore, we specify the functional model in equation (10). 

C= f (c − effect, e − effect, s − effect,w − effect, y − effect) (10)  

where C is carbon dioxide emissions from electricity generation, while c-effect, e-effect, s-effect, w-effect, and y-effect represent the 
carbonization index effect, transformation effect, fossil fuel intensity effect, electricity intensity effect, and economic activity effect, 
respectively. 

Table 1 
Decomposition factors.  

Variables Construction Series Measurement 

c-effect CO2E/FEI Carbonization factor Fossil fuel energy used in electricity generation (Emissions per unit of fossil fuel energy used in electricity 
generation). 

e-effect FEI/FEG Transformation factor The inverse expression of the efficiency in the conversion of inputs of fossil fuel into electricity. 
s-effect FEG/TEG Fossil fuel intensity 

factor 
Share of the electricity of fossil origin in the total electricity generated in the system. 

w-effect TEG/GDP Electricity intensity 
factor 

The electricity intensity of economic activity (Efficiency factor in the use of electrical power by economic 
agents). 

y-effect GDP Production factor Production obtained by the economic system which is a proxy of “scale”. The variations in GDP would 
determine the path that emissions (production) would follow (Sun, 1999) 

Source: Alcántara et al. (2022) 
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Equation (10) then is specified in the empirical estimation model as shown in equation (11). 

ln Ct = β0 + β1 ln (c − effect)t + β2(e − effect)t + β3(s − effect)t + β4 ln (w − effect)t + β5 ln (y − effect)t + εt (11)  

where β1………β5 are parameters to be estimated. All variables are defined in the preceding equations. 

3.3. ARDL model and cointegration test 

The autoregressive distributive lag (ARDL) model developed by Pesaran and Shin [54] was utilized to estimate the empirical model 
of equation (11). This technique was adopted because of its capability to handle small sample size (as in this study) data. Moreover, it 
does not require variable pretesting [30], thus avoiding uncertainty. Thus, the estimator is suitable and applicable regardless of been 
stationary at the levels or first-difference or mixed. The ARDL cointegration approach can estimate both the short-and long-run 
equilibrium connection between the dependent and independent variables. Following the aforementioned benefits of the ARDL, the 
used of ARDL to ascertain the long-and short-run effects in this study is appropriate. Therefore, the ARDL specification of equation (11) 
is expressed in equation (12). 

lnCt = β0 + β1lnCt− 1 + β2 ln (c − effect)t− 1 + β3(e − effect)t− 1 + β4(s − effect)t− 1 + β5 ln (w − effect)t− 1 + β6 ln (y − effect)t− 1

+
∑p

i=1
δiΔlnCt− i +

∑p

t=1
γiΔln(c − effect)t− i +

∑p

t=1
θiΔ(e − effect)t− i +

∑p

t=1
τiΔ(s − effect)t− i +

∑p

t=1
φiΔln(w − effect)t− i

+
∑p

t=1
σiΔln(y − effect)t− i + εt (12)  

where β1………β6 are the long run coefficients whereas as δi, γi, θi, τi,φi and σi are the short parameters. The p, Δ, and εt denote lag 
order, first-difference operator, and the error term, respectively. All other variables are defined in the previous equations. 

Although stationarity testing is not a necessity for the ARDL since ARDL is applicable whether series are stationary at levels or first- 
difference. However, absence of stationarity of the series could lead to bias and inconsistent results [55]. As a result, we used the 
augmented Dickey-Fuller (ADF) and Phillips-Perron (P–P) unit root tests for the stationarity properties of the variables. In both tests, 
rejection of the null hypothesis indicates that the variables exhibit stationarity. After the stationarity properties, we follow Pesaran 
et al. [56] to employ the F-test of joint significance of the series in equation (1) for cointegration or long-run relationship among the 
variables. The F-test holds the null hypothesis of no long-run relationship whereas the alternate claims presence of long-run rela-
tionship among the variables. The F-test is compared to the two critical values [lower, I(0) and upper, I(1) bounds] provided by Pesaran 
et al. [56]. Given the F-test and the critical values, the study claims cointegration among the variables if the F-statistic is greater than 
the upper bounds. It is worth noting that the optimal lag selection was based on the Schwartz Bayesian Criterion (SBC) since it gives a 
parsimonious model. 

Moreover, the ARDL model offers various advantages in comparison to alternative methodologies: The ARDL approach is more 
dependable for small samples than other cointegration methodologies such as Johansen and Juselius’s cointegration methodology. The 
ARDL model enables the concurrent estimation of short- and long-run effects, which is advantageous as it offers a comprehensive 
understanding of the relationships between variables [57]. The ARDL cointegration methodology stands out from other methods as it 
does not necessitate pretests for unit roots2. This streamlines the process of modelling. Furthermore, the ARDL cointegration technique 
is highly resilient when working with variables that have varying levels of integration, such as I(0), I(1), or a combination of both. It is 
also robust when there is just one long-term link between the underlying variables, even in cases of small sample sizes [58–60]. 

Nevertheless, we diagnosed the ARDL model to ensure efficient and unbiased results. In doing so, we utilized the Breusch-Pagan- 
Godfrey test and the Breusch-Godfrey LM test for heteroscedasticity and autocorrelation problems. Furthermore, the Jarque-Bera test 
was used for normality of the series. In these tests, failure to reject the null hypothesis indicates absence of these deficiencies. Again, 
cumulative sum (CUSUM) and cumulative sum of squares (CUSUMSQ) plots were used for the stability of the model. 

3.4. Data source 

The data for the analysis spans from 1990 to 2020 and was sourced from two primary outlets: the World Bank’s World Development 
Indicator (WDI) [61] and Ghana’s Energy Statistics [62]. The time series data covers the period from 1990 to 2020, allowing for a 
comprehensive examination of trends and patterns in various variables related to electricity production and CO2 emissions. The WDI 
provided key variables such as electricity production, electricity generation from fossil fuels, total electricity generation, CO2 emis-
sions, and GDP, with each variable measured in distinct units as per Alcántara et al. [50]. Specifically, fossil fuel energy input used in 
electricity production was measured by fossil fuel kilotonnes of oil equivalent, electricity generation measured from fossil fuel origins 
in kilotonnes of oil equivalent, total electricity generation measured by total electricity generation in kilotonnes, CO2 emissions 
measured in Kt, and GDP measured in US dollars constant prices. The data obtained from WDI was specifically used for the decom-
position analysis of electricity generation. This analytical approach involves breaking down the total electricity generation into its 
constituent components to understand the contribution of each factor over time using the LMDI and ARDL. Information on the trend in 
total electricity generation sources, including crude oil, natural gas, petroleum, biomass, and hydro, was sourced from the Ghana 
Energy Statistics report [62]. This data is crucial for understanding the evolution of the energy mix in Ghana over the specified period. 
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4. Results and discussions 

The study starts the discussions with the trend analysis (specifically, the trends of CO2 emissions and electricity generation, electric 
intensity and degree of electrification of energy, and energy mix of electricity generation). The decomposition results from the LMDI 
are then analyzed and finally discussed the long-and-short-run results. 

4.1. CO2 emission and electricity generation trends 

Fig. 1 shows the trends of Ghana’s carbon emissions and electricity generation from 1990 to 2020. Total electricity generation 
increased continuously from 1990 to 2002 but fluctuated between 2002 and 2006. Again, total electricity generation increased 
dramatically from 2008 to 2012, decreased abruptly from 2012 to 2016, and increased sharply from 2016 to 2020. Although there 
exist fluctuations in electricity generation in Ghana, it is, however, obvious that electricity generation has been increasing over time. 
This is an indication that electricity generation is among the primary sources of energy in Ghana. 

Similarly, carbon emissions demonstrated patterns or tendencies to electricity generation trends; however, carbon emission trends 
are lower or lie below total electricity trends. This suggests that overall electricity generation was seen to be higher than total carbon 
emissions throughout the study period. The similar trends of electricity generation and CO2 emissions gives indication that electricity 
generation is linked to CO2 emissions. We noticed a rapid increase in CO2 from 2000 to 2020 compared to 1990–1999. This supports 
Twerefou et al. [12], arguing that CO2 emissions in Ghana increased from 12.2 to 23.9 metric tonnes (Mt) between 2000 and 2010. 
This, however, confirms that CO2 levels are rising and remain a key concern in Ghana. 

Overall, the figure demonstrates that electricity generation has a positive association with carbon emissions over the 1990–2020 
research period. This trend of Ghana somehow supports the IEA arguments that 1.55 billion to 1.71 billion Mt of CO2 is associated to 
4.01 trillion kilowatt-hours (kWh) of electric power from all energy sources. This corresponds to around 0.85 pounds of CO2 emissions 
per kWh [16]. This confirms the fact that electricity generation and CO2 exhibit a positive relationship over the study period. 

4.2. GDP electric intensity and degree of electrification of energy 

The trends in electricity intensity and electrification are depicted in Fig. 2. Following the pattern, electricity intensity decreased 
from 1990 to 2014 before significantly increasing from 2014 to 2020. The amount of electricity consumed to create a particular level of 
production or activity is called electrical intensity. Overall, the use of electricity has increased in recent years, meaning that a larger 
proportion of the population now uses electricity for the majority of their activities. 

Again, from 1990 to 2001, the degree of electrification increased gradually, then dropped from 2001 to 2004, before continuously 
increasing from 2004 to 2020. This suggests that on average, electrification has increased with time, confirming the rising trend for 
total power generation in Fig. 1. The electrification level is the proportion of accessible electrical power to total power. Notably, from 
2015 to 2020, the degree of electrification and electricity intensity had a positive association, whereas from 1990 to 2009, they had an 
inverse relationship on average. If the demand for electricity rises, as expected, generation will have to expand to meet the rising 
demand or usage of electricity. According to Owusu and Asumadu-Sarkodie [1], Ghana’s population has grown rapidly over the years, 
and as a result, the amount of electric power accessible has increased as well, as seen in Figs. 1 and 2. 

Fig. 1. Trends of CO2 emissions and electricity generation.  
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4.3. Energy mix of electricity generation 

Fig. 3 depicts the mix of energy sources used for power generation throughout the time study period. Natural gas’s contribution to 
power generation has gradually increased over the study period, whereas biomass’s contribution to electricity generation has 
decreased over the study period. A steam production unit is the most common way to generate electricity from natural gas. To generate 
steam, a boiler or a network of boilers is used. The combustion of natural gas in boilers produces steam, which powers a turbine. 
Natural gas is used to generate electricity in steam turbines and gas turbines, which emit CO2 throughout the process. 

Furthermore, biomass fuels are all non-fossil, carbon-based (biogenic) energy sources. All other non-biogenic wastes are classified 
as waste fuels. Direct combustion is used to create the majority of biomass electricity. Biomass is burned in a boiler to produce high- 
pressure steam. This steam spins turbine blades as it rushes over them. The rotation of the turbine drives a generator, which provides 
energy. All of these processes release CO2 into the atmosphere over time. Due to dependency on subsidies, pollution problems, and 
other challenges, utility-scale biomass has been on the decline. Biomass has a bleak future as a fuel, and it pales in comparison to other 
possibilities [16]. Like natural gas, the role of crude oil in electricity generation has been increasing, but it fluctuates over time. Fig. 3 
also shows that throughout the study period, electricity generation from hydro increases but oscillates. In contrast to hydro, the 
contribution of petroleum to energy generation declines but oscillates from 2004 to 2019. In general view, while the contribution of 
crude oil, hydro and natural gas to electricity generation has increased, the proportion of biomass and petroleum to electricity 

Fig. 2. Electric intensity and degree of electrification of energy.  

Fig. 3. Energy mix of electricity generation.  
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generation has decreased. 
Intuitively, the increased contribution of natural gas, hydro and crude oil to power generation may be related to the positive impact 

of electricity generation on CO2 emissions in Table 2 during the research period. Ghana has a total installed electricity capacity of 3.8 
gigawatt (GW) and generated around 13,000 gigawatt-hours (GWh) of electricity in 2016, according to national energy data. Three 
hydropower units account for approximately 42 percent of installed generation capacity, and the remaining 58 percent are accounted 
for by oil and natural gas power plants. Solar and biogas also contribute 22.6 megawatt to the total electricity capacity [62]. 

4.4. Annual electricity decomposition results in Ghana (LMDI) 

From 1990 to 2020, the study decomposed electricity into several factors as discussed previously to determine which variables 
contribute to CO2 emissions in Ghana. The findings of the decomposition are shown in Table 2. From Table 2, the total average 
contribution (1990–2020) of power generation to CO2 emissions is 3.33 percent, culminating in an average emission of 138250.65 Kt 
from 1990 to 2020. In particular, 1.61 percent of the contribution comes from the fossil fuel intensity factor (s-effect), 0.49 percent 
from the production factor (y-effect), 0.48 percent from the transformation factor (e-effect), 0.43 percent from the carbonation factor 
(c-effect), and 0.32 percent from the electricity intensity factor (w-effect). 

Individually, these causes have prevailed in contributing to CO2 emissions in Ghana in different periods. From 1990 to 1996, the 
transformation factor was the largest contributor to CO2 emissions in Ghana, accounting for 24.77 percent, followed by the electricity 
intensity factor at 8.53 percent, the production factor at 8.45 percent, the carbonation factor at 7.95 percent, and the intensity factor at 
0.51 percent. This is linked to the biomass electricity source shown in Fig. 3 for generating electricity, which was the primary source of 
electricity at the time. Carbonization was found to contribute more to CO2 emission by emitting 24.33 percent between 1997 and 2002, 
while the intensity factor contributed the least to CO2 emission by emitting 8.58 percent. This could be due to the increased contri-
bution of crude oil and natural gas, as well as the decrease in biomass energy sources in Fig. 3. From 2003 to 2008, we observed the 
largest contributor of CO2 emission was the production factor, which emitted 11.01 percent CO2, while the least contributor was the 
intensity factor, which contributed 1.29 percent to CO2 emission. As expected, using primitive ways to generate electricity has the 
potential to increase CO2 emissions over the research period. Another factor contributing to the higher CO2 emissions during the 
production process could be a lack of advanced technology. 

Furthermore, between 2009 and 2014, the intensity factor and the transformation factor contributed 81.35 percent and 33.92 
percent of CO2 emissions, respectively, making them the biggest and lowest contributors to CO2 emissions. Electricity generated with 
fossil fuels is more carbon intensive since the process of generation produces CO2 emissions. Fossil fuel inputs, such as natural gas, 
crude oil, and hydro were the primary contributors to electricity generation between 2009 and 2014, causing the intensity factor to 
dominate in CO2 emissions. In contrast to 2009–2014, the recent (2015–2020) component contributing the most to CO2 emissions was 
the electricity intensity of economic activity, which emitted 30.75 percent, and the least contributor was the intensity factor, which 
emitted 8.28 percent. It can be stated that numerous variables have contributed considerably to the emission of CO2 in Ghana over the 
studied period. Although the contributions of various factors fluctuate, the overall contributions of the various factors to CO2 emission 
can be determined to be positive. The increasing contribution of natural gas, hydro and crude oil to electricity generation may be 
linked to the positive contribution of electricity generation to CO2 emissions. Fig. 1 also shows a positive trend in the relationship 
between electricity generation and CO2 emissions. 

4.5. Decomposition short and long run results (ARDL) 

After decomposition analysis, we used the ARDL model to ascertain the long- and short-run effects of the various factors of elec-
tricity generation on CO2 emissions. We start by first examining the stationarity of the series, followed by the cointegration test results, 
and finally we discuss the long-and short-run results as well as its diagnostic tests. 

4.5.1. Stationarity test results 
Using the Augmented Dickey-Fuller (ADF) and Philips-Perron (P–P) methods, we tested the series stationarity, and the results are 

reported in Table 3. We observed a mixed stationarity of the variables in both tests. While some are stationary at the levels, others are 
stationary at the first difference. Particularly, the ADF indicates that except for E-effect and S-effect, all other variables are stationary at 
the first difference. In contrast, the P–P shows that all variables are stationary at the levels except for CO2 emissions. Since the ARDL 

Table 2 
Annual Electricity decomposition results in Ghana (figures in percentages).  

Year c-effect e-effect s-effect w-effect y-effect Total 

1990–1996 0.0795 0.2477 0.0051 0.0853 0.0845 0.5020 
1997–2002 0.2433 0.1598 0.0858 0.2016 0.1959 0.8864 
2003–2008 0.0709 0.0726 0.0129 0.0451 0.1101 0.3117 
2009–2014 0.3468 0.3392 0.8135 0.3606 0.3672 2.2273 
2015–2020 0.2594 0.1807 0.0828 0.3075 0.2422 1.0726 
Overall decomposition effect 
1990–2020 0.0043 0.0048 0.0161 0.0032 0.0049 0.0333 

Note: Decomposition in 5-year subperiods. 
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model is suitable and applicable to mixed stationarity variables, we proceeded to adopt it in this study. 

4.5.2. Cointegration test results 
Following the stationarity of the series, we tested the existence of a long-run relationship between CO2 emissions and the 

decomposition factors using the bounds test for cointegration. The results are shown in Table 4, and we noticed the presence of 
cointegration among the variables. Thus, there is a long-run relationship between CO2 emissions and decomposition factors. This is 
because the F-test of 17.00 exceeds the upper bound [I(1)] at all significant levels. Given this, we conclude that the series are coin-
tegrated. Therefore, the study proceeds with the long- and short-run estimates. 

4.5.3. Long-and short-run analysis (ARDL) 
We present in Tables 5 and 6 the long-and short-run results of the decomposition factors of electricity generation on CO2 emissions 

in Ghana, respectively. We begin with the long-run analysis and thereafter discuss the short-run results. 
The long-run results in Table 5 show that the C-effect (carbonization factor) has an insignificant negative relationship with CO2 

emissions. This outcome, although insignificant implies that carbonization factor to electricity generation in the long run will reduce 
CO2 emissions. This further suggests that if synthetic fossil fuels are utilized in electricity generation, then, the impact of electricity 
generation via the carbonization factor will reduce CO2 emissions and, therefore, improve the environment. This result is consistent 
with Alcántara et al. [50] whose study argue that the carbonization factor is one of the dominant factors in reducing emissions in Spain. 
However, the results of this study seem to suggest that carbonization factor does not matter for the study period in Ghana. The study 
also reveals that E-effect (transformation factor) and S-effect (fossil fuel intensity) both contribute to the reduction of CO2 emissions in 
the long run at a 10% and 5% significance level, respectively. Although the coefficients are marginal, the signs point to the fact that 
these factors are capable of reducing electricity generation effect on CO2 emissions. The outcome of E-effect could be explained that 
higher efficiency (in terms of technology) in transforming fossil fuel inputs to electricity with modern power plants compared to 
traditional coal power plant will result in the reduction of CO2 emissions. While Kim and Kim [48] find contradictory results for the 
E-effect in Korea, Alcántara et al. [50] observed that the E-effect reduces CO2 emissions in Spain. Similarly, the outcome of the S-effect 
suggests that it impedes CO2 emissions as demonstrated by statistically significant negative coefficient at 5% level. While we have 
observed the S-effect to reduce CO2 emissions in Ghana, Kim and Kim [48] find a stimulating effect of this variable on emission in 
Korea. 

Furthermore, the long-run results reveal that both the W-effect (electricity intensity factor) and the Y-effect (production factor) 
contribute positively to CO2 emissions in Ghana. However, we found W-effect to be insignificant. In fact, the coefficients indicate that 
1% increases in the W-effect and the Y-effect will result in a 0.38% and 0.97% increase in CO2 emissions in Ghana, respectively. The 
production effect could be attributed to the fact that many economic activities in Ghana depends on electricity generation, and this 
tends to increase the electricity energy consumption and hence higher emissions. This supports the empirical findings that electricity 
production results in CO2 emissions [16]. The Y-effect accords with findings by Kim and Kim [48], Li et al. [63], Kim et al. [26], Mai 
et al. [64], and Alcántara et al. [50] that production effect is the largest contributor of CO2 emissions. 

Focusing on the short-run results in Table 6, we observed that the results were not different from those obtained from the long-run 
in terms of its impact (signs). However, the short-run results indicate that all factors are significant. Specifically, the results reveal that 
in the short run, carbonization, transformation, and fossil fuel intensity factors contribute significantly to reducing CO2 emissions, 
which is not different from what we observed in the long run estimates. On the contrary, as observed in the long run, both electricity 
intensity and production factors induce CO2 emissions. Specifically, we found that 1% increases in both electricity intensity and 
production factors leads to about 0.19% and 0.09% increase in CO2 emissions, respectively. Our argument for the long run effects of 

Table 3 
Unit root test results.  

Variable(s) ADF P–P 

I(0) I(1) I(0) I(1) 

lnC − 1.433 − 5.483*** − 0.840 − 5.726*** 
lnc-effect − 1.074 − 3.345** − 2.866** − 10.322*** 
e-effect − 4.321*** − 6.697*** − 5.484*** − 8.702*** 
s-effect − 3.708*** − 5.930*** − 5.162*** − 8.868*** 
lnw-effect − 1.048 − 2.894** − 2.606* − 8.923*** 
lny-effect − 1.046 − 3.745*** − 2.784* − 12.756*** 

Note: I(0) and I(1) denote levels and first difference, respectively. *, **, *** denote the significant level at 10%, 5%, and 1%, respectively. 

Table 4 
Cointegration test results.  

F-test statistic Significance level I(0) I(1)  

1% 3.9 5.419 
17.00 5% 2.804 4.013  

10% 2.331 3.417 

Note: Null hypothesis of no cointegration is tested against the alternate of cointegration relationship. 

E.F. Oteng-Abayie et al.                                                                                                                                                                                              



Heliyon 10 (2024) e28212

11

production factor in CO2 emissions may be responsible for the short run outcome. This means that in both the short-run and the long- 
run, an alternative safer and environmentally friendly energy production technology and use have not been adopted. On the contrary, 
it is clear that, whiles electricity intensity is statistically significant in the short-run this cannot be observed in the long-run. We argue 
that in the short-run, economic agents are unable to adjust to efficiency factor in the use of electrical power. Thus, its statistically 
significant positive contribution to CO2 emissions. However, the long-run permits the economic agent to adjust leading to CO2 
emissions insensitive to the variable. 

As expected, the error correction term (ECM) of the model, which indicates the speed of adjustment at which equilibrium will be 
restored in the long run given an unexpected shock in the short run, was found to be negative and significant. This suggests that in the 
long run there will be convergence given any unexpected shock in the short run. Specifically, it implies that disequilibrium in the short 
run will be restored at a speed of 18% annually. Comparing the ARDL results to the LMDI results, we noticed that regardless of the 
heterogenous (by periods) analysis or the homogenous (entire period) analysis, both W-effect and Y-effect contribute to emissions 
positively. Regarding the C-effect, E-effect, and S-effect, the homogenous (entire period) analysis suggests that they reduced emissions 
in both the short and long run. However, if we accounted for the heterogenous (by periods) analysis using the LMDI, we found they 
impact positively to CO2 emissions. Suggesting that the decomposition impact of C-effect, E-effect, and S-effect on CO2 emissions is 
essential to be examined overtime. 

4.5.4. Diagnostic test results 
Finally, we diagnosed the efficiency and accuracy of the results by testing for serial correlation, heteroskedasticity, series normality 

and the stability of the model. 
The results from Table 7 show absence of both serial correlation and heteroskedasticity. Furthermore, the Jarque-Bera test shows 

that the series were normally distributed, allowing inferences or predictions to be made. The results provide the above conclusions 
because the p-values of these tests fail to reject the null hypotheses. Regarding the stability of the model, the CUSUM and CUSUMSQ 
(see Figure A1 in the Appendix) indicate that the model is stable as the model is within the 95% confidence intervals. 

Table 5 
Long run estimates.  

Variable(s) Coefficient Standard error P-value 

lnc-effect − 0.3407 0.7588 0.6722 
e-effect − 0.0001* 0.00005 0.0737 
s-effect − 0.00001** 0.000004 0.0156 
lnw-effect 0.3794 0.4350 0.4230 
lny-effect 0.9742* 0.4230 0.0690 
Constant 2.8840*** 0.3422 0.0004  

Table 6 
Short run estimates.  

Variable(s) Coefficient Standard error P-value 

Δ lnc-effect − 0.2217* 0.0877 0.0527 
Δe-effect − 0.00001* 0.000005 0.0682 
Δs-effect − 0.000002** 0.000001 0.0266 
Δ lnw-effect 0.1919** 0.0714 0.0433 
Δ lny-effect 0.0865* 0.0420 0.0947 
ECM(-1) − 0.1822*** 0.0349 0.0034 
R-square 0.9997   
Adj. R-square 0.9991   
DW-statistic 2.8666   
F-statistic 1626.291***   
Prob. (F-statistic) 0.0000    

Table 7 
Diagnostic tests results.  

Diagnostic test(s) Test statistic(s) P-value(s) 

Serial correlation 0.3286 0.7430 
Heteroskedasticity 0.7207 0.6985 
Normality 0.6770 0.7129 
CUSUM Stable  
CUSUMSQ Stable   
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5. Conclusion and implications 

The study examines the drivers of electricity generation and CO2 emission in Ghana with data spanning 1990–2020 using LMDI and 
ARDL models. The study focused on examining the trends of CO2 emission and total electricity generation, the mix of energy sources 
used for electricity generation and the short and long run effect of the decomposition factors of electricity generation on CO2 emissions. 
The trends show that total electricity generation and CO2 emission both increase overtime indicating a positive relationship between 
them. The study decomposed electricity generation into five factors, including carbonization factor, transformation factor, intensity 
factor, electricity intensity of economic activity, and production factor. Conclusions from the results (LMDI) show that all the factors 
had a positive impact on CO2 emission over the study period. The empirical findings from the ARDL confirmed that the electricity 
intensity of economic activity and the production factor had a positive impact on CO2 emissions in both the long- and short-run, while 
the carbonization factor, the transformation factor, and the fossil fuel intensity factors reduce CO2 emissions in both the long- and 
short-run. From the LMDI results we established that electricity generation and CO2 had positive relationship and this relationship is 
driven by the carbonization factor, transformation factor, intensity factor, electricity intensity of economic activity, and production 
factor. We also conclude based on the LMDI and ARDL results that the electricity intensity of economic activity and the production 
factors are the predominant contribution to CO2 emissions in Ghana. 

5.1. Policy implication  

➢ The results from LMDI indicate that all factors (carbonization factor, transformation factor, intensity factor, electricity intensity of 
economic activity, and production factor) from electricity generation over the study period contribute positively to CO2 emissions 
in Ghana. Therefore, to effectively reduce carbon pollution from electricity generation, decisions must be made while considering 
the elements that influence lowering CO2 emissions in this sector. It is imperative to take proactive steps to accelerate the transition 
to renewable energy sources and increase their share in the energy mix. To achieve this, Ghana should prioritize the integration and 
expansion of renewable energy sources, such as solar, wind, hydro, and biomass. This can be accomplished through the imple-
mentation of supportive policies, providing incentives, and making significant investments in renewable energy infrastructure.  

➢ However, it is crucial to acknowledge that the adoption of renewable energy sources presents systemic challenges, particularly 
related to the power infrastructure and electric load. To increase the amount of renewable energy that the power grid can absorb, 
measures must be taken to improve peak shaving. Direct methods include encouraging privately operated power plants to 
participate in maximum load shaving, supporting the installation of grid storage stations, and transitioning thermal power plants to 
more environmentally friendly alternatives. Furthermore, since the transformation factor and intensity factor positively impact 
CO2 emissions, implementing energy efficiency and conservation measures is essential. The government and stakeholders should 
encourage industries and households to adopt energy-efficient technologies, conduct energy audits, and launch awareness cam-
paigns to promote responsible energy consumption. By combining efforts to promote renewable energy integration and implement 
energy efficiency measures, Ghana can effectively address the challenge of increasing electricity generation while reducing CO2 
emissions, thus contributing to a more sustainable and environmentally friendly energy sector.  

➢ To address the issue of rising CO2 emissions driven by electricity-intensive economic activities and production factors, it is crucial 
to shift away from carbon-intensive industries. Promoting the growth of low-carbon sectors like technology, services, and sus-
tainable agriculture is essential. This can be achieved by investing in research and development of clean energy technologies and 
sustainable practices, ultimately reducing carbon emissions from electricity generation and overall economic processes. Collabo-
rative efforts between academia, the private sector, and government are key to driving innovation in the energy sector. Local 
governments play a vital role by implementing demand-side measures such as tax incentives and subsidies, encouraging businesses 
and individuals to embrace energy conservation. Introducing carbon pricing mechanisms and taxes can effectively internalize the 
external costs associated with CO2 emissions. This approach motivates businesses and individuals to adopt cleaner practices and 
energy sources, curbing their carbon footprint. Additionally, policies should prioritize the adoption of renewable energy and 
energy-efficient products by government agencies and institutions. This stimulates market demand for cleaner technologies, 
contributing to a reduction in CO2 emissions. By implementing these strategies, a robust supply chain for clean energy utilization 
can be established. 

5.2. Limitation and future studies 

It is being observed that, this study employed both LMDI and ADRL methods for its analysis, which have limitations such as.  

1. The LMDI approach is excessively comprehensive and fails to accurately depict energy efficiency.  
2. The analysis solely considers the first and final years, which hinders the ability to track yearly variations during the study period, 

particularly in cases of significant volatility in the indicators or their underlying factors.  
3. The majority of studies employing LMDI fail to accurately capture the intricate characteristics of the physical energy system due to 

its utilization of a top-down decomposition method that relies on macro-level elements of influence. 

Nevertheless, these limitations do not invalidate the results of this study. Therefore, other techniques such as Quantile regression, 
threshold technique etc. can be employed for future studies. Again, the entire sub-Sahara Africa countries data can be analysis. 
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APPENDIX  

Table A1 
Decomposition of the variation of CO2 emissions from electricity generation by explanatory effects (kt).  

YEAR c-effect e-effect s-effect w-effect y-effect Total 

1990–1991 − 0.011 − 0.002 − 0.014 − 0.024 − 0.014 − 0.065 
1991–1992 0.033 0.014 0.010 0.046 0.029 0.132 
1992–1993 0.006 0.004 0.002 0.008 0.007 0.027 
1993–1994 0.016 0.011 0.004 0.018 0.018 0.066 
1994–1995 0.014 0.019 0.002 0.015 0.018 0.068 
1995–1996 0.022 0.201 0.000 0.022 0.027 0.273 
1996–1997 0.011 0.001 0.044 0.013 0.012 0.082 
1997–1998 0.133 0.095 0.022 0.118 0.105 0.472 
1998–1999 0.028 0.026 0.006 0.033 0.028 0.120 
1999–2000 − 0.040 − 0.047 − 0.011 − 0.053 − 0.055 − 0.206 
2000–2001 0.027 0.025 0.006 0.027 0.032 0.118 
2001–2002 0.084 0.060 0.018 0.063 0.075 0.300 
2002–2003 − 0.021 − 0.012 − 0.005 − 0.013 − 0.019 − 0.070 
2003–2004 − 0.026 − 0.028 − 0.007 − 0.032 − 0.030 − 0.124 
2004–2005 0.021 0.024 0.005 0.027 0.024 0.101 
2005–2006 0.077 0.091 0.015 0.066 0.130 0.379 
2006–2007 0.043 0.029 0.010 0.031 0.037 0.150 
2007–2008 − 0.023 − 0.031 − 0.006 − 0.033 − 0.032 − 0.125 
2008–2009 0.086 0.078 0.017 0.090 0.081 0.353 
2009–2010 0.067 0.001 0.757 0.079 0.073 0.978 
2010–2011 0.058 0.026 0.032 0.066 0.067 0.249 
2011–2012 0.128 0.201 0.014 0.125 0.122 0.590 
2012–2013 0.041 0.052 0.009 0.038 0.064 0.204 
2013–2014 − 0.034 − 0.019 − 0.017 − 0.038 − 0.040 − 0.147 
2014–2015 0.045 0.018 0.027 0.043 0.043 0.176 
2015–2016 − 0.046 − 0.039 − 0.021 − 0.072 − 0.060 − 0.239 
2016–2017 0.038 0.026 0.012 0.045 0.039 0.160 
2017–2018 0.073 0.058 0.022 0.096 0.076 0.325 
2018–2019 0.076 0.058 0.021 0.095 0.075 0.325 
2019–2020 0.074 0.061 0.021 0.101 0.070 0.326 
1990–2020 0.0043 0.0048 0.0161 0.0032 0.0049 0.0333 

Note: Decomposition in 1-year subperiods.  
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Table A2 
Decomposition of the variation of CO2 emissions from electricity generation by explanatory effects (kt).  

YEAR c-effect e-effect s-effect w-effect y-effect Total 

1990–1996 1414.884 4958.437 338.161 1149.044 1721.765 9582.291 
1997–2002 4331.226 3197.971 5711.838 2717.240 3992.476 19950.751 
2003–2008 1262.968 1453.408 857.824 607.892 2244.201 6426.294 
2009–2014 6173.692 6788.324 54161.372 4859.838 7482.612 79465.839 
2015–2020 4618.430 3617.280 5511.391 4144.065 4934.306 22825.472 
1990–2020 17801.200 20015.420 66580.586 13478.079 20375.362 138250.65 

Note: Decomposition in 5-year subperiods.  

Fig. A1. ARDL model stability test.  
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