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Abstract

Exposure to environmental enrichment can modify the impact of motivationally relevant stimuli. 

For instance, previous studies in rats have found that even a brief, acute (~1 day), but not chronic, 

exposure to environmentally enriched (EE) housing attenuates instrumental lever pressing for 

sucrose-associated cues in a conditioned reinforcement setup. Moreover, acute EE reduces 

corticoaccumbens activity, as measured by decreases in expression of the neuronal activity marker 

“Fos.” Currently, it is not known whether acute EE also reduces sucrose seeking and 
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corticoaccumbens activity elicited by non-contingent or “forced” exposure to sucrose cues, which 

more closely resembles cue exposure encountered in daily life. We therefore measured the effects 

of acute/intermittent (1 day or 6 day of EE prior to test day) versus chronic (EE throughout 

conditioning lasting until test day) EE on the ability of a Pavlovian sucrose cue to elicit sucrose 

seeking (conditioned approach) and Fos expression in the medial prefrontal cortex (mPFC), 

orbitofrontal cortex (OFC), and nucleus accumbens (NAc) in mice. One day, but not 6 day or 

chronic EE, reduced sucrose seeking and Fos in the deep layers of the dorsal mPFC. By contrast, 1 

day, 6 day, and chronic EE all reduced Fos in the shallow layers of the OFC. None of the EE 

manipulations modulated NAc Fos expression. We reveal how EE reduces behavioral reactivity to 

sucrose cues by reducing activity in select prefrontal cortical brain areas. Our work further 

demonstrates the robustness of EE in its ability to modulate various forms of reward-seeking 

across species.

Keywords

cue reactivity; environmental enrichment; food seeking; Fos; Pavlovian appetitive conditioning; 
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1 | INTRODUCTION

The capacity to learn and remember associations between food rewards and the actions or 

cues that produce and/or predict their availability is essential for survival. In laboratory rats 

and mice, Pavlovian conditioning procedures demonstrate that following repeated 

presentations of a neutral stimulus (e.g. auditory cue) with a salient event such as food (US) 

delivery, the neutral stimulus acquires motivational significance and acts as a conditioned 

stimulus (CS) (Holland, 1993; Pavlov, 1927; Rescorla, 1988). Such CS’s are capable of 

eliciting approach responses towards food sources, serving as a conditioned reinforcers in 

their own right, and/or incentivize reward seeking behaviors (Cardinal et al., 2002; Fanselow 

& Wassum, 2015; Holland, 1977; Parkinson et al., 2000). Likewise, in humans, acquired 

incentive properties are apparent when a CS triggers conditioned emotional responses or 

increased food cravings that can motivate individuals to eat, and in some cases to overeat 

(Jansen, 1998; Jansen et al., 2011; Ridley-Siegert et al., 2015). Neuroscientific research over 

the years aimed at understanding the mechanisms by which CSs acquire and exert their 

incentive effects has identified brain areas such as the prefrontal cortex and nucleus 

accumbens as critical nodes in a wider forebrain network (Brebner et al., 2020; Cardinal et 

al., 2002; Day et al., 2006; Parkinson et al., 2000; Ziminski, Hessler, et al., 2017).

While much attention has been given to the psychological and neurobiological factors and 

mechanisms that promote CS-evoked reward seeking, much less is known about those that 

suppress these behaviors. Interestingly, in humans, cognitive and physical stimulation in the 

form of puzzle games or exercise reduces attentional bias towards food cues and food 

cravings (Oh & Taylor, 2013; Skorka-Brown et al., 2015). And while drawing parallels with 

studies In laboratory rodents is difficult, such stimulation may be provided through 

environmental enrichment (EE) procedures, where housing conditions include items such as 

toys, exercise wheels, and social enrichment, and cages are larger than standard laboratory 
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housing (Mohammed et al., 2002; Nithianantharajah & Hannan, 2006; Solinas et al., 2020). 

Several studies by Grimm and colleagues demonstrate that even a brief, acute (~22 hr) 

exposure to EE attenuates cue-evoked sucrose seeking in a conditioned reinforcement task, 

indicated by reduced lever pressing for sucrose-associated cues (Grimm et al., 2008, 2013, 

2016, 2019; Slaker et al., 2016; Glueck et al., 2017). Of course, in daily life many such food-

associated cues are encountered passively and are forced onto us, e.g., in the form of 

televised, online, or print food advertisements. Whether and to what extent the incentive 

motivational properties of such passively experienced, Pavlovian conditioned cues are 

similarly modulated by acute EE exposure has not yet been tested.

Our aim here was therefore to examine the effects of acute and chronic EE housing 

conditions on cue-avoked sucrose seeking and neuronal activity in the corticoaccumbens 

network. To this end, we used a well-established appetitive Pavlovian conditioning 

procedure used previously in our lab, where mice learn to associate sucrose availability with 

presentation of an auditory CS. Following acquisition of this simple CS-US association, 

sucrose-seeking behavior is assessed by measuring approach and responding (i.e. head 

entry) to the sucrose delivery site during the (non-reinforced) sucrose-associated CS (Blaiss 

& Janak, 2009; Day et al., 2006; Sieburg et al., 2019; Ziminski, Hessler, et al., 2017). Next, 

because Fos expression increases in different corticoaccumbens areas in response to non-

contingent food CS exposure (Brebner et al., 2020; Haight et al., 2017; Schroeder et al., 

2001; Ziminski, Hessler, et al., 2017), we compared “Fos” expression across different EE 

conditions in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and nucleus 

accumbens (NAc).

2 | MATERIALS AND METHODS

2.1 | Animals

C57BL/6J (wild-type) male mice were used in all experiments. Mice were either obtained 

from Charles River UK or bred at the University of Sussex. All mice were housed under a 12 

hr light–dark cycle (lights on at 7:00 a.m.) at the maintained temperature of 21 ± 1°C and 50 

± 5% relative humidity. Mice were 9–10-week-age at the start of the experiments and were 

food restricted (90% baseline body weight) from 7 days before conditioning began until 

completion of the studies. All experiments were conducted in accordance with the UK 1986 

Animal Scientific Procedures Act and received approval from the University of Sussex 

Animal Welfare and Ethics Review Board.

2.2 | Behavioral experiments

2.2.1 | Apparatus—Similar apparatus and procedures were used as previously described 

(Ziminski, Hessler, et al., 2017). Briefly, behavioral training and testing were conducted in 

mouse-specific conditioning chambers (15.9 × 14 × 12.7 cm; Med Associates, Vermont, 

USA) each housed within a sound-attenuating and light-resistant cubicle. The chamber’s 

front and rear access panels and ceiling were constructed from clear Plexiglas, and the side 

walls were made from removable aluminum panels atop a stainless steel grid floor. A 

syringe pump dispensed 10% sucrose solution (serving as the US) into a recessed magazine 

receptacle fitted in the center of one of the side walls. This served as the unconditioned 
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stimulus (US). The conditioned stimulus (CS) was an auditory click created by a mechanical 

relay. Experiment control and data collection was done using Med-PC IV (Med Associates).

2.2.2 | Magazine training and Pavlovian conditioning—Mice first underwent a 

single magazine training session during which they received 40 ~15 μl sucrose solution 

deliveries, on a random interval-30 (RI-30) schedule. Next, mice underwent 12 conditioning 

sessions, 1–2 times daily over a 7-day period, in the morning (8:00 a.m. to 12:00 p.m.) 

and/or afternoon (12:00 p.m. to 4:00 p.m.). Each acquisition session lasted approximately 24 

min and consisted of six 120 s CS presentations separated by RI-120s inter-trial interval 

(ITI) periods. During each CS period, ~15 μl deliveries of 10% sucrose solution were 

presented on a RI-30s schedule (i.e. on average 4 US deliveries per CS trial).

2.2.3 | Behavioral testing—At 7–9 days following the last acquisition session, mice 

underwent a single test session for CS-elicited conditioned approach with the CS presented 

under the same schedule as conditioning, but in the absence of sucrose delivery (i.e. under 

extinction conditions). The number of head entries into the magazine during the CS and ITI 

were recorded.

2.2.4 | Environmental enrichment—All mice were pair-housed and weaned into 

standard housing conditions; during the experiment mice were transferred to 

environmentally enriched housing at different time points (see Figure 1b). Standard housing 

consisted of a cage (48 × 15 × 13 cm) with basic nesting material and a wooden chew bar. 

Environmental enrichment (EE) housing consisted of 3 tiers (40 × 26 × 53 cm), with 

connecting tunnels, a separate sleeping pod, two exercise wheels, multiple forms of nesting 

material, a red plastic house, cardboard tunnels, and wooden chew bars (Figure 1a).

Four groups of mice consisting of three different EE exposure conditions and one standard 

housing (SH) control condition were trained and tested for CS-evoked Pavlovian approach 

(Figure 1d). In the 5 weeks (chronic) EE group (n = 20), EE was provided for 3 weeks prior 

to conditioning and continued during the 2 weeks of the behavioral experiments. By 

contrast, in the remaining two groups, EE was provided following acquisition of 

conditioning; either for 6 days (6 day EE; n = 22), or 1 day (1 day EE; n = 26) prior to 

testing. Mice in the standard-housed (SH; n = 31) control group remained in standard 

housing cages throughout the experiment.

2.3 | Fos immunohistochemistry

Ninety minutes following initiation of the final test session, mice were anaesthetized with 

200 mg/kg sodium pentobarbital and transcardially perfused with phosphate-buffered saline 

(PBS; 137 mM NaCl, 10 mM PO4
3−, 2.7 mM KCl, pH 7.4) and then 4% paraformaldehyde 

in PBS (PFA). Brains were post-fixated for 22 hr in 4% PFA, then cryoprotected with 30% 

sucrose in PBS before being frozen in dry ice and stored at −80°C. Coronal sections of 30 

μm thickness containing the orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC) 

and nucleus accumbens (NAc, AP 2.46, AP 1.94, and AP 1.18 respectively; (Paxinos & 

Franklin, 2001) were sliced on a Leica CM1900 cryostat and stored at 4°C in PBS-azide 

(PBS, 0.02% sodium azide).
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Free-floating sections were washed in PBS three times for 10 min, before being incubated in 

PBS with 0.09% hydrogen peroxide for 20 min to quench endogenous peroxidase. Next, 

sections were washed three times in PBS, then blocked in PBST (PBS, 0.2% Triton X-100) 

with 3% normal goat serum (cat no. S-1000, RRID: AB_2336615; Vector Laboratories). The 

sections were then incubated in 1:800 anti-Fos primary antibody (cat no. 2250, RRID: 

AB_2247211; Cell Signaling Technology) in PBST with 3% normal goat serum at 4°C 

overnight.

The following day the slices were washed three times in PBS, then incubated for 2 hr in 

1:600 biotinylated anti-rabbit secondary antibody (cat no. BA-1000, RRID: AB_2313606; 

Vector Laboratories) in PBST with 1% normal goat serum. Sections were washed three 

times in PBS before incubation with avidin–biotin complex (cat no. PK-4000, RRID: 

AB_2336818; Vector Laboratories) for 1 hr. Sections were washed two more times in PBS 

then incubated with 0.04% 3,3′-Diaminobenzidine-tetrahydrochloride (cat no. D5905; 

Sigma Aldrich) for ~2.5 min. After a final 2 washes in PBS, sections were mounted on 

Superfrost Plus slides (cat no. 10149870; Fisher) and left to dry overnight.

The next day, sections were serially dehydrated in graded ethanol baths and then cleared in 

Histo-Clear II (cat no. NAT1334; Scientific Laboratory Supplies) for 20 min. Slides were 

then sealed and coverslipped using HistoMount (cat no. NAT1308; Scientific Laboratory 

Supplies).

Representative images of the regions of interest (ROIs; Figure 3) were taken using a QI click 

camera (Qimaging) attached to an Olympus BX53 microscope running iVision software 

(version 4.0.15, RRID: SCR_014786; Biovision Technologies). Image analysis consisted of 

an automatic count of nuclei expressing high levels of Fos (Fos+) in predefined ROIs of 10X 

images using Fiji software (RRID: SCR_002285; NIH (Schindelin et al., 2012). During this 

count, images were submitted to a fast Fourier transform bandpass filter and inverted before 

being run through the 3D object counter plugin with a brightness threshold that depended on 

the average pixel brightness of the filtered image (Bolte & Cordelières, 2006).

2.4 | Data analysis

Cue-evoked behavioral responses were quantified by calculating an “Approach Score,” by 

subtracting head entries into the sucrose delivery magazine during CS trials from entries 

during the ITI periods. Approach scores during conditioning were analyzed with a two-way 

mixed ANOVA using the factors Housing Condition (Standard Housing, Chronic/5 weeks 

EE, 6 day EE, 1 day EE) and Session (1–12). Pavlovian Conditioned Approach Scores 

during the test session were analyzed using a one-way independent ANOVA comparing 

Conditioned Approach Scores with Housing Condition as a factor, followed by post-hoc 

analyses.

For the Fos expression analysis, 11–12 mice per group were randomly selected. Data from 

the behavioral and histological experiments were analyzed using Prism software 

(RRID:SCR_002798; GraphPad Software) and SPSS software (RRID:SCR_002865; IBM), 

and group data are presented as mean ± SEM.
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Cell counts were analyzed using one-way ANOVA on the number of Fos+ cells per mm2 

with Housing Condition as a factor. Analyses were conducted independently in the 

ventrolateral orbital frontal cortex (OFC), anterior cingulate cortex (ACC), prelimbic cortex 

(PL), infralimbic cortex (IL), and nucleus accumbens core (NAcCore) and shell (NAcShell). 

Further independent ANOVAs were conducted for the laminar analyses in the OFC and 

mPFC areas separating shallow (II-III) and deep (V-VI) layers. Layers were defined using 

criteria described in Van De Werd et al., (2010). All post hoc analyses were conducted using 

Fisher’s LSD multiple comparisons, comparing each EE condition to the standard-housed 

(SH) control.

In addition, we performed estimation statistics on Test Day data for the Approach Score 

(Figure 1d) and Fos counts (Figure 2a,b) using the Shared Control Estimation Plot function 

on https://www.estimationstats.com/#/. This method uses 5,000 bootstrap samples to 

calculate the lower and upper bounds of the 95% confidence interval (CI), see Supporting 

Materials Figures S1–S3 for plots with CIs). The effect size (i.e. mean differences between 

experimental group (5 weeks EE, 6 day EE, or 1 day EE) – SH control group) and CIs are 

reported as effect size [CI width lower bound; upper bound]). This approach provides 

additional information regarding the confidence and likelihood of the effect size (Calin-

Jageman & Cumming, 2019; Ho et al., 2019).

3 | RESULTS

3.1 | The effects of EE on sucrose seeking induced by Pavlovian sucrose cues

Four groups of mice were trained on a Pavlovian sucrose conditioning task (Figure 1b) for 

them to acquire an association between sucrose reward and a cue that predicts its 

availability. All mice in this task received auditory cue (CS) presentations explicitly paired 

with 10% sucrose solution (US) during each acquisition session (Figure 1c) for a total of 12 

sessions. There was a significant effect of Session on the Approach Score (F11,1045 = 19.17, 

p< 0.001) indicating that there was an increase in overall approach scores as the sessions 

progressed (Figure 1c). This suggests that the mice reliably acquired the CS–US association 

during training. Whilst there was a significant interaction between Housing Condition and 

Session (F33,1045 = 1.66, p < 0.05), there was no main effect of Condition on the Approach 

Score (F3,95 = 2.18, p < 0.09). Due to this interaction, we further analyzed the final three 

sessions of training where the Approach Score appeared to asymptote. There was no 

significant interaction between Housing Condition and Session (F6,190 = 0.92, p = 0.48), nor 

main effects of Housing Condition (F3,95 = 1.87, p = 0.14) and Session (F2,190 = 2.14, p = 

0.12). Taken together, the significant interaction during conditioning reflected small (but 

significant) differences in the rate of acquisition of the conditioned response. However, with 

sufficient training, behavioral performance toward the end of the acquisition phase (i.e., 

prior to testing) was stable and equal for the conditions.

Seven to nine days following the last acquisition session, on the test day there was a 

significant effect of Housing Condition on the Conditioned Approach Score (F3,95 = 4.64, p 
< 0.01). Subsequent post hoc analyses comparing each EE condition to the standard housing 

(SH) control showed a significant decrease in conditioned approach following 1 day EE; p < 

0.05, −4.1; [−8.4, 0.8]; Figure 1d). Compared with SH, there was no effect on the Approach 
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Score following 5-week or 6-day EE (3.5; [−0.9, 8.6]; p = 0.10 and −2.5 [−6.7, 0.93] p = 

0.21 respectively). Thus, cue-evoked conditioned approach response was reduced only when 

EE was experienced following conditioning and 1 day prior to testing.

3.1.1 | Cue-evoked Fos expression—Following the test session for Pavlovian 

conditioned approach, we performed immunohistochemistry for the neuronal activity marker 

“Fos” (Cruz et al., 2013) to examine EE-modulated changes in neuronal activity in 

subregions of the prefrontal cortex and nucleus accumbens (Figures 2 and 3). There was a 

significant effect of Housing Condition on Fos expression in the anterior cingulate cortex 

(ACC, F3,42 = 2.90, p < 0.05). Post hoc analyses indicated that Fos expression decreased in 

the 1-day EE condition (−43.4; [−68.5, −20.7]; p < 0.05). However, and in line with the 

behavioral results on test, 5-week and 6-day EE had no effect on Fos expression (−4.2; 

[−31.2, 23.5], p = 0.81; and −7.3; [−38.4, 41.3], p = 0.67, respectively; Figure 2a). No 

significant effects of Housing Condition were seen in the orbitofrontal cortex (OFC, p = 

0.06; −28.5 [−91.9, 21.4] for 5-week EE; −33.4 [−102.5, 21.7] for 6-day EE; −73.9 [−135, 

−30.3] for 1-day EE), prelimbic Cortex (PL, p = 0.13; −1.8 [−37.4, 28.5] for 5-week EE; 

−5.0 [−46, 45.2] for 6-day EE; −40.4 [−79.0, −7.5] for 1-day EE), infralimbic cortex (IL, p = 

0.47; 10.1 [−17.7, 30.8] for 5-week EE; −0.37 [−27.2, 26.7] for 6-day EE; −9.7 [−35.6, 

8.8]), nucleus accumbens shell (NAcShell, p = 0.31; 12.4 [−4.6, 33.5] for 5-week EE; 15.5 

[−3.7, 37.7] for 6-day EE; 5.5 [−9.06, 22.4] for 1-day EE) or core (NAcCore, p = 0.40; 23.7 

[−6.6, 50.5] for 5-week EE; 17.4 [−10.4, 39.4] for 6-day EE; 15.2 [−13.7, 41.0] for 1-day 

EE). Overall, these data suggest that 1 day of exposure to enriched housing following 

conditioning, but not the more prolonged 6 days or 5 weeks, attenuated both the behavioral 

response and Fos expression in the ACC following sucrose cue exposure.

Because of the robust effects of EE on reductions in Fos in the ACC, as well as decreasing 

trends in the OFC and PL, a more in-depth laminar analysis was conducted (Figures 2b and 

3). The OFC, ACC, PL, and IL were divided into shallow (layers II-III) and deep (layers V-

VI) areas with distinct chemo- and cyto-architectural features and connectivity (Van Riga et 

al., 2014; De Werd et al., 2010). There was a significant effect of Housing Condition on Fos 

expression in the OFC shallow layers (F3,42 = 6.60, p < 0.001) and the ACC and PL deep 

layers (F3,42 = 4.02, p < 0.05; F3,42 = 4.02, p < 0.05). Post hoc analyses showed that in the 

OFC, significant decreases in Fos expression occurred in all EE conditions as compared with 

SH controls; p < 0.01, −80.7 [−115, −33.6] for 5-week EE; p < 0.01 −75.5 [−115.0, −35.6] 

for 6-day EE; p < 0.01, −81.9 [−117.5, −45.9] for 1-day EE. By contrast, decreases in Fos 

expression were only observed in the 1-day EE group in the ACC and PL deep layers (ACC: 

p = 0.59, −13.5 [−56.4, 29.8] for 5-week EE; p = 0.40, −20.9 [−66.4, 42.7] for 6-day EE; p < 

0.01, −78.5 [−116, −39.0] for 1-day EE; PL: p = 0.96, 1.39 [−44.8, 43.6] for 5-weeks EE; p 
= 0.56, −16.1 [−67.8, 57.1] for 6-day EE; p < 0.01, −79.9 [−129.7, −32.2] for 1-day EE).

By contrast, no significant effects of Housing Condition on Fos were observed for the IL 

(shallow layers: F3,42 = 0.91, p = 0.45, 11.3 [−30.2, 52.0] for 5-week EE, −10.5 [−50.6, 

21.8] for 6-day EE, −17.5 [−54.2, 10.5]; and deep layers: F3,42 = 0.61, p = 0.61, mean 

difference 7.7 [−33.4, 42.9] for 5 weeks EE, −5.0 [−48.2, 40.2] for 6 day EE, −17.7 [−57.0, 

13.9] for 1 day EE ), and OFC deep layers (F3,42 = 0.26, p = 0.86, 0.8 [−16.6, 27.4] for 5-

week EE, 5.6 [−14.7, 20.9] for 6-day EE, −3.3 [−19.5, 12.6] for 1 day EE), ACC shallow 
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layers (F3,42 = 1.11, p = 0.35, 9.9 [−10.9, 28.8] for 5-week EE, 18.7 [−9.4, 80.8] for 6-day 

EE, −10.4 [−30.8, 10.6] for 1-day EE ), and PL shallow layers (F3,42 = 0.33, p = 0.80, mean 

difference −7.4 [−48.9, 28.4] for 5-week EE; 7.3 [−41.8, 56.7] for 6-day EE; 12.3 [−32.0, 

47.9] for 1-day EE).

4 | DISCUSSION

A number of studies have revealed how acute EE exposure attenuates cue-dependent sucrose 

seeking (conditioned reinforcement) in rats (Grimm et al., 2008, 2013, 2016; Slaker et al., 

2016). Here we examined the effects of EE exposure on the ability of a non-response 

contingent cue to elicit sucrose seeking in the form of conditioned approach responding in 

mice. We found that 1-day, but not 6 day or chronic (5 weeks), EE exposure attenuated cue-

evoked sucrose seeking. In parallel, we saw decreases in neuronal activity in certain subareas 

of the prefrontal cortex in the 1-day group, but we did not observe any effects of EE on Fos 

in the NAc. More specifically, in the ACC and PL, 1 day (but not 6 day or 5-week EE) 

reduced Fos expression in the deep, but not shallow layers of the dorsal mPFC (dmPFC; 

ACC and PL). By contrast, in the OFC, all EE exposure conditions attenuated Fos in the 

shallow, but not deep layers. With these results, we shed new light on the potential prefrontal 

cortical mechanisms of how acute EE exerts its effects on motivated actions that are 

controlled (or at least elicited) by Pavlovian cues. Our findings, together with previous 

studies, highlight EE’s robust ability to impact across different motivational qualities of 

incentive cues (lever pressing for sucrose cues versus cue-evoked approach behavior) in 

different species (rats versus mice).

4.1 | Potential psychological mechanisms of acute EE effects

Changes in the perception of environmental stimuli can be evaluated in relation to prior 

experiences with other environmental stimuli. For instance, returning to work may feel 

rather mundane immediately following an exciting holiday. This type of “contrast effect” 

(Black, 1968; Flaherty, 1982) may provide a candidate mechanism for how acute EE 

diminished the impact of the sucrose-associated cue, and we can speculate about a number 

of ways this may have worked.

One possibility is that the contrast effect may arise from evaluations that are made between 

EE versus the test environment. In contrast to standard housing, EE allows increased 

opportunities to engage in naturalistic behaviors that satisfies the basic behavioral needs of 

animals, such as foraging and exploration (Nithianantharajah & Hannan, 2006). When 

placed in the test context, EE’s novel and stimulating experience may have rendered these 

mice to pay less attention toward familiar sucrose-associated cues and physical features of 

the test chamber, thus attenuating sucrose seeking.

Additionally, reductions in sucrose seeking may have been the result of changes in the 

perceived value of sucrose reward because of a direct contrast with EE experience. Indeed, 

based on the evidence of conditioned anticipatory responses that rats exhibit before entering 

EE housing (van der Harst et al., 2003), we might consider that EE experience can itself be 

rewarding in some manner. One caveat here is that it is difficult to directly compare the 

rewarding value of sucrose (an ingestive reward) against EE (reward gained through 
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exploratory experience) because they differ in in many ways, including their sensory 

modalities and time course. That said, the reduction in cue-evoked sucrose seeking is 

reminiscent of the “successive negative contrast effect” in which a behavioral response to a 

reward is attenuated due to experience with a larger reward (Black, 1968; Flaherty, 1982). 

On test day, our mice did not directly experience sucrose reward. However, we and others 

have shown that conditioned approach responses evoked by Pavlovian sucrose cues are 

under the control of retrieving a representation of the sucrose reward, as it is sensitive to 

devaluation manipulations (Sieburg et al., 2019). From this perspective, our mice may have 

attributed greater reward value to the recent EE experience compared with the retrieved 

representation of sucrose, thus resulting in a negative contrast effect (Grimm & Sauter, 

2020).

Somewhat consistent with these notions is that, in contrast to 1 day EE experience, 6 day EE 

or more chronic EE exposure did not attenuate sucrose seeking. These data indicate that in 

the 6 day and chronic EE conditions, the reductions in EE’s novelty as a result of prolonged 

exposure had modulated the contrast effects. When the test context is compared with a less 

novel and stimulating EE condition, mice may have paid close attention to environmental 

stimuli in the test context, and thus exhibited sucrose seeking. Alternatively, because novelty 

itself has rewarding properties (Jaegle et al., 2019), a possibility here is that the decreased 

novelty of EE resulted in its diminished reward value, and therefore reduced contrast.

4.2 | The implications of reduced activity in prefrontal cortex areas following acute EE

Our observed reductions in OFC and dmPFC Fos expression following acute 1 day EE 

exposure are consistent with a recent study which reported similar acute EE-mediated Fos 

reductions under conditioned reinforcement conditions (Grimm et al., 2016). As the 

inactivation of the OFC and dmPFC result in a reduction of various forms of cue-evoked 

reward seeking behaviors (Calu et al., 2013; Fuchs et al., 2004), our observed Fos reductions 

may indicate reduced motivation to seek sucrose. In the OFC, Fos reductions may reflect 

attenuation of the motivational qualities of the cue itself. In support of this idea, a previous 

study by Flagel et al found that cue-evoked OFC Fos mRNA expression is associated with 

cue-controlled sign tracking, when cues themselves become sought after (Flagel et al., 

2011). Additionally, we have observed reductions in OFC Fos expression following 

extinction of cue-evoked conditioned approach in sucrose conditioned mice, which may 

reflect reduced salience (or attention) to reward-associated cues (Ziminski, Hessler, et al., 

2017).

Our observed reductions in OFC and dmPFC Fos levels may provide clues about alterations 

in the wider motivational network in which the PFC serves as a critical node (Gourley & 

Taylor, 2016; Kalivas et al., 2005). First, these areas receive reciprocal excitatory 

connections with the basolateral nucleus of the amygdala (BLA) (Hoover & Vertes, 2007; 

Mcdonald et al., 1996). This area is necessary for guiding flexible behavioral responses that 

are dependent on retrieving a representation of a learned rewarding outcome, because lesions 

and inactivation of this area render animals insensitive to reward devaluation (Lichtenberg et 

al., 2017; Pickens et al., 2003; Wassum & Izquierdo, 2015). Therefore, reduced OFC and 
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dmPFC Fos expression may result from reduced BLA activity, which may signal contrasts in 

reward magnitude that result in decreased sucrose seeking.

We observed reductions in Fos from the deep layers of the mPFC, which receives 

considerably more dopaminergic input from the ventral tegmental area than the shallow 

layers (Van Eden et al., 1987). Fos expression of this area during food seeking is dependent 

on dopamine 1-receptor (D1-R) activation, as systemic D1-R antagonism attenuates this 

behavior, as well as Fos in the dmPFC (Nair et al., 2011). As such, our Fos reductions here 

may be indicative of reduced D1-R signaling. In support of this idea, D1-R agonism reverses 

the EE-mediated attenuation of cue-evoked sucrose seeking in operant-conditioned rats 

(Glueck et al., 2017). Finally, the deep layer neurons of the mPFC neurons project to 

motivationally-relevant subcortical structures such as the nucleus accumbens and PVT 

(Berendse et al., 1992; Gabbott et al., 2005; Otis et al., 2013). Thus, this Fos reduction may 

reflect reduced activity to these areas, which may then attenuate sucrose seeking.

In contrast to the mPFC, reductions in Fos were observed in the shallow layers in the OFC. 

The shallow layers contain a significant proportion of intra-cortical excitatory projection 

neurons (Douglas & Martin, 2004), and the OFC sends projections to the dmPFC (Bedwell 

et al., 2014; Hoover & Vertes, 2007). Given this connection, it is tempting to speculate that 

reduction in the activity of these shallow layer OFC neurons coordinates the dampening of 

sucrose seeking by reducing activity in the dmPFC. Thus, one interesting line of future 

investigation would be to selectively stimulate the activity of this OFC to dmPFC projection 

using chemo/optogenetic approaches and determine if this would be sufficient to override 

acute EE effects.

We have recently observed reductions in NAc Fos mRNA and Fos expression following 

extinction of conditioned approach and devaluation of sucrose reward, respectively (Sieburg 

et al., 2019; Ziminski, Hessler, et al., 2017). Hence, it was surprising that we did not detect 

any reductions in Fos in this structure. However, we and others have observed that different 

sets of cues recruit neurons with opposing behavioral responses or neurophysiological 

features in the absence of changes in Fos expression (Suto et al., 2016; Ziminski et al., 

2017). As such, EE may exert its effects via a different NAc neuronal mechanism compared 

with extinction and devaluation, i.e. selecting a new group of neurons without any changes 

in the number of activated neurons. Therefore, future studies need to determine this 

possibility using tools, such as the TetTag H2BGFP mouse, that label different groups of 

cue-activated neurons at different time points, i.e. before and after EE exposure (Tayler et 

al., 2013). Finally, Fos reductions in the NAc following acute EE have been reported in 

operant-conditioned rats that exhibited attenuated lever pressing for sucrose cues (Grimm et 

al., 2016). These differences may reflect the different neuronal substrates that subserve the 

conditioned reinforcing properties of the appetitive cues versus conditioned approach 

behaviors (Parkinson et al., 2000; Wassum et al., 2011). Also, unlike the previous study by 

Grimm et al., there was no difference in social enrichment between the EE and standard 

housing conditions. Therefore, this more pronounced difference in housing condition may 

have contributed to more robust differences in reductions in NAc Fos in their study.
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4.3 | The implications of reduced OFC activity across all EE conditions

In the OFC, reduced Fos was observed across all EE conditions. As the 6 day and chronic 

EE conditions did not exhibit alterations in conditioned approach compared with controls, 

this prolonged (days, weeks) exposure to EE produces neuronal adaptations independently 

from changes in motivation and/or reward value. Our findings here suggest that simply 

reducing activity in the OFC shallow layers is not sufficient to reduce sucrose seeking and 

highlight how Fos levels are not necessarily influenced by changes in behavioral output on 

test day. Mounting evidence from our group and others demonstrate that distinct, sparse sets 

of activated neurons or “neuronal ensembles” in the prefrontal cortex mediate cue-evoked 

reward seeking for food and drug rewards (Laque et al., 2019; Suto et al., 2016; Warren et 

al., 2016, 2019; Whitaker et al., 2017). These findings raise the possibility that while long 

exposure to EE may reduce activity in the OFC more generally, it may not necessarily do so 

in neuronal ensembles which subserves conditioned approach responses. To confirm this 

idea, further studies utilizing approaches, such as the TetTag H2BGFP mice (Tayler et al., 

2013), that allow tagging of cue-activated neurons and then monitor their reduction in 

activity following prolonged EE exposure need to be performed.

Finally, one caveat of this study is that we examined Fos expression following the expression 

of sucrose seeking. Hence, we do not know whether EE exposure itself modulated Fos 

expression prior to testing due to exposure to a novel environment. However, this possibility 

may not be likely because dmPFC Fos expression peaks at approximately 1.5–2 hr following 

a single exposure to a novel environment and stress exposure and returns to baseline in 18–

24 hr (Brebner et al., 2020; Cifani et al., 2012). Moreover, dmPFC Fos expression habituates 

in response to repeated exposure to a novel environment and returning to baseline levels 

(Struthers et al., 2005). In both cases, Fos expression returns to baseline, but does not 

decrease below these values. Another caveat here is that we only used male mice. Indeed in 

humans, women have reported to experience more cravings for sweet foods (e.g. chocolate) 

compared with men (Zellner et al., 1999). Of relevance to this study, female rats displayed 

more pronounced cue-evoked approach behavior during a sucrose conditioning task and 

under extinction conditions, indicating sex differences in the learning of food-cue 

associations and/or the motivational impact of such cues (Hammerslag & Gulley, 2014). 

Therefore, it is important in future studies to address whether there are differences in EE’s 

ability to modulate neurobehavioral responses to food cues between male and female 

animals, to determine how generalizable EE’s efficacy is.

5 | CONCLUSIONS AND FUTURE DIRECTIONS

We show that brief EE exposure powerfully reduces reward seeking induced by non-

contingent exposure to Pavlovian cues in mice by attenuating activity in the shallow and 

deep layers of the OFC and dmPFC respectively. Our study reinforces the effectiveness of 

EE as a non-pharmacological intervention that confers resilience against various forms of 

reactivity to food cues across species. In future studies, it would be important to determine 

which cortical (e.g. other PFC areas) and subcortical brain areas (e.g. NAc, amygdala) these 

Fos-expressing neurons project to using retrograde tracing approaches. Following such 

identification, the causal role of these pathways in EE’s suppressive effects can be 
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determined using chemo/optogenetic strategies. Doing so will obtain a more comprehensive 

picture of the wider PFC network that contributes to the reduced drive to seek sucrose. As 

food cue exposure can be a potent trigger for conditioned food cravings and eating (Jansen, 

1998; Jansen et al., 2011; Ridley-Siegert et al., 2015), identifying this network will provide 

the much needed insight into how the brain can harness its anti-craving mechanisms and 

better control excessive forms of eating.
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ACC Anterior cingulate cortex

AP Anterior posterior

CAS Conditioned approach score

CS Conditioned stimulus

dmPFC Dorsal medial prefrontal cortex

EE Environmental enrichment

IL Infralimbic cortex

ITI Inter-trial interval

mPFC Medial prefrontal cortex

NAc Nucleus accumbens

OFC Orbitofrontal cortex

PBS Phosphate buffered saline

PFA Paraformaldehyde

PL Prelimbic cortex

ROI Region of interest

SEM Standard error of the mean
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SH Standard housing

US Unconditioned stimulus
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FIGURE 1. 
(a) The environmentally enriched (EE) housing cage and the standard housing (SH) cage. 

Gray dashed arrows indicate the inside of the EE cage. 1 day, but not 6 day and 5 weeks, of 

EE attenuates sucrose seeking elicited by Pavlovian sucrose cues. (b) Experimental timeline 

for 5 weeks EE (administered before and during acquisition until test day), the 1 day and 6 

day EE (administered post-acquisition), and Standard Housing (SH) controls. (c) Approach 

Score as a function of the Acquisition session. (d) Approach Score on test day (n = 31, 20, 
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22, 26 for SH, 5 weeks, 6 day, and 1 day groups, respectively). *p < 0.05 against mice in the 

SH condition. All data are expressed as mean ± SEM
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FIGURE 2. 
EE differentially modulates Fos expression in the prefrontal cortex, but not nucleus 

accumbens (NAc), subareas following testing for sucrose seeking (n = 11–12 per group). (a) 

Fos expression in the prefrontal cortex and NAc. (b) Laminar-based analyses of Fos 

expression in prefrontal cortex subareas. Legend: OFC, orbitofrontal cortex; ACC, anterior 

cingulate cortex; PL, prelimbic cortex; IL, infralimbic cortex; NAcCo and NAcSh, nucleus 

accumbens core and shell, respectively. *p < 0.05, **<0.01, compared with mice in SH 

condition. All data are expressed as mean ± SEM
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FIGURE 3. 
Representations of coronal sections indicating regions used for Fos expression analyses in 

prefrontal cortex subareas adapted from Paxinos and Franklin (2001) (top panel). 

Representative images of Fos expression in prefrontal cortex subareas (bottom panel; white 

scale bar = 200 μm). Legend: II-III, shallow layers II-III; V-VI, deep layers V-VI
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