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Abstract

We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional
surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional
cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and
crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins
activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if
activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that
the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such
excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency
of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i)
monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing
in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular
distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling
proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become
distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of
molecules around the receptor.
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Introduction

Several living systems can sense and respond to environmental

variations by means of internal biochemical processes. The

adaptation of cells and the cell fate determinations in multicellular

organisms (e.g., cell proliferation, differentiation, and apoptosis)

are typical behaviors regulated by intracellular signal transduction

processes [1–6]. These simultaneous internal biochemical process-

es require the synthesis and interaction of a number of different

proteins on various biomembranes and in the cytoplasm involving

several macromolecules, the cytoskeleton, and organelles.

Recent studies suggest that the volume fraction of macromol-

ecules in individual cells is much higher than that under typical in

vitro conditions [7–26]. The total volume concentration of

macromolecules in a typical cell is estimated to be 50–400

mg=mL, whereas under typical in vitro conditions, it is estimated as

1–10mg=mL [7]. Such a high volume fraction of molecules,

commonly called ‘‘molecular crowding’’, gives rise to extreme

spatial restrictions. Thus, the diffusion and deformation (reaction)

of molecules in the cytoplasm are highly suppressed [8–21]. Such

spatial restrictions are also expected to enhance protein folding

[22,23], protein formation, stabilization of the intracellular

architecture [24], and processive phosphorylation of ERK MAP

kinase [25,26].

The transduction of signals from the extracellular environment

starts with the activation of receptors and signaling proteins on the

cell membrane. Thus, the sensing and response of cells are

dependent on the effective transport and reaction of signaling

proteins in a 2-dimensional space. Recently, imaging measure-

ments of macromolecules on the cell membrane have been

performed extensively [27–37]. In some of these measurements,

the typical motion of membrane proteins was revealed to be

subdiffusive [34–37]. This observation implies the existence of

intrinsic membrane domains, such as raft or nonimaged

molecules, which restrict the observed molecular motions by

means of their excluded volumes. Thus, to better understand the

performance and mechanisms of the upstream part of the signal

transduction processes, the excluded volume effects of molecules

on the reaction and diffusion dynamics of 2-dimensional systems

should be clarified.

In this paper, we investigated the influences of the excluded

volume of molecules on biochemical processes using a simple

model of typical signal transduction processes on the biomem-

brane. In the next section, we provide a brief introduction of G

protein-coupled receptor (GPCR) signaling processes as a typical
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signal transduction process on the cell membrane and construct a

model inspired by these processes. In the third section, we perform

the simulation of the model and the analysis of a more simplified

model. The summary and conclusion are presented in the final

section.

Model and Simulation Method

Typical signal transduction processes on the
biomembrane

In this section, we introduce a simple model of biochemical

reaction processes that mimics the GPCR signaling processes on

the biomembrane. GPCR signaling processes are typical signaling

processes that play important roles in adaptations to environmen-

tal variations. The followings is a brief introduction to these

processes.

G proteins and GPCRs constitute large protein families of

guanine nucleotide-binding proteins and their receptors [38,39].

GPCRs sense extracellular signals (light-sensitive compounds,

odors, pheromones, hormones, and neurotransmitters). The

GPCRs activated by the extracellular signals activate G proteins

by exchanging GTP in place of the GDP on G proteins. The

activated G proteins usually separate into the a subunit (Ga-GTP)

and bc complex (Gbc). Both Ga-GTP and Gbc activate different

second messenger or effector proteins. The second messengers of

some signaling pathways are located on the membrane and

unbind from the membrane following activation in order to

transfer the signals downstream of the signaling pathway to genes

through lower hierarchical signal transductions. The GTP binding

to Ga is hydrolyzed and becomes GDP, and then Ga-GDP binds

to Gbc. The inactivated G protein, i.e., Ga-GDP-binding Gbc, can

rebind to the GPCR.

The abovementioned signaling processes can be summarized as

the following: i) The signaling proteins (G protein) activated by the

receptor (GPCR) activate the target proteins (second messengers)

on the membrane. ii) The activated target proteins unbind from

the membrane to transfer the signal downstream of the signaling

pathways. A similar reaction cascade is also involved in the EGF-

RAS-RAF signaling process on the membrane [40–43]. Based on

these facts, we constructed a simple model of the membrane signal

transduction processes containing only typical molecular process-

es, as described in the next subsection.

Reaction scheme of the model
The model consisted of active and inactive receptors (R� and R),

active and inactive signaling proteins (S� and S), bound and

unbound target proteins (T and T�), and nonreactive molecules

(crowder, C), which diffuse and react in a 2-dimensional space.

Here, each molecule, R, R�, S�, S, T , and C, possessed its own

volume. These molecules moved randomly under the restriction of

their excluded volumes. Specifically, the distance between the

centers of 2 molecules could not be smaller than the sum of their

radii of inertia.

The signal transduction process is described as a cascade that

follows the activation of receptors to the unbinding of activated

target proteins from the membrane through the following

reactions (Figure 1).

(A) A receptor autonomously changes from active to inactive,

and vice versa, with the reaction rates kR and kR� ,

respectively, described by

R
kR

R�, ð1Þ

and

R�
kR�

R: ð2Þ

(B) When an inactive signaling protein makes contact with an

active receptor, this signaling protein is activated with the

reaction rate kS . The active signaling protein autonomously

becomes inactive with the reaction rate kS� . These processes

are described by

R�zS
kS

R�zS�, ð3Þ

and

S�
kS�

S: ð4Þ

(C) If an empty space exists on the membrane, a target protein

autonomously binds there with the rate Pin. When a target

protein makes contact with an active signaling protein, this

target protein is activated with reaction rate kT . The target

protein unbinds from the membrane as soon as it is

activated. In the absence of activation, the target protein

autonomously unbinds from the membrane with the

reaction rate Pout. These processes are described by

(empty space on membrane)
Pin

T , ð5Þ

S�zT
kT

S�zT�

?S�(T� immediately unbinds from membrane),

ð6Þ

and

T
Pout

(T unbinds from membrane): ð7Þ

Figure 1. Illustration of the signaling pathway considered in
this study. (1) The extracellular signal is transferred via activation of
the receptor (Equation [Eq.] 1). (2) Autonomous inactivation of the
receptor (Eq. 2). (3) Activation of the signaling protein by the active
receptor (Eq. 3). (4) Autonomous inactivation of the signaling protein
(Eq. 4). (5) Stochastic binding of the target protein from the cytoplasm
to the membrane (Eq. 5). (6) Activation and unbinding of target
proteins by active signaling proteins (Eq. 6). (7) Autonomous unbinding
of the target protein (Eq. 7).
doi:10.1371/journal.pone.0062218.g001
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Pin is proportional to the rate of target protein binding to lipids

in the membrane when they collide with each other. This rate Pin
0

in termed. Pin
0=Pout denotes the affinity between a target protein

and the membrane. Moreover, Pin is proportional to the number

density and the diffusion rate of the target protein in the

cytoplasm. Thus, Pin indicates the effective binding rate of the

target protein, which depends on the molecular species and cell

species, and cell conditions. We assume that Pin varies in the range

of 0–1, where Pin~1 indicates that the Pin
0 is large enough and/or

that the number density of target proteins in the cytoplasm is high

enough. We have also noted that the diffusions of molecules in the

cytoplasm are much faster than those on the membrane.

Subsequently, the target proteins in the cytoplasm tend to

distribute uniformly and collide frequently with the membrane.

Thus, in this model, we assumed that Pin is uniform in space.

Cell-based model
We have used a 2-dimensional cell-based model [44,45] to

describe the diffusion and reactions of active and inactive receptors

(R� and R), active and inactive signaling proteins (S� and S), target

proteins (T ), and crowders (C) on the membrane. The space was

divided into N 2-dimensional hexagonal cells as shown in Figure 2.

We defined the boundary condition of the system as periodic.

Each cell could contain only one molecule, which represented the

excluded volume effect. Each molecule randomly hopped from

one cell to a neighboring empty cell or reacted in the manner

indicated by Equations 1, 2, 4, 5, or 7. Reactions 1, 2, 4, and 7

occurred spontaneously with the given reaction rates, whereas 2-

body reactions 3 and 6 occurred when 2 corresponding molecules

existd in adjacent cells. No reaction occurred by the crowders. In

the empty cells, reaction 5 occurred at the rate Pin.

Simulation method
To simulate the present cell-based model, we used the Monte-

Carlo method. The temporal evolution of the system progressed

by the iteration of the following steps.

(0) R and S are distributed randomly to yield the initial

condition.

(i) One of the cells is chosen randomly.

(ii) If this cell contains molecule S or T , the corresponding 2-

body reactions, 3 or 6, occur at a rate determined by the

product of its given [reaction rates] | [the number density of

the corresponding catalyst on the six neighboring cells]. T� is

removed from this cell as soon as it appears.

(iii) If this cell contains molecule R, R�, S�, or T , the

corresponding reaction, 1, 2, 4, or 7, occurs with its respective

reaction rate. Reaction 7 indicates that T is removed from this

cell.

(iv) If this cell contains a molecule but no reaction occurs, this

molecule moves randomly to one of the 6 neighboring cells as

long as the chosen cell is empty.

(v) If this cell contains no molecule, the binding process of a

target protein 5 occurs with the reaction rate Pin. This indicates

that T becomes bound to this cell with the reaction rate Pin.

In each time step, (i)–(v) are iterated N times, where N is the

number of cells. We defined the time step of the system as t when

(i)–(v) were iterated tN times from the initial condition. In this

study, we assumed the length of each cell was *1nm, and order of

unit time step was *10{{100ms (details are provided in Text

S2).

We definde the signal flow, J, as the average frequency of target

proteins per receptor. J at time t is derived from [Number of

activations of target proteins between t and t+1]/[Number of

receptors]. We also defined the ‘‘occupancy’’ of molecules r as

[Total number of molecules in the system]/N, and the occupancy of

molecule X as ½X �~ ½Number of moleculeX in the system�=N.

In the cell-based model, this value was used as an index of the

crowding of molecules instead of the volume fraction of molecules

frequently measured in experiments. It was assumed that the

volume fraction of molecules in the system and their occupancy in

the corresponding cell-based model were positively correlated. The

rough estimations of the volume fractions of molecules from the

occupancy in simple molecular systems are stated in Text S2.

Recently, there have been few experimental observations of the

total volume fractions of molecules on cell membranes. However,

such aspects are naturally expected to depend on the specificity of

molecules around the membrane and on cellular conditions. In the

present model, the effects of such specificities are described by the

parameters Pin and Pout, and the occupancy of signaling proteins

remaining on the membrane. Thus, in the present study, we

systematically varied these parameters in order to consider the

possible reaction behaviors on a biomembrane in several possible

situations.

Results and Discussion

Simulation result
In this section, we consider the typical properties obtained

through the simulation of the model, which did not include

crowders. We focus on the steady-state signal flow J , defined as the

average frequency of the target proteins activations per receptor,

and the total occupancy of molecules, r, for several values of

signaling protein occupancy, ½Stot�~½S�z½S��, the effective

binding rate of the target protein, Pin, and autonomous unbinding

rate of the target protein, Pout. For simplicity, some parameters

were fixed: kR~1, kR�~0, kS~0:3, kS�~0:3, kT~0:3 and

N~1600. Here, kR~1 and kR�~0 indicate that all receptors are

always activated. The qualitative results are unaffected by these

parameters if kR is large enough and kR� is small enough, i.e.

signals are input frequently from outside the cell. We also assumed

that the occupancy of the receptor was a low value, ½Rtot�~0:01,

as recent experimental observations have reported that the volume

fraction of receptors on the cell membranes is estimated as a few

percent [46–51]. However, the following arguments are qualita-

tively independent of these details.

Figure 2. Illustration of the cell-based model. The membrane is
described as a hexagonal lattice surface. Each cell can contain only one
protein. R, inactive receptor; R�, active receptor; S, inactive signaling
protein; S� , active signaling protein; T , target protein; and C, crowder.
doi:10.1371/journal.pone.0062218.g002
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If we assume that the effect of the spatial distribution and

excluded volume of molecules can be neglected, the signal flow is

obtained by the mean-field analysis as

J~kT ½T �½S��~
aPin(1{½Rtot�{½Stot�)

PinzPoutza
,

a~
kRkSkT ½Rtot�½Stot�

kRkS�zkR�kS�zkRkS½Rtot�
:

ð8Þ

Here, the derivation of this form is provided in Text S1. This

result indicates that J is a monotonically increasing function of Pin

that takes place in the form of a Michaelis-Menten-type equation

independent of the values of the reaction rates, ½Stot�, and Pout. On

the other hand, the simulations results of the presented model

deviate considerably from those expected by mean-field analysis,

as described below.

Figure 3A and 3B depict J and r as functions of Pin obtained by

the simulation for the parameter sets (½Stot�,Pout)~(0:45,10{2)

(red plus), (0:15,10{4) (green cross), and (0:45,10{4) (blue circle).

As shown in Figure 3, unlike the result obtained by the mean-field

analysis, there are 3 typical J variations with the increase in Pin, i)

increasing monotonically, ii) increasing then decreasing in a bell-

shaped curve, and iii) increasing, decreasing, then increasing in an

S-shaped curve. Figure 4 illustrates the phase diagram of the J–Pin

relationship at each ½Stot� and Pout. Here, J exhibits a monotonic

increase for a case of large Pout, a bell-shaped curve when both the

½Stot� and Pout are small, and an S-shaped curve for the case of a

large ½Stot� and small Pout.

Spatial organization
The finding in the previous subsection implies the existence of a

spatially nonuniform distribution of molecular species. Thus, to

observe the characteristic spatial distributions of molecules, we

measured the radial distribution function of each molecular species

around each receptor. The radial distribution functions of the

signaling proteins and target proteins around the receptor, dS(r),
and dT (r), are defined as

dS(r)~
SrS(r)zrS� (r)T

½Stot�
, ð9Þ

dT (r)~
SrT (r)T
S½T �T , ð10Þ

respectively. Here, rX (r) (X~fS,S�,Tg) indicates the local

occupancy of molecule X at a distance r from the receptor (seef

Text S3). ST Donates the sample and long time-averaged value.

Molecule X is considered dense when dX (r)w1, and sparse when

dX (r)v1, compared to the uniform distribution.

Figure 5 depicts typical snapshots of the simulation and radial

distributions of the signaling protein dS(r) (green cross), and the

target protein dT (r) (blue circle) for the following cases: (A)

(½Stot�,Pout,Pin)~(0:45,10{2,1) at which J realizes the largest

value in the case that J monotonically increases with Pin, (B)

(½Stot�,Pout,Pin)~(0:15,10{4,1) at which J decreases along the

bell-shaped curve, and (C) (½Stot�,Pout,Pin)~(0:45,10{4,10{1) at

which J yields a local minimum of the S-shaped curve. It should

be noted that snapshots and radial distributions similar to

Figure 5A can be obtained for parameter sets in which J is at

the peak of the bell-shaped or S-shaped curve. In these cases, the

molecules tend to distribute according to the following spatial

structure: the signaling proteins surround the receptor to form the

Figure 4. Phase diagram of J--Pin relation for each ½Stot� and Pout

obtained by simulation. Red: J monotonically increases, Green: J
exhibits a bell-shaped curve, Blue: J exhibits an S-shape curve with an
increase in Pin .
doi:10.1371/journal.pone.0062218.g004

Figure 3. Binding rate of the target protein-dependencies of
Signal flow J and total occupancy r obtained by the simulation
of cell-based model. (A) Signal flow J and (B) total occupancy r as
functions of the binding rate of the target protein Pin for r as functions
of the binding rate of the target protein ½Stot�,Poutð Þ~(0:45,10{2) (red
plus), (0:15,10{4) (green cross), (0:45,10{4) (blue circle) obtained by
simulations, and that for ½Stot�,Poutð Þ~(0:45,10{4) obtained by the
mean field analysis (black line).
doi:10.1371/journal.pone.0062218.g003
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receptor-signaling protein cluster (R-S cluster), and the target

proteins become distributed around such clusters. If the molecular

distribution occurs according to the abovementioned structure, S

around R� and T around S� tends to be activated rapidly.

Subsequently, the reaction process of the system progresses

actively.

The qualitative mechanism of the formation of R-S clusters is

explained as follows. Around R, S is frequently activated to S�,
and T near S is also frequently activated. The activated T unbinds

from the membrane. Then, empty spaces appear around S�, i.e.,

near R. These empty spaces are occupied by other molecules

according to the diffusion or binding of T . Through these

processes, the molecular flow in which molecules approach R

tends to be formed. At the terminal of this molecular flow, T tends

to unbind by the activation, but S (S�) remains near R. Thus, R-S

clusters are formed.

In the case of appropriate values of Pin and Pout, in which ½T � is
not as large as compared to ½Stot�, T is distributed around the R-S

clusters. However, other types of molecular distribution often

appear, in particular, in the case of a small Pout. For example, in

the case of a large Pin and small ½Stot�, in which ½Stot� is much

smaller than ½T �, R tends to be surrounded not by S but T , as in

Figure 5B. On the other hand, in the case of a large ½Stot�, the R-S

cluster tends to be surrounded by S, as in Figure 5C.

Now, we explain the behaviors of the present model qualita-

tively, based on the abovementioned molecular distributions. First,

Figure 5. Typical snapshots of the present simulation (Left), and radial distribution of signaling proteins (green cross) and target
proteins (blue circle) as a function of the distance from a receptor (Right) for (½Stot�,Pin,Pout)~(A) (0:45,1,10{2), (B) (0:15,1,10{4), (C)
(0:45,10{1,10{4). Each black, orange, and blue point indicates a receptor, signaling protein, and target protein, respectively.
doi:10.1371/journal.pone.0062218.g005
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we considered the case of a small Pout and small ½Stot�. If the Pin is

too small, where the total occupancy of molecules is so small that

the excluded volume effects can be neglected, J increases with Pin,

as considered in the mean-field analysis. Moreover, in the case of a

not-so-large Pin, ½T � appears an appropriate values compared to

½Stot�; J increases with Pin because R-S clusters appear and the T
surrounding them increases. However, with the increase in Pin,

½T � becomes so much larger than ½Stot� that T tends to surround

between R instead of S. Thus, J increases then decreases in a bell-

shaped curve with the increase in Pin. On the other hand, if the

Pout is large enough, an R-S cluster can be formed even in the case

of a large Pin because T around R often unbinds and S can

approach R to surround them.

Next, we considered the case of a small Pout and large ½Stot�.
Similar to the above case, if the Pin is small enough, J increases

with Pin. On the other hand, with the increase in the total

occupancy of molecules by the increase in Pin, R-S clusters

surrounded by S appear. Here, S around the R-S clusters is

usually inactive because it cannot be activated by R. If Pin is not so

large that the total occupancy of molecules is not large either, S
can surround the R-S cluster and T can exchange their positions

by their diffusion. Then, T can be activated and J increases with

Pin. On the other hand, such diffusions and exchanges tend to be

suppressed with the increase in Pin. Then, J decreases with the

increase in Pin in a range of not-small-enough Pin. However, for a

much larger Pin, T can invade the void between the R-S cluster

and S around the cluster by binding from the cytoplasm and being

activated as soon as such a void appears. Here, such voids are

created by the fluctuation of the reaction and diffusion of

molecules on the membrane. If the Pout is large enough, S
around the R-S cluster and T can exchange positions smoothly

even in the case of a large Pin because T near S around the R-S
cluster often unbinds, and S can diffuse. Then, T often approach

R-S clusters and J always increases with Pin.

The above qualitative considerations are consistent with the

mathematical analysis of the present model through the more

simplified model, as mentioned in the next subsection. In the

present argument, we assume that the signaling protein cannot

unbind from the membrane. However, the qualitative results are

unchanged even when the signaling proteins can autonomously

unbind from the membrane if the unbinding rate of the signaling

proteins is small enough compared to that of the target proteins.

Theoretical analysis by a simple stochastic model
The results of the previous subsection indicate that the structure

of the molecular distribution around the receptor forms a

dominant contribution to the reaction activity of the present

system. In this subsection, we analyze a simple 1-dimensional

stochastic model that describes the molecular motions in the radial

direction around a receptor. The analysis is then compared to 3

described J–Pin relationships. For simplicity, we consider the case

that only one receptor exists in the system and is always activated,

i.e. R�.
We consider the following 3 typical states of the molecular

distributions in the radial direction around a receptor as: ‘‘R�’’,
where no molecule exists beside the receptor; ‘‘R�T ’’, where the

target protein exists beside the receptor; and the state where the

signaling protein exists beside the receptor and is activated. The

third state is divided into the following 2 states: ‘‘R�S�’’, where no

molecule exists beside the active signaling protein, and ‘‘R�S�S’’,

where an inactive signaling protein exists beside the active

signaling protein. Here, in the states ‘‘R�’’, ‘‘R�T ’’, and

‘‘R�S�S’’, any reactions can not occur. On the other hand, in

the ‘‘R�S�’’ state, the reaction occurs if a target protein appears

beside S�. Note that other states exist, such as ‘‘R�S�T ’’,

‘‘R�S�S�’’ and ‘‘R�S’’. To simplify, however, we have omitted

these states from this analysis by considering the following

assumptions. i) The target protein beside S� is rapidly activated

and unbound. ii) The signaling protein becomes inactive

immediately if it leaves the receptor. iii) The signaling protein is

activated as soon as it approaches next to the receptor.

Moreover, we assumed that the molecular distributions around

a receptor are almost uniform in terms of the angle direction as

shown in Figure 6, which is roughly supported by the simulation

results in the previous subsections. Then, we only considered the

molecule reactions and diffusions only in the radial direction.

Although these assumptions render the model too simple, the

appearance of the 3 types of J–Pin relationships obtained in the

previous subsection can be explained qualitatively as follows.

Now, we consider the following transition dynamics among

these 4 states,

R�S�S '
k{1

k1
R�S� '

k{2

k2
R� '

k{3

k3
R�T : ð11Þ

where k1, k{1, k2, k{2, k3, and k{3 indicate the transition rates.

These transition rates are approximately estimated by ½Stot�, ½T �,
Pin, and Pout as follows.

k1: The transition from ‘‘R�S�S’’ to ‘‘R�S�’’ indicates that S
diffuses away from beside S�. The transition rate is proportional to

the probability that any molecules do not exist beside S. Then,

k1~(1{½Stot�{½T �)pd , ð12Þ

where pd (v1) indicates the diffusivity of molecules.

k{1: The transition from ‘‘R�S�’’ to ‘‘R�S�S’’ indicates that S
diffuses from an adjacent space to occupy the empty space beside

S�. This transition rate is proportional to the probability that no T
appears, but S does. The probability of the appearance of S is

estimated as ½Stot�pd , and that of T is estimated as

Pinz(1{Pin)½T �pd , which is the sum of contributions by the

binding from the cytoplasm and the diffusion of target proteins on

the membrane. Then,

k{1~pd ½Stot�f1{½Pinz(1{Pin)pd ½T ��g

~pd ½Stot�(1{pd ½T �)(1{Pin):
ð13Þ

k2: The transition from ‘‘R�S�’’ to ‘‘R�’’ indicates that S� leaves

from beside R� before any molecules occupy the empty space

beside S�. The probability that 1 molecule (S or T ) appears at the

empty space beside S� is estimated by

Figure 6. Considered states of the simple stochastic model and
corresponding molecular distributions images in 2-dimension-
al space. R�, the receptor; S, inactive signaling protein; S�,
active signaling protein; and T , target protein; each X denotes
R�, S, S�, T , or empty.
doi:10.1371/journal.pone.0062218.g006
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Pinz(1{Pin)(½Stot�z½T �)pd . Then,

k2~f1{½Pinz(1{Pin)(½Stot�z½T �)pd �gpd

~pd (1{pd ½Stot�{pd ½T �)(1{Pin):
ð14Þ

k{2: The transition from ‘‘R�’’ to ‘‘R�S�’’ indicates that S

diffuses from an adjacent space to occupy the empty space beside

R�. The properties of this transition are almost the same as those

of ‘‘R�S�’’ to ‘‘R�S�S’’. Then,

k{2~pd ½Stot�f1{½Pinz(1{Pin)pd ½T ��g

~pd ½Stot�(1{pd ½T �)(1{Pin):
ð15Þ

k3: The transition from ‘‘R�’’ to ‘‘R�T ’’ indicates that T

originates from the cytoplasm or adjacent spaces on the

membrane to occupy the empty space beside R�. This transition

rate is proportional to the probability that no S appears but T

does. Then,

k3~(1{pd ½Stot�)½Pinz(1{Pin)pd ½T ��: ð16Þ

k{3: The transition from ‘‘R�T ’’ to ‘‘R�’’ indicates that T leaves

from beside R�. This transition rate is yielded by the sum of 2

contributions: the autonomous unbinding from the membrane and

the diffusion of T . The diffusion of T is proportional to the

probability that any molecules do not exist beside T . Then,

k{3~Poutz(1{Pout)(1{½Stot�{½T �)pd : ð17Þ

Here, it should be noted that while ½Stot� and Pin and Pout are

the control parameters of the present system, ½T � should be

derived from these parameters. In the following analysis, with

reference to the simulation results in Figure 3B, we assume ½T � is

derived as

½T �~ (1{½Stot�)Pin

a½Rtot�½Stot�zPoutzPin

, ð18Þ

with the fitting parameter a*1=6.

The steady-state probability distribution of the 4 considered

states, QR�S�S,QR�S� ,QR,QR�T are obtained by

QR�S�S~
k{1k{2k{3

k{1k{2k{3zk1k{2k{3zk1k2k{3zk1k2k3
, ð19Þ

QR�S�~
k1k{2k{3

k{1k{2k{3zk1k{2k{3zk1k2k{3zk1k2k3
, ð20Þ

QR�~
k1k2k{3

k{1k{2k{3zk1k{2k{3zk1k2k{3zk1k2k3
, ð21Þ

QR�T~
k1k2k3

k{1k{2k{3zk1k{2k{3zk1k2k{3zk1k2k3
: ð22Þ

The steady-state signal flow is estimated by QR�S� | [the

probability of appearance of the target protein beside S�]. The

latter probability is that for which no S appears but T does, by

diffusion or binding from the cytoplasm. Then,

J~(1{pd ½Stot�)fPinz(1{Pin)pd ½T �gQR�S�~k3QR�S� .

Figure 7 depicts (A) J as a function of Pin for some parameter

sets of (½Stot�,Pout), and (B) the phase diagram of J–Pin

relationships against ½Stot�, and Pout for pd~0:8, obtained by

analyzing the steady state solutions of the present stochastic model.

These results are qualitatively independent of pd . As shown in

these figures, we obtained results that were qualitatively similar to

the simulation results in the previous subsections.

Then, we considered the detailed properties of this model. It

should be noted that J is also described as

J~
k3

1z
k{1

k1
z

k2
k{2

z
k2

k{2

k3
k{3

, ð23Þ

which indicates that J depends on the ratios between the transition

rates, k{1=k1, k2=k{2, k3=k{3, and k3. Then, the appearances of

the 3 types of J-Pin dependency can be explained by considering

the Pin dependencies of k{1=k1, k2=k{2, k3=k{3 and k3 as

follows.

Figure 7. The results obtained by analysis of the stochastic
model. (A) Signal flow J as a function of Pin for

(½Stot�,Pout)~(0:2,10{1
2) (red plus), (0:15,10{2) (green cross), and

(0:6,10{2) (blue circle); (B) phase diagram of J--Pin relation for
each ½Stot� and Pin. Each symbol is plotted in the same manner
as Figure 4.
doi:10.1371/journal.pone.0062218.g007
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Figure 8 illustrates (A) k{1=k1, (B) k2=k{2, (C) k3=k{3 and (D)

k3 as functions of Pin for combinations of

½Stot�~f0:15(red) ,0:4(green),0:6(blue)g and

Pout~f10{2 (solid line) ,10{1 (dashed line) ,10{1
2 (dotted line)g,

where their analytic forms are obtained by

k{1

k1
~
½Stot�(1{pd ½T �)(1{Pin)

1{½Stot�{½T �
, ð24Þ

Figure 8. Ratios between the transition rates as functions of Pin for combinations of ½Stot�~f0:15(red), 0:4 (green), 0:65 (blue)g and

Pout~f10{2 (solid line), 10{1 (dashed line), 10{1
2 (dotted line)g (A) k{1=k1, (B) k2=k{2, (C) k3=k{3, and (D) k3.

doi:10.1371/journal.pone.0062218.g008
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k2

k{2

~
pd (1{pd ½Stot�{pd ½T �)(1{Pin)

pd ½Stot�(1{pd ½T �)(1{Pin)

~
1

½Stot�
{

pd

1{pd ½T �
,

ð25Þ

k3

k{3
~

(1{pd ½Stot�)fPinz(1{Pin)pd ½T �g
Poutz(1{Pout)(1{½Stot�{½T �)pd

, ð26Þ

and Equation (16). Figure 8B and 8C and Equations (25) and (26)

indicate that k2=k{2 is a monotonically decreasing function of Pin

and a monotonically increasing function of Pout, and that k3=k{3

is almost proportional to Pin and a monotonically decreasing

function of Pout. This indicates that, with the increase in Pin, R�

tends to make contact with other molecules because the

occupancy, i.e., the volume fraction, of molecules on the

membrane increases. In the same manner, k3 increases monoton-

ically with Pin as indicated in Figure 8D and Equation (16).

However, the slope of each curve varies from steep to gradual

because ½T � increases with Pin but is saturated for a large Pin.

On the other hand, as shown in Figure 8A, the variations of

k{1=k1 are somewhat more complicated, as follows. Equation (24)

indicates that k{1=k1 has a maximum at

Pin~
1{a½Rtot�

2
{

Pout

2½Stot�
ð27Þ

for a large ½Stot� and small Pout that Poutv½Stot�(1{a½Rtot�)
satisfies. On the other hand, with an increase in Pin, k{1=k1

decreases monotonically for Poutw½Stot�(1{a½Rtot�). Further-

more, it increases with the increase in Pout. The appearance of

this maximum of k{1=k1 for a small Pout means that with the

increase in Pin, the ‘‘R�S�S’’ state tends to occur for a small or

intermediate value of Pin, but the transition rate to the ‘‘R�S�S’’

state tends to be hindered for a large Pin. The reason for this is

considered to be as follows. With the increase in the Pin, the

occupancy of molecules becomes large. Then, the molecules tend

to make more contact with each other, inducing the transition

from ‘‘R�S�’’ to ‘‘R�S�S’’. On the other hand, if Pin becomes

much larger, T can approach beside R�S� more frequently (and is

activated and unbinds immediately) by the binding from the

cytoplasm before S diffuses close to R�S�. With the increase in

Pin, k{1=k1 then increases for a not-so-large Pin, but decreases for

a large Pin.

According to the abovementioned Pin dependencies of each

term, the appearances of the 3 J-Pin relationships are explained as

follows:

i) For a large Pout, k{1=k1 and k2=k{2 are monotonically

decreasing functions of Pin. Even if we assume that k{1=k1 and

k2=k{2 are constant values, J is given as a monotonically

increasing function of Pin in the form of a Michaelis-Menten-

type equation. According to these facts, J increases monoton-

ically with Pin.

ii) For a small Pout and small ½Stot�, k2=k{2 is sufficiently larger

than k{1=k1 and k3=k{3 for a small Pin. Then, only k2=k{2 is

the dominant term of the denominator of Equation (23). In this

case, the denominator of Equation (23) is considered constant.

Figure 9. Signal flow J as functions of Pin and Pout obtained by analysis of the stochastic model. (A) ½Stot�~0:2, (B) ½Stot�~0:6. (C) and (D)
are the enlarged insets in (A) and (B), respectively.
doi:10.1371/journal.pone.0062218.g009
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Then, J increases with Pin for a small Pin, since k3

monotonically increases with Pin. On the other hand, k3=k{3

increases with Pin, and finally exceeds 1. Then,

(k2=k{2)|(k3=k{3) also becomes the dominant term of the

denominator of Equation (23). Here, the slope of k3 becomes

gradual with the increase in Pin, while the slope of k3=k{3 is

unchanged and k2=k{2 is regarded as constant for a large Pin.

Therefore, J decreases with the increase in Pin for a large Pin. J
exhibits the bell-shaped curve.

iii) For a small Pout but large ½Stot�, k{1=k1 becomes dominant

as compared to k2=k{2 and k3=k{3 for a small Pin. Here,

k{1=k1 is approximately constant for a small Pin. Then, the

dominator of Equation (23) is considered constant. On the other

hand, (k2=k{2)|(k3=k{3) increases to the same order as that

of k{1=k1 with the increase in Pin. Then, (k2=k{2)|(k3=k{3)
also becomes the dominant term of the denominator of

Equation (23). Thus, in a similar manner to case ii), J increases

and turns to decrease with Pin. However, if Pin approaches 1,

k{1=k1 exhibits a drastic decrease where the slope of the

decrease in k{1=k1 is much steeper than that of the increase in

(k2=k{2)|(k3=k{3). Then, the denominator turns to decrease

in the neighborhood of Pin~1, and J increases again with Pin.

Furthermore, the Pin at which J exhibits a maximum peak is

obtained by the intersection of k2=k{2 and (k2=k{2)|(k3=k{3),

Figure 10. Phase diagram of J--Pin relation for each ½Stot� and Pout obtained by simulations (A) ½C�~0:2, (B) ½C�~0:5, and (C) ½C�~0:8.
(D) Typical snapshot of the simulation, (E) radial distributions of signaling proteins (green cross), target proteins (blue circle), and crowder (yellow
triangle) plotted as a function of the distance from a receptor for Pin~10{3 , Pout~10{4 , ½Stot�~0:3, and ½C�~0:5, which are plotted in the same
manner as in Figure 5. Each black, orange, blue, and gray point indicates a receptor, signaling protein, target protein, and crowder, respectively.
doi:10.1371/journal.pone.0062218.g010
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i.e., *Poutza½Rtot�½Stot�. Thus, the Pin that exhibits the peak shifts

to the larger value with the increase in Pout. On the other hand,

the Pin at which J exhibits the local minimum of the S-shaped

curve slightly decreases with the increase in Pout. Here, the local

minimum value of J increases with the increase in Pout. If Pout

increases more, the local minimum of J vanishes as shown in

Figure 9.

Reaction system with crowding molecules
In the previous subsections, we considered a simple model of an

ideal situation that was assumed to comprise only the components

of the signal transduction processes. However, in general, several

reaction processes take place simultaneously on the cell mem-

brane, using several macromolecules. The components of these

other reactions often behave as obstacles for the components of

other reaction processes. Thus, to elucidate the influences of the

excluded volume of molecules using a more realistic model, we

simulated a system containing a crowder molecule, C. Here, C
moved randomly on the membrane without reaction, binding, or

unbinding. It only hindered the random movements of other

reactive molecules because of its excluded volume.

Figure 10 depict the J-Pin relation for (A) ½C�~0:2, (B) ½C�~0:5
and (C) ½C�~0:8 with ½Rtot�~0:01, described in the same manner

as Figure 4, (D) a typical snapshot of the simulation, and (E) the

radial distributions of the signaling proteins dS(r), the target

proteins dT (r), and the crowder dC(r) for Pin~10{3, Pout~10{4,

½Stot�~0:3, and ½C�~0:5, described in the same manner as

Figure 5. As shown in Figure 10A and 10B, the phase diagrams for

not too many large values of ½C� are qualitatively the same as those

obtained when ½C�~0 (no crowders). We also observed that the

signaling proteins tended to distribute around the receptor on

average, as shown in Figure 10D and 10E, when the system

exhibited a large J, similar to the R-S cluster formation observed

in the case of ½C�~0.

However, in the phase diagrams, the phase boundary between

the regions with bell-shaped and S-shaped J–Pin relations shifted

to a large ½Stot� with an increase in ½C�. Moreover, in cases of a

much larger ½C�, such as ½C�~0:8, the region with the S-shaped

relation disappeared, as shown in Figure 10C. The reason for

these facts is believed to be as follows. The appearance of the S-

shaped relation was caused by the aggregation of S to form the R-

S cluster surrounded by S, as mentioned in the previous

subsections. However, with the increase in ½C�, such aggregations

of S tended to be hindered and required more S to be formed.

Thus, the phase boundary between the regions with bell-shaped

and S-shaped J-Pin relations shifted to a large ½Stot�. Moreover, if

½C� became much larger, ½Stot� could not be so large as to form

such aggregations of S. Hence, the region with the S-shaped

relations disappeared.

Summary and Conclusion

We investigated the influences of the excluded volume of

molecules on the activity of reaction processes on 2-dimensional

surfaces using a cell-based model of signal transduction processes

on biomembranes. The simulation was based on the diffusion and

reaction among receptors, signaling proteins, target proteins, and

crowders on a 2-dimensional surface.

With the increase in the binding frequency of target proteins to

the membrane, the volume fraction of molecules on the membrane

increased in a similar manner to the molecular crowding in the

cytoplasm. However, the reaction behaviors on such a 2-

dimensional membrane were obtained differently from those in

a 3-dimensional bulk system. We found that the signal flow

exhibited 3 types of molecular volume fraction dependencies

according to the abundance ratio and the binding/unbinding rate

of the molecules constructing the system: i) When the autonomous

unbinding of target proteins occurred frequently, the signal flow

increased monotonically with the binding rate of the target

proteins. ii) When the autonomous unbinding of target proteins

occurred rarely and the number of signaling proteins was small,

the signal flow increased for the small values of the binding rate,

and then decreased for the large value of the binding rate of the

target proteins. iii) When the autonomous unbinding of target

proteins occurred rarely and the number of signaling proteins was

sufficiently large, the signal flow increased and decreased as in (ii),
but then increased again for a sufficiently large value of the

binding rate of the target proteins. We further demonstrated that

the excluded volume of molecules influenced their hierarchical

distributions throughout the reaction processes. In particular,

when the system exhibited a large signal flow, the signaling

proteins tended to surround the receptors and the target proteins

tended to distribute around the receptor–signaling protein clusters,

which accelerated the activations of the signaling proteins and

target proteins.

To control the signal transduction activity on the membrane, we

expect that the formation of the presented hierarchical molecular

distributions makes a dominant contribution along with receptor

clustering [52]. On the other hand, a large number of reaction

processes other than the signaling cascade are known to take place

on the interior and exterior surfaces of several biomembranes of

organelles, such as the mitochondria, Golgi body, and nucleus.

The molecular distributions on the majority of such membranes

are not clearly understood experimentally, except the recent

reports of the aggregations of peptides related to some diseases

[20,53,54]. Such studies are progressing as ongoing issues or will

be studied as future issues. For such problems, based on our

present argument and extended arguments with more realistic

models, we predict that several molecule aggregation patterns are

formed by the excluded volume of molecules and influence on the

function of reaction networks on several biomembranes.
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