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Inflammatory airway diseases such as asthma affect more than 300 million people world-
wide. Inflammation triggers pathophysiology via such as tumor necrosis factor α (TNFα)
and interleukins (e.g., IL-13). Hypercontraction of airway smooth muscle (ASM) and ASM
cell proliferation are major contributors to the exaggerated airway narrowing that occurs
during agonist stimulation. An emergent theme in this context is the role of inflammation-
induced endoplasmic reticulum (ER) stress and altered mitochondrial function including
an increase in the formation of reactive oxygen species (ROS). This may establish a
vicious cycle as excess ROS generation leads to further ER stress. Yet, it is unclear
whether inflammation-induced ROS is the major mechanism leading to ER stress or the
consequence of ER stress. In various diseases, inflammation leads to an increase in
mitochondrial fission (fragmentation), associated with reduced levels of mitochondrial
fusion proteins, such as mitofusin 2 (Mfn2). Mitochondrial fragmentation may be a
homeostatic response since it is generally coupled with mitochondrial biogenesis and
mitochondrial volume density thereby reducing demand on individual mitochondrion.
ER stress is triggered by the accumulation of unfolded proteins, which induces a
homeostatic response to alter protein balance via effects on protein synthesis and
degradation. In addition, the ER stress response promotes protein folding via increased
expression of molecular chaperone proteins. Reduced Mfn2 and altered mitochondrial
dynamics may not only be downstream to ER stress but also upstream such that a
reduction in Mfn2 triggers further ER stress. In this review, we summarize the current
understanding of the link between inflammation-induced ER stress and mitochondrial
function and the role played in the pathophysiology of inflammatory airway diseases.
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INTRODUCTION

Inflammation triggers asthma pathophysiology via pro-inflammatory cytokines such as tumor
necrosis factor α (TNFα) and interleukin 13 (IL-13). Two hallmarks of asthma are human airway
smooth muscle (hASM) hypercontractility and cell proliferation (James, 2005; Joubert and Hamid,
2005; Black et al., 2012; Prakash, 2013, 2016; Wright et al., 2013a,b; Delmotte and Sieck, 2015).
It is likely that with asthma, hASM exists in both hyper-contractile and proliferative states, thus
contributing to a thicker, more contractile airway. An emergent theme in this context is the
role of inflammation-induced endoplasmic reticulum (ER) stress and mitochondria. Previously,
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we showed that cytokine exposure increases agonist-induced
hASM force and ATP consumption due to an increase in
contractile protein expression (Dogan et al., 2017). Initially,
the increase in hASM ATP demand is met by increased
mitochondrial O2 consumption and ATP production, but at
the expense of reactive oxygen species (ROS) formation and
oxidative stress. There is increasing evidence that mitochondria
and the ER, although structurally separate organelles, are
functionally interdependent units, which must establish links
for normal cellular function, including [Ca2+]cyt regulation,
energy production and cell proliferation (Hajnoczky et al.,
2000; Franzini-Armstrong, 2007; Romagnoli et al., 2007; Liesa
et al., 2009; Kornmann and Walter, 2010; Antico Arciuch
et al., 2012; Glancy and Balaban, 2012; Dorn and Maack, 2013;
Kornmann, 2013; Raturi and Simmen, 2013; van Vliet et al.,
2014; Filadi et al., 2017). These links are established through
specialized ER-mitochondria encounter structures (ERMES)
comprising both ER and mitochondrial transmembrane proteins
that provide a tethering force between the two organelles
to ensure proximity and communication (Franzini-Armstrong,
2007; Kornmann and Walter, 2010; Dorn and Maack, 2013;
Kornmann, 2013; Raturi and Simmen, 2013; van Vliet et al.,
2014; Filadi et al., 2017). Mitofusin-2 (Mfn2) is an ERMES
component that serves to tether mitochondria to the ER. Mfn2
also serves to fuse mitochondria, which together with other
fusion proteins [e.g., Mfn1, optic atrophy 1 (Opa1)] elongate
mitochondria making them more filamentous, whereas fission
proteins such as dynamin related protein 1 (Drp1) and fission
1 protein (Fis1) act to fragment mitochondria. Together these
fusion/fission proteins act to dynamically remodel mitochondria
under a variety of conditions (Smirnova et al., 2001; James
et al., 2003; Lee et al., 2004; Song et al., 2009; Sheridan
and Martin, 2010; Palmer et al., 2011; Ranieri et al., 2013).
The tethering of mitochondria to the ER allows mitochondrial
proximity to ER Ca2+ release sites representing a microdomain
of higher [Ca2+]cyt (“hotspot” > 2 µM) that is essential for
mitochondrial Ca2+ influx [by activating the mitochondrial Ca2+

uniporter (MCU)] (Raffaello et al., 2012). In the absence of
mitochondrial Ca2+ buffering, the transient [Ca2+]cyt response
to agonist stimulation is elevated, thereby enhancing hASM
force generation. This review will discuss the link between ER
stress, Mfn2 expression, mitochondrial tethering to the ER,
mitochondrial Ca2+ influx, and mitochondrial function in the
context of airway inflammation and potential consequences on
ASM hyper-contractile and proliferative states.

INFLAMMATION AND ER STRESS IN
HUMAN ASM

One consequence of inflammation is the unfolding of proteins
that accumulate in the lumen of the ER, exposing binding sites for
the chaperone protein, binding immunoglobulin protein (BiP).
With an accumulation of unfolded proteins, BiP dissociates from
three proteins localized at the ER membrane resulting in their
activation. The resulting physiological response referred as ER
stress or unfolded protein response attempts to restore normal

ER function by increasing chaperones proteins expression,
halting protein translation and activating protein degradation
(Yoshida et al., 2001; Bravo et al., 2012; Garg et al., 2012;
Verfaillie et al., 2012; Hasnain et al., 2013; Sano and Reed,
2013; Vannuvel et al., 2013; Delmotte and Sieck, 2015; Kim
and Lee, 2015; Zeeshan et al., 2016; Jeong et al., 2017; Navid
and Colbert, 2017; Shanahan and Furmanik, 2017; Morris
et al., 2018). These three ER stress protein markers involved in
this signaling cascade are: protein kinase RNA-like ER kinase
(PERK), activating transcription factor 6 (ATF6), and inositol-
requiring enzyme 1 (IRE1α, also called serine/threonine-protein
kinase/endoribonuclease IRE1α) (Figure 1) (Hai et al., 1989;
Nikawa and Yamashita, 1992; Cox et al., 1993; Harding et al.,
1999; Li et al., 2000). Phosphorylation of IRE1α (pIRE1α)
catalyzes the alternative splicing of XBP1 mRNA (XBP1s) and
expression of the active XBP1s transcription factor. Generally,
the pIRE1α/XBP1s pathway is associated with upregulation of
chaperone protein expression that serves to promote protein
refolding and restore ER homeostasis. The RNAse activity of
IRE1α is also involved in the regulation of mRNAs through a
mechanism called regulated IRE1-dependent decay of mRNA
(RIDD) (Hollien and Weissman, 2006). Interestingly, IRE1α

could also cleave several pre-miRNAs which could potentially
regulate a number of mRNA targets (Upton et al., 2012). As a
result, RIDD and therefore, ER stress could affect directly and
indirectly a large number of mRNA targets. ATF6 translocates to
the Golgi apparatus and is cleaved first by site 1 protease (S1P)
and second by site 2 protease (S2P) leading to an active ATF6
transcription factor. As for the pIRE1α/XBP1s pathway, the ATF6
pathway is usually associated with upregulation of chaperone
protein expression but also with autophagy, lipid synthesis and
endoplasmic-reticulum-associated protein degradation (ERAD)
(Yoshida et al., 2001; Bravo et al., 2012; Garg et al., 2012;

FIGURE 1 | Pro-inflammatory cytokines activate the pIRE1α/XBP1s ER stress
pathway in hASM, leading to increased PGC1α and reduced Mfn2 expression.
Reduced Mfn2 disrupts tethering of mitochondria to the ER, thereby
decreasing mitochondrial Ca2+ influx and reducing O2 consumption of
individual mitochondrion. Increased PGC1α induces mitochondrial biogenesis
and increases mitochondrial volume density to meet increased ATP demand.
Cytokines also increase hASM force and ATP consumption by increasing
contractile protein expression, thereby increasing energetic demand of
individual hASM cells. This is mitigated by inducing hASM cell proliferation.
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Verfaillie et al., 2012; Hasnain et al., 2013; Sano and Reed,
2013; Vannuvel et al., 2013; Delmotte and Sieck, 2015; Kim
and Lee, 2015; Zeeshan et al., 2016; Jeong et al., 2017; Navid
and Colbert, 2017; Shanahan and Furmanik, 2017; Morris et al.,
2018). The role of ATF6 in the upregulation of XBP1 and
the transcription factor C/EBP homologous protein (CHOP, ER
stress-induced apoptosis) is also well documented and reviewed
in Hu et al. (2018). Finally, PERK phosphorylates the translation-
initiator factor eukaryotic initiation factor 2 (eIF2α), resulting
in the translation of activating transcription factor 4 (ATF4).
ATF4 is involved in the upregulation of CHOP, ERAD and
mitophagy pathways (Adolph et al., 2012; Hasnain et al., 2012,
2013; Dromparis et al., 2013; Kim and Lee, 2015; Zeeshan et al.,
2016; Jeong et al., 2017; Navid and Colbert, 2017; Shanahan
and Furmanik, 2017; Hu et al., 2018; Morris et al., 2018). In
cell types other than hASM, inflammation has been shown to
induce ER stress (Adolph et al., 2012; Garg et al., 2012; Hasnain
et al., 2012, 2013; Baban et al., 2013; Martino et al., 2013).
These studies also demonstrated that the ER stress response is
highly variable depending on cell type, species and experimental
condition, which subsequently leads to various downstream
physiological effects. Inflammation-induced ER stress is most
likely a consequence of increased ROS generation (Adolph et al.,
2012; Garg et al., 2012; Hasnain et al., 2012, 2013; Baban et al.,
2013; Martino et al., 2013), although it is unclear whether ROS is
the only mechanism involved. In a recent study, we showed that,
TNFα selectively activates the pIRE1α/XBP1s in non-asthmatic
hASM cells (Yap et al., 2019). Whether cytokines other than
TNFα also selectively activate the pIRE1α/XBP1s pathway is not
known. Interestingly, TNFα increases superoxide formation in
hASM and Tempol, a superoxide scavenger, reduces the effect
of TNFα on the activation of pIRE1α/XBP1s pathway (Yap et al.,
2019). To date no other study has explored whether inflammation
induces ER stress in hASM and whether an ER stress response in
hASM cells from asthmatic patients exists and/or is affected by
inflammation. A few studies suggest that the ER stress response
is exaggerated in airway epithelial cells or immune cells in
the context of asthma (Kim and Lee, 2015; Jeong et al., 2017;
Pathinayake et al., 2018). In a mouse model of asthma, chemical
chaperones have been used to reduce the ER stress response
and attenuate airway hyperresponsiveness (Makhija et al., 2014;
Miller et al., 2014; Kim and Lee, 2015; Siddesha et al., 2016).

Mfn2 AND ER STRESS RESPONSE

In cells other than hASM, the relationship between the ER
stress response and mitochondria has gain considerable interest.
These previous studies have suggested that Mfn2 and altered
mitochondrial dynamics are upstream to ER stress such that a
reduction in Mfn2 triggers ER stress (Munoz and Zorzano, 2011;
Ngoh et al., 2012; Schneeberger et al., 2013; Bhandari et al., 2015).
In a recent study, we suggested that a reduction in Mfn2 in
hASM cells is downstream to ER stress (Yap et al., 2019), creating
the possibility of a vicious cycle with reduced Mfn2 expression
and altered mitochondrial function at the center. Currently, the
link between ER stress and downstream regulation of Mfn2

expression has been largely unexplored. A limited number of
studies have examined specific downstream targets of activation
of the pIRE1α/XBP1s pathway (Calfon et al., 2002; Fonseca et al.,
2005; Lipson et al., 2006, 2008; Zeng et al., 2009), but none
of these studies have examined effects on Mfn2 expression. As
mentioned above, TNFα selectively activates the pIRE1α/XBP1s
pathway and reduces Mfn2 expression (Yap et al., 2019), but how
IRE1α phosphorylation and XBP1 mRNA splicing affects Mfn2
expression has not been examined in any cell type. Potential
targets of interest include peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1α), mitophagy-
related proteins PTEN-induced kinase 1 (PINK1) and Parkin,
and miRNAs (Figure 1). Several studies found that XBP1s
increases expression of PGC1α (Arensdorf et al., 2013; Cheang
et al., 2017). Interestingly, PGC1α activates the PINK1/Parkin
mitophagy pathway, which is involved in ubiquitination of Mfn2
(Chen and Dorn, 2013; Basso et al., 2018; McLelland et al.,
2018). Similarly, a growing list of miRNA has been implicated
in the downregulation of Mfn2 but it is not clear if they are
expressed in hASM and whether XBP1 is involved in their
regulation (Kuhn et al., 2010; Dileepan et al., 2016; Purohit
et al., 2019). Previous studies have also shown that XBP1 induces
several miRNA but their potential effect on Mfn2 has not been
explored and again it’s not known if these miRNA are expressed
in hASM (Kuhn et al., 2010; Dileepan et al., 2016; Purohit
et al., 2019). The PERK and ATF6 pathway have also been
suggested to affect Mfn2 expression, either through PGC1α,
mitophagy or ERAD pathways (Morris et al., 2018). It is not
known if cytokines other than TNFα activate the PERK and ATF6
pathway in hASM and whether they are activated or amplified
in asthmatic hASM. Conversely, the effect of Mfn2 knockdown
on IRE1α phosphorylation and XBP1 mRNA splicing has only
been examined by four studies – two in neurons, and one each in
embryonic fibroblasts and Drosophila (Ngoh et al., 2012; Munoz
et al., 2013; Schneeberger et al., 2013; Bhandari et al., 2015).

Mfn2 AND DYNAMIC REMODELING OF
MITOCHONDRIA

In hASM, mitochondria are tubular or filamentous but this
mitochondria morphology is highly dynamic with mitochondria
constantly fusing (fusion) or breaking (fission) from one another.
Mitochondria morphology is therefore, the result of this balance
between fusion vs. fission (Chen and Chan, 2005; Chan, 2006,
2012; Liesa et al., 2009; Youle and van der Bliek, 2012). This
dynamic remodeling is thought to be essential for mitochondrial
DNA stability, respiratory function, and to adapt cellular stress
resulting from ROS formation (Chan, 2012). Mitochondrial
fusion involves the GTPases Mfn1 and/or Mfn2 responsible
for the fusion of the outer membrane, and optic atrophy
protein 1 (OPA1) for the fusion of the mitochondrial inner
membrane (Figure 2). Mfn1 is located only at the mitochondrial
outer membrane whereas Mfn2 is localized both at the
mitochondrial membrane and in the cytosol. The dimerization
of Mfn2 (Mfn2/Mfn2) and/or Mfn1 (Mfn1/Mfn2) tethers outer
membranes of neighboring mitochondria (Song et al., 2009;
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FIGURE 2 | In hASM, TNFα increases mitochondrial fragmentation (fission,
visualized using MitoTracker Red); an effect mediated through a reduced
expression of fusion proteins (Mfn2, Mfn1, and Opa1) and an increased
expression of fission proteins (Drp1 and hFis1).

Palmer et al., 2011; Ranieri et al., 2013). Mitochondrial fission
depends on the recruitment of cytosolic Drp1 by Fis1 to specific
positions around mitochondria and known as constriction sites
ultimately leading to fragmentation/fission of the mitochondria
(Smirnova et al., 2001; James et al., 2003; Lee et al., 2004;
Sheridan and Martin, 2010). The extent of fusion or fission of
mitochondria can be quantified using morphological parameters
such as form factor (perimeter2/4π×area) and/or aspect ratio
(ratio of long and short axis) (Koopman et al., 2005a,b, 2006).
We previously reported that Mfn2 expression was reduced in
asthmatic hASM, and that this was correlated with an increase in
mitochondria fragmentation (Aravamudan et al., 2014). A similar
increase in mitochondrial fragmentation in hASM cells was
observed after siRNA knockdown of Mfn2 (Aravamudan et al.,
2017). In a recent study, we also found that TNFα reduces
Mfn2 expression in hASM cells (Yap et al., 2019). As mentioned
before, the relation between ER stress and Mfn2 expression and
mitochondria fragmentation has been suggested but has not been
clearly established.

ROLE OF Mfn2 IN TETHERING
MITOCHONDRIA TO ER

There is converging evidence in other cell types that Mfn2 plays
an essential role in tethering mitochondria to the ER (Hajnoczky
et al., 2002; Patergnani et al., 2011; Raturi and Simmen, 2013;
van Vliet et al., 2014; Filadi et al., 2017). Mfn2 located at the ER
membrane can dimerize with Mfn2 (Mfn2/Mfn2) and/or Mfn1
(Mfn1/Mfn2) located at the mitochondrial membrane to tether
mitochondria to the ER. In hASM cells, a transient [Ca2+]cyt
response induced by 1 µM ACh stimulation is accompanied
by a transient [Ca2+]mito response (Delmotte et al., 2012;
Delmotte and Sieck, 2015). The transient [Ca2+]mito response
is blunted by inhibiting the MCU using Ru360. Mitochondrial
Ca2+ influx via the MCU (Baughman et al., 2011; De Stefani
et al., 2011) is only activated by microdomains of higher [Ca2+]cyt
(“hotspots” > 2 µM) (Gunter et al., 2000; Gunter and Gunter,
2001; Rizzuto and Pozzan, 2006; Gunter and Sheu, 2009; Rizzuto
et al., 2009; Giacomello et al., 2010), which exceed the normal
global transient [Ca2+]cyt response to agonist stimulation in
hASM (∼500–600 nM) (Pabelick et al., 1999; Sieck et al., 2008;
Sathish et al., 2009, 2011; Delmotte et al., 2012). Higher levels
of [Ca2+]cyt do occur after 24-h TNFα exposure in response

to muscarinic stimulation (Delmotte et al., 2012; Delmotte and
Sieck, 2015; Dogan et al., 2017; Sieck et al., 2019), but are still well
below levels required to activate the MCU (Gunter et al., 2000;
Gunter and Gunter, 2001; Rizzuto and Pozzan, 2006; Gunter and
Sheu, 2009; Rizzuto et al., 2009; Giacomello et al., 2010). However,
much higher levels of [Ca2+]cyt (“hotspots”) are observed in
regions in close proximity to the ER Ca2+ efflux channels (IP3
and RyR). Thus, during agonist stimulation, mitochondria must
be tethered to the ER in order to establish close proximity of
mitochondria to [Ca2+]cyt “hotspots” for mitochondrial Ca2+

influx. We previously showed that TNFα disrupts mitochondrial
proximity to the ER in hASM cells (Delmotte et al., 2017), but
this study only suggests the potential involvement of reduced
Mfn2 expression in hASM. Further studies will be necessary
to provide direct evidence for the involvement of Mfn2. In
hASM cells, it has not been established that Mfn2 is essential
for tethering mitochondria to the ER, and thus, for establishing
proximity of mitochondria to the ER and microdomains of higher
[Ca2+]cyt (“hotspots” > 2 µM). Such interactions are cell and
context specific, so establishing the role of Mfn2 in hASM is
critical. The potential effect of ER stress on microdomains of
higher [Ca2+]cyt, and mitochondrial Ca2+ influx is likewise not
clearly established.

EXCITATION-ENERGY COUPLING VIA
MITOCHONDRIAL Ca2+ INFLUX

Based on biochemical studies, it is well known that mitochondrial
production of ATP (oxidative phosphorylation) depends on
dehydrogenase enzyme activities of the tricarboxylic acid
(TCA) cycle (or citric acid cycle). Some of these dehydrogenase
enzymes [i.e., pyruvate dehydrogenase (PDH), NAD-isocitrate
dehydrogenase (ICDH), and oxoglutarate dehydrogenase
(OGDH)] are Ca2+ dependent (Rizzuto et al., 2000; Parekh,
2003; Franzini-Armstrong, 2007; Maack and O’Rourke, 2007;
Romagnoli et al., 2007). Additionally, an increase in [Ca2+]cyt
stimulates mitochondrial shuttle systems such as the glycerol
phosphate shuttle and the aspartate/glutamate transporters
resulting in an increase in NADH levels in the mitochondria
(Palmieri et al., 2001; Denton, 2009). Thus, mitochondrial
Ca2+ influx during transient elevation of [Ca2+]cyt stimulates
dehydrogenase enzyme activities within the TCA cycle and
increases, O2 consumption, electron transport chain (ETC) flux
and ATP production – excitation-energy coupling (Figure 3).
Conversely, it is well known that increased ATP consumption
leads to transport of ADP into mitochondria via the adenosine
nucleotide transporter (ANT), which stimulates ATP synthase
(complex V) activity to match ATP production with ATP
consumption (Figure 3). Together, these two energy sensing
pathways form a normal homeostatic mechanism for excitation-
energy coupling in a variety of cell types including hASM.
Pathophysiology and mitochondrial dysfunction involve
disruptions in these mitochondrial energy-sensing/signaling
pathways. As mentioned, most of these studies involved
biochemical studies and in some cases isolated mitochondria.
While they are critical in our understanding of mitochondrial
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FIGURE 3 | In hASM cells, the agonist-induced transient increase of [Ca2+]cyt

(excitation) is accompanied by activation of the mitochondrial Ca2+ uniporter
(MCU) and a transient increase in mitochondrial Ca2+ influx, thereby
increasing activities of mitochondrial dehydrogenases of the TCA cycle and
the electron transport chain (ETC). Mitochondrial O2 consumption and ATP
synthesis are also linked ATP hydrolysis (and therefore, hASM force) via
changes in the ATP/ADP ratio and the adenine nucleotide transporter (ANT).
A portion of the O2 consumed in the ETC results in ROS formation.

function, there’s a considerable need for new tools allowing
to studies these mechanisms within single mitochondrion
in live cells and tissues. A few imaging and/or molecular
tools to measure mitochondrial membrane potential 19m,
succinate dehydrogenase (SDH) activity (Sieck et al., 1986,
1989, 1995, 1996), ATP consumption (Jones et al., 1999a,b;
Dogan et al., 2017), ATP/ADP (Berg et al., 2009), and
NAD/NADH ratio (Hung et al., 2011; Cohen et al., 2018)
have been developed for use in live cells or tissue but have never
been used in hASM.

ROLE OF ER STRESS IN
MITOCHONDRIAL BIOGENESIS AND
INCREASED MITOCHONDRIAL VOLUME
DENSITY

A few studies reported that mitochondrial biogenesis in
asthmatic hASM is increased but the mechanisms mediating
this mitochondrial biogenesis were not explored (Trian
et al., 2007; Girodet et al., 2011). These studies also did
not examine mitochondria morphology and mitochondrial
fragmentation/fission. An increase in mitochondrial volume
density is an alternative mechanism to increase ATP production
to meet increased ATP demand in hASM after exposure to
pro-inflammatory cytokines. In this case, O2 consumption
in individual mitochondrion can be reduced to minimize
formation of ROS. Recent evidence also suggests that
reduced Mfn2 and mitochondrial fragmentation is required
for mitochondrial biogenesis (Antico Arciuch et al., 2012;
Peng et al., 2017), supporting our hypothesis that increased
PGC1α and reduced Mfn2 are a coordinated homeostatic
response to cytokine-induced activation of the pIRE1α/XBP1s
ER stress pathway.

CYTOKINE EXPOSURE INCREASES ROS
GENERATION IN hASM

A number of studies have reported that ROS generation increases
in asthmatic patients (Katsumata et al., 1990; Comhair and
Erzurum, 2010; Zuo et al., 2013) which has the potential to
triggers ER stress in hASM. We recently showed exposure of non-
asthmatic hASM to TNFα progressively increases superoxide
anion formation (Yap et al., 2019). We also found that incubating
hASM cells with Tempol (superoxide anion scavenger) mitigated
the effects of TNFα in inducing ER stress as well as the reduction
in Mfn2 (Yap et al., 2019). It is possible that an increase in ROS
generation is triggered, in part by increased ATP consumption
and mitochondrial O2 consumption. Acute activation of the
pIRE1α/XBP1s ER stress pathway leads to a transient reduction
in Mfn2 thereby decreasing: (1) mitochondrial tethering to the
ER (Figure 1); (2) mitochondrial Ca2+ influx (Figures 1, 3);
(3) TCA cycle dehydrogenase enzyme activity (Figures 1, 3);
(4) O2 consumption (Figures 1, 3); and as a result, (5) ROS
formation (Figures 1, 3). Without this homeostatic break on
mitochondrial O2 consumption, the increase in hASM force and
ATP consumption induced by pro-inflammatory cytokines will
increase ROS formation and further exacerbating ER stress.

CYTOKINE EXPOSURE INCREASES
hASM FORCE, ATP CONSUMPTION AND
TENSION COST

In previous studies, we showed that 24-h exposure of hASM
cells to TNFα increases both [Ca2+]cyt and force responses
to 1 µM muscarinic (ACh) stimulation (White et al., 2006;
Sathish et al., 2009, 2011; Delmotte et al., 2012; Jia et al., 2013;
Delmotte and Sieck, 2015; Dogan et al., 2017; Sieck et al.,
2019). However, hASM sensitivity to muscarinic stimulation
is also increased after TNFα, which largely accounts for the
enhanced [Ca2+]cyt response, but not the force response (Sieck
et al., 2019). In recent studies, we found that the increase
in ASM force induced by 24-h TNFα exposure is due to an
increase in contractile protein expression (Dogan et al., 2017;
Sieck et al., 2019). Importantly, the increase in hASM force
generation induced by TNFα exposure is associated with an
increase in ATP consumption and tension cost (Dogan et al.,
2017). This study used an NADH-linked fluorescence technique
in permeabilized hASM in which the level of Ca2+ activation
and force generation can be controlled. In previous studies, we
showed that in ASM force generation is directly related to ATP
hydrolysis rate (Jones et al., 1999a,b; Dogan et al., 2017). During
isometric activation of hASM, ATP hydrolysis rate is initially
faster and then declines with time to a sustained level even
though isometric force is maintained (the “latch” state). Thus,
there is a time-dependent decline in both ATP hydrolysis rate
and tension cost that is likely due to cytoskeletal remodeling
(Jones et al., 1999b). When actin polymerization in hASM is
inhibited, force decreases while ATP hydrolysis rate increases;
thereby increasing tension cost (Jones et al., 1999a,b). Normally,
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tension cost of hASM is dramatically lower than skeletal muscle,
but work efficiency is remarkably high (Sieck et al., 1998). Thus,
the energetics of hASM are perfectly suited to sustain force at
low energy cost. In hASM cells, an increase in ATP consumption
is met by stimulation of ATP synthase activity (complex V)
and an increase in O2 consumption and ATP production
(Figures 1, 3). However, stimulation of mitochondrial O2
consumption results in increased ROS formation that can
trigger protein unfolding and an ER stress response. Thus, we
propose that the pIRE1α/XBP1s ER stress pathway represents a
homeostatic response directed toward reducing O2 consumption
and ROS formation in an individual mitochondrion, while
increasing mitochondrial biogenesis and mitochondrial volume
density to meet the increase in ATP demand. This leads to the
question of how energy demand and supply are matched with
continued exposure to pro-inflammatory cytokines. Sustained
contractility at reduced tension cost is a hallmark of smooth
muscle function, and any perturbation should be met with
a homeostatic response. One possibility is that hASM cell
proliferation (hyperplasia response) provides a mechanism to
maintain contractility but at reduced ATP cost per cell.

ROLE OF Mfn2 IN hASM CELL
PROLIFERATION

Recent evidence suggests that Mfn2 affects several pro-
proliferative pathways and that dynamic mitochondrial
remodeling (balance between fusion and fragmentation/fission)
governs cell proliferation (Liesa et al., 2009; Antico Arciuch
et al., 2012). During cell division, the number of mitochondria
or therefore mitochondrial biogenesis needs to increase so each
subsequent cell has a similar number of mitochondria (Antico
Arciuch et al., 2012). As a result, mitochondria fuse then fragment
to generate more mitochondria. Two studies in vascular smooth
muscle show that Mfn2 is critical in cell division (Liesa et al.,
2009; Antico Arciuch et al., 2012). Notably, the authors show
that Mfn2 interacts with several pro-proliferative kinases such as
extracellular signal-regulated kinase (ERK1/2) and participates in
their inactivation (Liesa et al., 2009; Antico Arciuch et al., 2012).
As a result, overexpression of Mfn2 in vascular smooth muscle
inhibits cell proliferation (Liesa et al., 2009; Antico Arciuch
et al., 2012). Importantly, ERK1/2 activation is believed to play
a critical role in hASM proliferation induced by inflammatory
cytokines (Lee et al., 2001; Kip et al., 2005; Yu et al., 2013;
Dragon et al., 2014; Movassagh et al., 2014). While the relation
between ER stress and Mfn2 is not clearly established, studies
suggest that ER stress induces cell proliferation in many cell types
(Vandewynckel et al., 2013; Chen et al., 2018). Whether ER stress
induces hASM cell proliferation is unknown.

THERAPEUTIC APPROACHES
TARGETING ER STRESS

An increase in ROS generation is likely responsible for
inflammation-induced ER stress. Based on increased ROS

generation associated with asthma, the benefits of antioxidant
therapeutic have been explored (Heffner and Repine, 1989; Bast
et al., 1991; Buhl et al., 1996; Jain and Chandel, 2013). However,
one of the challenges with antioxidant treatment is specificity
both in terms of ROS targeting and localization (extracellular,
cytosol or mitochondrial). It is also now recognized that ROS
regulate many cellular signaling cascades and have the potential
to be more harmful than beneficial. An alternative therapeutic
strategy of reducing ER stress in ASM is the use of chemical
chaperone. Well tolerated even at high dose, chemical chaperones
are effective in reducing ER stress in vivo. Bunezile, the US
brand name for sodium phenylbutyrate or 4-phenylbutyrate (4-
PBA), is currently used for patients with urea cycle disorders.
Chemical chaperones such 4-PBA or tauroursodeoxycholic acid
(TUDCA) have gained considerable interest as a potential
therapy for a number of other diseases including but not limited
to cystic fibrosis [national clinical trial (NCT)00590538 for
4-PBA and NCT00004441 for TUDCA], amyotrophic lateral
sclerosis (NCT00107770 for 4-PBA and NCT03800524 for
TUDCA) and some types of cancer (NCT00006019 for 4-PBA).
A recent phase 1 clinical trial for TUDCA in patients with
asthma has been initiated (NCT03878654). Studies in mice
showed that 4-PBA attenuated airway inflammation and also
reduced airway hyperreactivity in mice model of asthma further
indicating a promising therapeutic role for chemical chaperones
in the pathogenesis of asthma (Hoffman et al., 2013; Kim
et al., 2013; Makhija et al., 2014). The effect of 4-PBA or
TUDCA on ASM were not examined and it’s not clear how
the chemical chaperone achieved its effect, further illustrating
the need to better understand how inflammation induces
ER stress in hASM.

CONCLUSION AND PERSPECTIVES

Inflammation, airway hyper-contractility and proliferative
remodeling are key aspects of airways diseases such as asthma.
The role of inflammation-induced ER stress with downstream
impact on Mfn2 and mitochondrial function is of particular
interest. The ER stress pathways have been implicated in a
growing number of downstream effects ranging from cell death
to cell survival. Mfn2 is involved in mitochondrial tethering
to the ER, mitochondrial Ca2+ influx, O2 consumption, and
ROS formation. Surprisingly, ER stress and Mfn2 have been
largely overlooked in hASM. Mitigation of inflammation-
induced ER stress in hASM may represent a novel target for
therapeutic intervention.
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