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Abstract: The brain undergoes ionizing radiation (IR) exposure in many clinical situations, particularly
during radiotherapy for malignant brain tumors. Cranial radiation therapy is related with the hazard
of long-term neurocognitive decline. The detrimental ionizing radiation effects on the brain closely
correlate with age at treatment, and younger age associates with harsher deficiencies. Radiation has
been shown to induce damage in several cell populations of the mouse brain. Indeed, brain exposure
causes a dysfunction of the neurogenic niche due to alterations in the neuronal and supporting cell
progenitor signaling environment, particularly in the hippocampus—a region of the brain critical
to memory and cognition. Consequent deficiencies in rates of generation of new neurons, neural
differentiation and apoptotic cell death, lead to neuronal deterioration and lasting repercussions on
neurocognitive functions. Besides neural stem cells, mature neural cells and glial cells are recognized
IR targets. We will review the current knowledge about radiation-induced damage in stem cells of
the brain and discuss potential treatment interventions and therapy methods to prevent and mitigate
radiation related cognitive decline.
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1. Introduction

Benefit to patients from medical uses of ionizing radiation (IR) has been established beyond
doubt. X-ray imaging, including computer tomography (CT) scans and nuclear medicine, is an
essential diagnostic instrument for numerous illnesses and has a crucial role in monitoring disease
and anticipating prognosis [1]. Moreover, radiation remains, along with surgery and chemotherapy,
an essential component of treatment of many types of cancers, with approximately 50% of patients
undergoing radiation therapy at some stage during disease [2].

In 2018, the prevalence of central nervous system (CNS) tumors was estimated in 3.5 per
100,000 men and women (all ages) [3]. Chemotherapy for brain tumors is generally restricted by
delivery obstacles associated with the blood-brain barrier (BBB) that precludes achieving sufficient
concentrations of chemotherapeutic agents in the tumors [4]. Therefore, although several parameters
(e.g., cancer site, type and stage) determine choice of the most appropriate therapeutic approach,
radiation therapy, beside surgery, remains a main treatment modality for tumors of the CNS and for
brain metastases [5,6]. The main objective of radiotherapy is to destroy tumor cells while inflicting the
least possible injury to neighboring normal tissues; however, this is often not achievable or feasible
[i.e., in case of total-body or whole-brain (WB) irradiation].

Neurocognitive defects are clearly linked with radiation therapy, particularly in children where
they represent a major detrimental side effect of life-saving procedures [7]. Cognitive decline may
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become manifest numerous months to years after irradiation and get progressively worse [8]. With
improvement of technologies (e.g., intensity modulated radiotherapy (IMRT), stereotactic radiosurgery,
intracranial brachytherapy and limited fraction size) normal tissue damage can be mitigated [2].
However, neurocognitive deficits, including learning, memory, spatial processing, and dementia still
persist [3]. Accumulating evidence in animal models suggests that radiation-induced cognitive decline
involves damage in multiple neural cell types, causing structural and functional alterations in the
brain blood vessels and in glial cell populations, reducing neurogenesis in the hippocampus, altering
neuronal function, and increasing neuroinflammation [9] (Figure 1). Overall, brain radiation injury
leads to a persistent alteration in the brain’s milieu, with inflammation playing a crucial role [10,11].
Therefore, identification of early treatments with potential to ameliorate or prevent IR-induced CNS
damage would be highly beneficial for cancer therapy outcomes [9,12].
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Figure 1. Potential mechanisms triggering radiation-induced cognitive impairment. Brain radiation
injury is multifactorial and complex, involving dynamic interactions between multiple cell types. Brain
irradiation may cause decline in oligodendrocytes and other glial cells, vascular damage, impaired
hippocampal neurogenesis, altered function of adult neurons, and neuroinflammation caused by
activated microglia. All these alterations likely contribute to the development of radiation-induced
cognitive impairment (upper arrow). Selected strategies to prevent or minimize radiation-induced
cognitive dysfunction are shown in the lower boxes, with data derived from both preclinical models
and human studies.

In this brief review, we will not be able to cover all topics of interest; rather, we have chosen to
focus our analysis on what additional data is needed to improve our understanding of the mechanisms
of human radiation-induced cognitive defects, particularly from the standpoint of altered neurogenesis,
and on potential strategies that may prevent degenerative processes and their progression to long-lasting
or permanent cognitive disability.

2. Neural Stem Cells

In spite of the relevance of IR-induced cognitive decline, a serious condition worsening over time,
the pathophysiology underlying the progression of this disorder remains scarcely understood, and,
despite efforts, truly effective preventive measures or ameliorating treatments are not yet available.
IR-induced reduction of brain stem/precursor cells, especially in the subgranular zone (SGZ) of the
hippocampus dentate gyrus, is thought to be responsible for decline in hippocampus-related functions,
i.e., learning, memory, and processing of spatial information [13]. IR-induced deficits in processes
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underlying these key functions in animal models are coupled with increased apoptotic processes in the
hippocampus [14]. Similarly, substantial and protracted stem cell reduction occurs in the subventricular
zone (SVZ) of the anterior lateral ventricles in a dose-dependent manner [15]. IR can also deeply
impact adult neurogenesis, mainly by preventing mitosis and integration of new neurons into the
circuitry of these critical regions [16–18], with long-lasting related sequelae for memory and learning.
This, at least in rodent models, is a fairly well consolidated picture.

The complexity of the progressive cognitive disability due to IR brain exposure cannot be fully
explained by alteration of a single cell type, and the pathogenesis of radiation-induced cognitive injury
is likely dependent on dynamic connections between multiple cell types (i.e., neurons, microglia and
astrocytes). The local microenvironment is increasingly being implicated in the functionality of these
cell types, which is orchestrated by a variety of crucial factors, comprising oxygen supply, nutritional
status, hormonal and trophic influences, but also through the cellular and humoral pathways of the
immune system [19,20]. Brain irradiation triggers a process that leads to uncontrolled activation
of microglia and substantial presence of macrophage-secreted cytokines. Studies in hippocampal
and cortical regions isolated from irradiated rat brains showed significantly upregulated expression
of inflammation markers interleukin 6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-α) [21]. Neuronal turnover can be prevented by a hostile microenvironment, for example that
fostered by chronic inflammatory response, and by apoptosis of neural cells. As a secondary result of
apoptotic death of microvascular endothelial cells, severe impairment of the BBB has been detected in
irradiated rats [22]. The BBB is made by the brain microvasculature that, due to peculiar anatomic and
physiologic features such as the intercellular tight junctions, selectively restricts the BBB paracellular
diffusion of compounds. Many systemic disorders are characterized by disruption of the BBB, whereby
plasma components, immune molecules or cells may enter the brain and consequently activate resident
microglia [23] resulting in a significant gap between hippocampus stem cells and their microvascular
supply, increased neuronal apoptotic death and reduced generation of new granule neurons by
neural stem cells through dysfunction of the neurogenic niche/niches. In depth understanding of the
molecular and cellular mechanisms involved in such effects may provide useful targets for possible
pharmaceutical and cellular intervention strategies preventing or improving IR-induced brain injury.

However, it should be pointed out that the anatomical and physiological differences among
species represent an important limiting issue in effective translation of fundamental research results
from animal studies to humans. Several key points deserve attention.

2.1. Human Adult Neurogenesis

In the 1960s, it was first discovered that, similar to other vertebrates, such as fish and amphibians,
adult neurogenesis also occurs in mammals: new nervous system cells continue to grow in the brain,
even as animals get older. It has since become generally accepted that the hippocampus is a brain
region wherein adult generation of new neurons occurs in humans as it does in animals. However,
while in many mammalian species hippocampal adult neurogenesis is well established and recognized,
evidence in humans is relatively sparse [24], and it is still debated. A report by Sorrells and colleagues
in 2018 showed that neurogenesis is absent from the adult human hippocampus [25], in line with
previous findings [26,27], and that hippocampal neurogenesis is also rare or absent in adult rhesus
macaque. In the same year, a study by Boldrini et al. [28] found that human neurogenesis persists into
old age. In 2019, two further articles showed persistent neurogenesis in the hippocampus of aging
brains and in patients with mild cognitive dysfunction and Alzheimer’s disease [29,30]. The paper by
Sorrells and colleagues raised heated discussions, and the controversy is not likely to be resolved in
the near future.

Indeed, assessing adult neurogenesis in humans is challenging. Major evidence originates from
studies using incorporation of thymidine analogs in the DNA of dividing cells, and from investigations
based merely on immunohistochemistry to detect cell proliferation markers in human brain tissue
obtained at autopsy. Studying postmortem brain tissues is hampered by several potential technical
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obstacles. Indeed, standardization of essential methodological requirements would be needed, e.g.,
the maximum premortem agonal period, maximum time elapsed from death to tissue fixation and
fixation times [31]. Once methods for sample collection are standardized, reconciling different
findings on the persistence of neurogenesis in the human adult brain will require more comprehensive
analyses, e.g., using single-cell RNA sequencing, overcoming the limitations of antibodies and marker
specificity as well as individual variability of marker expression, organizing open data repositories of
human neurogenomics, and establishing brain-tissue bank/s, open to researchers, from large patient
cohorts [32,33]. Advancements in non-invasive imaging and biomarker studies would also help
advance the field.

2.2. Radiation Effects on Cognitive Function

A number of epidemiological studies have been carried out to assess the risks for neurocognitive
decline or cerebrovascular disease (an important cause of disability and dementia) associated with
radiation exposure. The populations studied were mainly atomic-bomb survivors, cancer survivors
and occupational cohorts (reviewed in [22]). These studies largely agree with the notion that
ongoing/incomplete developmental processes in prenatal age or in childhood underlie the human
brain vulnerability to irradiation during younger ages. Moreover, the increased time for damage
to be expressed when exposure occurs at young ages increases the lifetime risks of developing
IR-induced long-term neurocognitive effects. In adults there is less compelling evidence, especially
from atomic-bomb survivors or occupational cohorts. Notably, the multimodal therapy protocols,
mostly adopted for brain cancers, hamper the interpretation of data on IR-induced cognitive dysfunction
coming from studies on cancer survivors [34–39] due to the arduous distinction between the
damaging effects of radiotherapy from those dependent on primary tumor, surgical procedures,
and chemotherapy [22].

Besides rodents, radiation effects on the brain have also been studied using healthy non-human
primates without chemotherapy or surgery as confounding factors. Robbins et al., using adult male
rhesus monkeys in a head irradiation study with 40 Gy in 5-Gy biweekly fractions for 4 weeks [40],
reported a substantial reduction in cognitive function. The rhesus monkeys showed pathology similar
to humans exposed to radiation and comparable cognitive decline. This followed a temporal pattern
similar to the cognitive sequelae of human intracranial radiotherapy patients, with early decline at
about one month from exposure, followed by temporary recovery in the next one-two months, and
progressive decline of performance through 11 months after irradiation. Neuropathologic changes that
could have served as the basis for those cognitive effects were published in a subsequent study [41]
and included severe multifocal necrosis of the forebrain, midbrain and brainstem. Early CNS damage
eventually preceding the cognitive deterioration observed in rhesus monkeys was not analyze; therefore,
it is not known which structure/cell type, if any, was initially affected.

A comparative view highlights the importance of using models other than rodents when
investigating the biological processes of adult neurogenesis. Non-human primates have strong
similarities with humans regarding anatomical, physiological and immunological features; social
behavior and cognitive functions also resemble those found in humans. Thus, they represent an
important translational model of human disease and a critical bridge between preclinical and clinical
research on IR-induced cognitive decline and approaches for its prevention/mitigation.

Of note, however, whereas adult neurogenesis is preserved among mammals, significant differences
remain between rodents, primates, and humans, highlighting how cautious we ought to be in
generalizing the results on adult neurogenesis from rodents to non-human primates and, finally, to
humans. Differences range from structural to functional. For the scope of this review, it is useful to
list only a few, comprising: the different dynamic of neuronal maturation, with much longer times in
non-human primates than in rodents, and lack of human data; the different cytoarchitecture of the SVZ
in rodents compared to primates; the migration of newborn cells from the SVZ to the olfactory bulb in
rodents and monkeys, with sparse evidence for humans; very pronounced striatal adult neurogenesis
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in humans compared to rodents and non-human primates (reviewed in [42]); finally, a different number
of neurogenic zones detectable in adult rodents, monkeys and humans [43] (Figure 2).Cancers 2020, 12, x  5 of 13 
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Figure 2. Schematic illustration of reported adult neurogenesis sites in rodent, monkey and
human brains. Neurogenesis takes place throughout life in the hippocampal dentate gyrus and
the subventricular zone (SVZ) in rodents and is generally accepted to take place in adult monkey
and human brains. The output of new neurons from the SVZ to the olfactory bulb is different
between humans and other mammals, and humans exhibit very pronounced striatal adult neurogenesis
compared to rodents and non-human primates (reviewed in [42]). A different number of neurogenic
zones can be detected in adult rodents, monkeys and humans; hypothalamus and substantia nigra in
rodents; amygdala, piriform cortex and inferior temporal cortex in monkeys; and striatum in humans.
This figure is inspired by the Scalable Brain Atlas website and its 3-D Composer.

3. Strategies for Preventive and Therapeutic Measures: Current Knowledge and Perspectives

3.1. Improvement of Techniques in Radiation Therapy

External beam radiation therapy is an essential part of treatment of brain tumors and brain
metastases [2,3]. Radiation techniques were initially based on 2D radiation therapy by means of
rectangular fields built on basic X-ray imaging for field placement verification. WB irradiation has
been used for many decades [44] and is still employed for treatment of patients with multiple brain
metastases and for prophylactic cranial irradiation of small-cell and non-small-cell lung cancer (SCLC,
NSCLC) patients [45]. Although shown to prolong survival, WB radiation therapy (WBRT) may be
associated with substantial cognitive impairment [45,46].

Advances in radiotherapy and imaging technology—from 3D conformal radiotherapy based on
CT imaging, through IMRT, to more sophisticated techniques—have radically improved delineation
of treatment volumes and delivery of highly conformal irradiation, reducing damage to adjoining
normal tissue [47]. Previous studies have suggested that techniques allowing selective avoidance of
the hippocampal neural stem-cell compartment cause a lower degree of cognitive impairment relative
to WBRT [13,48]. With the development of IMRT, volumetric-modulated arc therapy (VMAT) and
intensity modulated proton therapy (IMPT), hippocampal-sparing WBRT has been increasingly used
as an adjuvant to surgery in the treatment of primary brain neoplasms and in management of brain
metastases [49–51]. The results of ongoing randomized clinical trials will help to clarify the role of
hippocampal-sparing WBRT in cognitive preservation [45,46,52]. They will also potentially open the
way for other challenging radiotherapy technique trials.

Stereotactic radiosurgery (SR) allows delivery of highly conformal therapeutic doses to the target
by simultaneous exposure to multiple intersecting beams, with minimal radiation to surrounding
normal brain [45,46]. SR is increasingly used for patients with limited brain metastases (<5), with
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or without adjuvant WB radiation therapy, or with systemic therapy [45,53]. The combination of SR
and immune checkpoint inhibitors is progressively more used in the treatment of brain metastases,
based on reported synergistic effects between SR and immune system modulation [54]. These novel
strategies suggest the opportunity to delay or entirely avoid the deleterious neurocognitive effects of
WBRT administration.

3.2. Pharmacologic Interventions

The permanent cognitive decline that is often associated to brain radiotherapy is likely
multifactorial in its origins; thus, improved understanding of the mechanisms of IR-induced cognitive
decline will be needed in order to select candidate therapeutics. Figure 1 shows a summary of potential
therapeutic measures possibly preventing IR-induced cognitive dysfunction, with indication of the
known targeted alterations.

Experiments in rats showed that IL-6-mediated neuroinflammation alone blocks neuronal
differentiation of hippocampal NSCs and that administration of indomethacin, a non-steroidal
anti-inflammatory drug of common use, is partially effective in restoring neurogenesis after brain
irradiation [55]. Significant improvement in global cognition, memory and executive function with use
of α-tocopherol, the most abundant and extensively studied form of vitamin E, was observed in a phase
II trial of patients with temporal lobe radionecrosis following radiation therapy for nasopharyngeal
carcinoma, after administration prolonged for one year [56]. Prevention or reduction of oxidative
stress-induced brain damage has been reported following pre- or post-radiation treatment of mice
with α-lipoic acid; similarly, treatment of rats with melatonin was able to significantly reduce edema,
necrosis, and neuronal degeneration [22]. A major cause of IR-induced tissue damage is the generation
of reactive oxygen species. Reduced sensitivity to IR-induced damage in hippocampal-related functions
was shown in a study with knockout mice lacking the extracellular antioxidant enzyme superoxide
dismutase (EC-SOD KO) [57]. Subsequent interesting work by the same group undertook manipulation
of the redox balance in the hippocampus using a bigenic mouse model overexpressing EC-SOD (OE) in
the granule cell layer, in an overall EC-SOD-deficient environment. They showed that OE and KO mice
exhibit similar hippocampal-related functions following cranial irradiation; molecular examinations
suggested that this may be governed by distinct mechanisms, with neurotrophic factors influencing IR
responses in OE mice and dendritic maintenance playing an important role in the KO environment [58].

The blockade of the renin-angiotensin system (RAS) can effectively modulate radiation-
induced brain injury, presumably through inhibition of renin-angiotensin system-mediated
neuroinflammation [59]. In the brain, RAS is involved in modulation of cognition and memory [60].
Blockade of the RAS using either angiotensin converting enzyme inhibitors (ACEi) or angiotensin II
receptor blockers (ARB) has been used in cranially-irradiated rats. Chronic administration of the ACEi
ramipril starting 24 h postirradiation reduced the deleterious effects of a total-body single dose of 10 Gy
on neurogenesis in the rat dentate gyrus but did not prevent neuroinflammatory effects [61]. More
recently, ramipril administered before, during, and after fractionated WB irradiation (cumulative dose
of 40 Gy) prevented both radiation-induced cognitive impairment and increased microglial activation,
despite reduced hippocampal neurogenesis in the context of pharmacologic blockade of angiotensin
II-mediated inflammation [62], suggesting that both the radiation dosing scheme and the timing/dose
of ramipril administration may modulate the effects of treatment. Finally, while ARB L-158,809 was
able to mitigate cognitive dysfunction after rat WB irradiation with a dose of 10 Gy [63], the drug did
not improve the neuroinflammatory microglial response or restore hippocampal neurogenesis [64]. The
ramipril data strongly suggest that the detrimental effects of IR on cognition could involve alterations
in neuronal subsets with higher degree of maturation—in addition to neurogenic niches—that may
collectively influence the structural and synaptic plasticity of the IR-exposed CNS [65].

New therapeutic strategies may also evolve from extrapolation of results from other CNS diseases.
The peroxisomal proliferator-activated receptors (PPARs) are ligand-activated transcription factors
producing anti-inflammatory and neuroprotective effects in several CNS disorders [66]. Administration
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of PPARα agonist fenofibrate following a WB dose of 10 Gy initially prevented the decrease of
hippocampal neurons and inhibited microglial activation in mice [67]. Later on, in a study of
fractionated WB irradiation of rats with a higher total dose (40 Gy, two 5 Gy fractions/week for 4 weeks),
Greene-Schloesser et al. showed that fenofibrate prevented radiation-induced cognitive deficits but
did not mitigate reduced neurogenesis or increase in activated microglia compared with non-drug
treated rats [68], highlighting the necessity to look at different brain regions and not the hippocampus
alone when investigating IR-induced cognitive dysfunction. Oral administration of the PPARγ agonist
pioglitazone, before, during or following fractionated WB irradiation (40 Gy) significantly improved
cognitive impairment relative to untreated irradiated rats [69].

Minocycline is a tetracycline antibiotic with inhibitory effects on the brain’s microglia and is
currently being investigated as treatment for depression [70]. In preclinical studies, radiation-induced
neuronal apoptosis was significantly inhibited in rats (WB single dose of 20 Gy), leading to decreased
apoptosis of newborn neurons and improved cognitive performance [71], effects that were activated by
enhancement of radiation-induced AMPKα1-mediated autophagy [72]. A recent study in mice with
neural-specific deletion of the autophagy related 7 (Atg7) gene, WB irradiated with a single dose of 6 Gy,
showed prevention of IR-induced neural stem and progenitor cell death, suggesting autophagy as a
possible target to counteract IR-induced neural cell death and related neurocognitive dysfunction [73].

Acetylcholinesterase inhibitors, e.g., donepezil, are being pursued as they have produced some
positive results in Alzheimer’s and other dementias [11]. Acetylcholine precursors have also found
frequent use for treatment of stroke and many types of dementia. Plangár et al. showed neuroprotective
effects of L-alpha-glycerylphosphorylcholine against increased macrophage density, reactive gliosis,
calcification and extent of demyelination in an experimental rat model treated with 40-Gy partial-brain
irradiation [74].

Recently, small-molecule tropomyosin receptor kinase B (TrkB) agonist 7,8-dihydroxyflavone
(DHF) has attracted substantial interest as a new possible option for management of traumatic brain
injury [75]. Cognitive impairments following cranial irradiation of mice (5 Gy γ rays) could also be
mitigated by treatment with DHF by activating TrkB signaling and downstream survival PI3K/Akt or
Erk pathways, thus decreasing neuronal damage [76]. Spatial, contextual, and working memory were
significantly rescued by DHF treatment, and the beneficial effects were persistent (i.e., three months
after end of treatment).

Memantine is approved in the US and the EU for treatment of mild-to-moderate
Alzheimer’s disease. The neuroprotective effects of memantine are attributed to the blockade of
N-methyl-D-aspartate receptor, which is involved in learning and memory [77]. A randomized,
double-blind, placebo-controlled study revealed that administration of memantine during and after
radiation therapy to the whole brain prompted improved cognitive performance, delaying time to
cognitive dysfunction and decreasing the rate of decay in memory, executive function, and processing
speed [78]. Memantine administration and WB radiation therapy with and without hippocampal
sparing are currently being examined in a clinical trial (NRG CC-001) [11].

Selected strategies to prevent or minimize radiation-induced cognitive dysfunction are summarized
in the lower boxes of Figure 1.

3.3. Stem-Cell Transplantation Approaches

Restoration/increase of neurogenesis by stem cell transplantation is an area of growing interest in
the field of neurocognitive decline, representing a promising approach to replenish lost neurons in cases
of neurodegeneration or injury. Regarding radio-neuroprotection, it has been shown that transplantation
of human neural stem cell mitigates IR-induced cognitive decline in head irradiated mice [79,80].
Matching the results obtained from other CNS disorders (i.e., stroke, Huntington’s, Alzheimer’s
and Parkinson’s disease, but also aging), the transplanted neural stem cells are not only capable of
differentiating into neurons, but also evolve into different neural cell types, e.g., oligodendrocytes,
astrocytes and endothelial cells [81]. Similar neuroprotective effects after head-only irradiation were
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shown in recent work involving intrahippocampal transplantation of microvesicles secreted from
human neural stem cells. The transplanted microvesicles were hypothesized to act through a trophic
support mechanism contributing to reduce inflammation and preserve the host neuronal structure. In
immunodeficient rats, transplantation of microvesicles to ameliorate cognition, as compared to direct
engrafting of human neural stem cells, may circumvent the risk of teratoma formation in the brain and
minimize immune rejection, which would then require immunosuppression [82]. Oligodendrocyte
progenitors derived from human embryonic stem cells engrafted into the forebrain and cerebellum
of young rats were shown to remyelinate the irradiated brain and to ameliorate cognitive deficits,
while rescue of motor coordination required concurrent oligodendrocyte progenitor injections into
the cerebellum [83]. Soria et al. showed that intranasally delivered human mesenchymal stem cells
could promote repair of IR-induced brain damage in mice, improving neurological function and
conferring protection against inflammation, oxidative stress, and neuronal loss [84]. Treatments using
stem-cell therapies suggest that the IR-induced decrease in neurogenesis can be prevented, but it will
take more research before they are successfully translated to the clinic. The safety and the efficacy of
mesenchymal stem cell therapy in humans are currently been investigated in seven ongoing clinical
trials. Intravenous stem-cell administration has been adopted in the majority of them, as this is a
much less invasive procedure than intracranial injections [85]. The completion of these important
clinical studies will help address the potential of stem-cell therapy for mitigation of neurocognitive
impairment in humans.

4. Summary

Although the evidence of the involvement of adult neurogenesis in cognitive processes in rodents
is substantial, there is also a significant body of evidence indicating the opposite (reviewed in [42]).
For example, performance in the Morris water maze, as well as in other tests of memory and learning
was not altered by genetic impairment or ablation of neurogenesis [86,87]. To explain the reason(s)
for such discrepancies we should consider that the CNS includes several structures that are possibly
sensitive to radiation. Differentiated neurons may not be inert to radiation as previously thought; thus,
neuronal dysfunction and not neuronal loss can be, to some extent, the driver of radiation induced
cognitive impairment [88,89].

These findings suggest that radiation-induced cognitive decline may be associated with adult
neurogenesis to a variable degree, from no connection to being highly dependent on the incorporation
of new neurons in the hippocampus or other key neurogenic zones, depending on the status of
brain parenchyma, neuroinflammatory conditions, the appropriate choice of behavioral tests, strain
variability, time of sampling, and remaining technical problems.

5. Conclusions

Brain radiation injury is multifactorial and complex and is characterized by a range of
molecular/cellular/tissue alterations. A number of encouraging therapeutic approaches against
late effects on the irradiated brain have been developed. However, these have been investigated mostly
in rodents, with the notable disadvantage that this model lacks anatomic and physiological similarity
to humans [22,41], which limits translation of the findings. A better understanding of the relevance of
hippocampus neurogenesis in radiation-induced neurocognitive effects in different species is needed,
but this will presumably not be accomplished in the short-term. Elucidation of involved cellular and
molecular mechanisms will help development of new preventive and therapeutic methods mitigating
the adverse long-term sequelae of brain irradiation. Because several medical disorders with a high
accumulative burden of disease, like stroke, HIV infection, traumatic brain injury, and many others,
are characterized by altered hallmarks of neuroinflammation, targeting neuroinflammation should
remain central in preventing/mitigating radiation-induced cognitive development before new light is
shed on the frequently detected dissociation between neurogenesis status and cognitive performance.
New therapeutic strategies may also evolve from extrapolation of results from other CNS diseases
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or from stem-cell approaches. Progress from all these fields may help suggest further possible ways
of intervention.
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