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Simple Summary: Radiomics and radiogenomics offer new insight into high-grade glioma biology,
as well as into glioma behavior in response to standard therapies. In this article, we provide neuro-
oncology, neuropathology, and computational perspectives on the role of radiomics in providing
more accurate diagnoses, prognostication, and surveillance of patients with high-grade glioma, and
on the potential application of radiomics in clinical practice, with the overarching goal of advancing
precision medicine for optimal patient care.

Abstract: Machine learning (ML) integrated with medical imaging has introduced new perspectives
in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised
hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor
recurrence, and genomics and therefore encouraging treatments tailored to individualized needs.
Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance
imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid
in planning the course of treatment for the patients, such as optimizing the extent of resection and
the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying
the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas
and prediction of their changes over time and with treatment would allow optimization of treatment.
In this article, we provide neuro-oncology, neuropathology, and computational perspectives on
the promise of radiomics and radiogenomics for allowing personalized treatments of patients with
gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical
trials and suggestions to mitigate the issues and the future directions.
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1. Introduction

Glioblastoma (GBM) is the most common and malignant primary brain tumor, character-
ized by abundant proliferation of tumor cells, extensive infiltration in the surrounding brain
parenchyma, genomic instability, robust angiogenesis, and resistance to therapies [1–4]. Built on
the 2016 update of the World Health Organization (WHO) classification of CNS tumors [5],
the 2021 fifth edition advances integration of molecular diagnostics with histopathologi-
cal evaluation of brain tumors, including separating the previously designated entity of
“glioblastoma” into IDH-wildtype glioblastoma and IDH-mutant grade 4 astrocytoma [6].
Clinical neuroimaging, along with histomolecular evaluation of tumor samples, helps in
diagnosis and treatment planning of gliomas by capturing a vast amount of information
about the tissue [7]. However, clinical images are mainly evaluated with a qualitative
approach, and additional untapped potential remains, which may lead to a comprehensive
picture of the tumor characteristics [8]. As radiologic scans reflect the underlying patho-
physiology of the tumors, quantitative assessment of these images and development of
imaging biomarkers with “radiomics” can aid in understanding the tumor biology [9–11]
and treatment response [8,12–14]. Radiomics refers to extraction of high-throughput quan-
titative and mineable features characterizing the underlying pathophysiology of the tumor
from medical images [12]. These computational features are synthesized via machine
learning (ML) methods for prediction of an outcome [12–14]. With the rapid growth of
computational algorithms, radiomics is now increasingly being applied to conventional
and advanced neuro-oncologic imaging data to detect infiltrating margins of glial tumors,
to differentiate treatment-related changes from true tumor progression, and to predict
tumor infiltration, risk of future recurrence, and overall survival [8,12–14].

These radiomic and radiogenomic tools provide a noninvasive sampling of tumor mi-
croenvironments, the so-called “virtual biopsy”, allowing for a comprehensive evaluation
of regional heterogeneity of these CNS tumors [15]. By providing these in vivo markers
of spatial and molecular heterogeneity, these radiomic and radiogenomic tools have the
potential to stratify patients into more defined diagnostic and therapeutic pathways and
enable ”real-time” treatment surveillance in this era of personalized medicine [16].

Nevertheless, in clinical decision-making and patient care, a fully multi-modal and
integrated diagnostic/prognostic approach incorporating radiomics, histology, and molec-
ular data to provide a comprehensive picture of the tumor biology and evolution has not
been broadly considered. This paper aims to provide and discuss the imaging scientist,
neuro-oncology, and neuropathology perspectives regarding the current and potential roles
of radiomics in precision medicine.

2. Can Radiomics Aid in Clinical Decision-Making? A Neuro-Oncology Perspective

The appeal of radiomics and radiogenomics in the care of patients with high-grade
gliomas is obvious when one considers the primary diagnostic dilemmas faced in the
neuro-oncology clinic, which begin the moment a patient presents to medical attention and
continue through each line of treatment. Due to the marked interpatient heterogeneity of
the disease in terms of both underlying tumor biology and clinical outcomes [4,17,18], one
of the earliest challenges in the care of a patient with glioma is predicting the aggressiveness
of that individual’s tumor and, therefore, the expected time to tumor recurrence and death.
For the nearly 90% of patients with high-grade glioma who do not participate in a first-
line clinical trial [19], temozolomide-based chemoradiotherapy is administered routinely
despite great uncertainty around the degree of benefit that any one individual will gain
from it. MGMT promoter methylation, the only biomarker used in routine practice to
predict prognosis and benefit from temozolomide [20], has considerable interinstitutional
variation in methodology and interpretation, limiting its true clinical utility [21,22]. This
inability to reliably predict tumor behavior and clinical outcomes makes it difficult to
efficiently risk-stratify patients for clinical trials and limits initial discussions with patients
around expectations and goals of care.
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Once standard chemoradiotherapy has been administered, assessing the tumor’s
response to treatment is problematic, as conventional analysis of routine MRI cannot
reliably distinguish between tumor progression and treatment-induced changes that can
mimic tumor progression [23,24]; the latter, often referred to as pseudo-progression, may
actually reflect efficacious treatment. This ambiguity leads to significant delays in clinical
decision-making, causes undue anxiety in patients, and confounds efficacy assessment in
clinical trials. Finally, when a patient’s tumor inevitably recurs, invasive neurosurgery for
tissue acquisition is often needed to determine the tumor’s current molecular profile, which
can differ substantially from the profile obtained at the time of initial diagnosis [25]. Even
when repeat surgery is performed, however, there remains confusion about the clinical
relevance of the molecular findings, as tumor sequencing is typically performed on only a
single fragment of tissue. Because of the significant intratumoral heterogeneity that is a
hallmark of high-grade glioma and occurs down to the single-cell level [26], it is unclear
whether targeting a molecular alteration detected on routine sequencing will benefit the
patient, as the alteration may not be present in the entirety of the tumor. Conversely, key
molecular drivers of tumor growth may not be detected when only one region of the tumor
is sequenced.

Once clinically validated and more easily implementable in routine practice, radiomics
stands to solve or at least alleviate some of the aforementioned clinical challenges. Current
radiomic methods may allow for accurate prognostication in newly diagnosed high-grade
glioma [27]. The ability to predict clinical outcomes with a reasonable degree of confidence
would offer significant value in the routine clinical care of patients with high-grade glioma
and improve our conduct of high-grade glioma clinical trials. Although this information
could be useful to some extent in all patients, one of the most exciting potential applications
of radiomics for prognostication is the ability to predict a tumor’s aggressiveness and the
patient’s clinical course prior to initial surgical intervention and tissue-based diagnosis of
high-grade glioma. Accurate, noninvasive prognostication performed at the very start of a
patient’s disease course, i.e., when a patient presents with radiographic findings highly
concerning for high-grade glioma but has not yet undergone surgery for histopathologic
confirmation and diagnosis of tumor type, could directly impact routine clinical decisions
and usher in a new era of clinical trial design. For example, an octogenarian with a pre-
sumed glioblastoma based on MRI might elect to proceed with maximal safe resection
followed by chemoradiotherapy if there is a high level of confidence that the patient will
have a meaningful progression-free interval and an overall survival time over two years.
Conversely, that same patient may elect for best supportive care only if it is expected that
he or she will only live 6 or fewer months despite enduring a morbid surgical procedure
followed by the side effects of chemoradiotherapy. In the context of clinical trial protocols,
one can imagine a future where patients are immediately triaged to an experimental proto-
col rather than standard of care based on a radiomic signature predictive of poor outcomes
with standard of care. This could happen prior to initial surgery, allowing the patient to
receive experimental therapy either as a neoadjuvant approach or completely in lieu of
standard surgical intervention, or following initial surgery as a way to prioritize patients for
experimental alternatives to standard chemoradiotherapy and/or more efficiently stratify
clinical trials based on prognosis.

Radiomics also has a potential future role in monitoring glioma response to therapy.
Follow-up imaging of glioma patients commonly demonstrates new or increasing areas of
enhancement in and around the resection bed which are concerning for tumor progression.
However, in 20–30% of patients, this enhancement primarily represents treatment-related
changes or pseudo-progression (PsP). Therefore, distinguishing treatment-related changes
from true tumor progression (TP) is a common challenge and has critical implications
in clinical decision-making [28]. Unfortunately, conventional imaging as well as existing
response assessment criteria are limited in distinguishing treatment-related changes and
tumor progression [29]. Radiomic methods may substantially increase our confidence in
interpreting the changes observed on MRI following chemoradiotherapy, allowing for better
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clinical decision-making in routine practice and more accurate assessment of the efficacy
of experimental therapies in clinical trials. The most significant challenge in validating
radiomics-based tumor response assessment, and thus translating it for routine clinical
use, has been the lack of a true gold standard for distinguishing between TP and PsP [25].
Serial imaging is difficult to use as a gold standard, since both tumor progression and
pseudo-progression can worsen over time on repeat scans. Histopathologic confirmation is
equally problematic, as histopathologic examination of chemoradiotherapy-treated high-
grade glioma specimens has not been rigorously standardized. Material obtained from
glioma re-resection typically contains a mixture of viable tumor, necrotic debris, and non-
neoplastic brain elements with reactive changes [25]. Thus, even when tissue is acquired,
most cases cannot be neatly dichotomized as “tumor progression” or “pseudo-progression”.
Efforts are currently ongoing toward developing standard criteria for the pathological and
molecular characterization of recurrent GBM [25], the acceptance of which would allow
for validation of radiomics-based response evaluation. If these issues are resolved in the
future, it is also possible that radiomic assessment of neuroimaging modalities other than
MRI, such as amino acid PET, may lead to further improvements in disease monitoring.

Lastly, radiogenomics may also eventually change practice in the care of patients with
glioma. The ability to detect clinically relevant tumor somatic mutations or copy number
alterations noninvasively would have a positive impact on both routine management
as well as clinical trials. Imaging-based ascertainment of the status of key molecular
alterations that are commonly found in glioma, including IDH mutational status, MGMT
methylation status, EGFR copy number, and mutational status and others, could allow
for molecular profiling and optimal clinical management of patients with truly inoperable
tumors or with unacceptable surgical risk due to comorbidities or performance status.
Such technology would also allow for noninvasive molecular profiling at the time of
tumor recurrence following frontline therapy. In clinical trials, one can envision a scenario
where patients are screened for a neoadjuvant or window-of-opportunity study of a novel
molecularly targeted therapy based on the presence of the therapeutic target as determined
by radiogenomics. This type of trial design could revolutionize the way we evaluate early
phase therapeutic candidates by allowing for tissue-based pharmacodynamic assessment
of novel drugs in the newly diagnosed setting.

3. What Radiomics Offers: A Computational Perspective

Advances in measurement methods, including medical imaging and genomic se-
quencing of the tumor, have enormously increased the amount of patient data available to
the clinician. The amount and breadth of the data have reached an overwhelming point;
interpretation requires specialization, and complete integration is not always possible.
Radiomics methods can play a critical role in objectively and reproducibly recognizing
and quantifying the underlying complex patterns in the data that are not discernible by
humans, thereby complementing and supporting the clinical decision-making regarding
the best course of treatment for glioma patients [30,31]. Radiomics has aided in characteri-
zation of the tumors through segmentation, diagnosis, prognosis, and subtyping as well as
played a role in monitoring gliomas and their responses to treatment (Figure 1). While the
prognosis prediction does not yet have implications for upfront therapy in routine clinical
practice, improved prognostication may impact clinical trial eligibility and has potential
for precision and personalized treatment planning [32,33].



Cancers 2021, 13, 5921 5 of 15
Cancers 2021, 13, x  5 of 15 
 

 

 

Figure 1. Radiomics pipeline. From left to right: (1) image acquisition; (2) general image pre-processing including image 

re-orientation, co-registration of the images, and alignment of images with a reference atlas; (3) tumor detection and 

segmentation; (4) skull stripping and artifact removal (bias field, noise, etc.); (5) feature extraction, such as features of 

histogram, texture, wavelets, location, morphology, and hemodynamics; (6) predictive modeling using classification or 

regression; (7) prediction of endpoints, such as patient’s survival [34,35], genomics [11,36,37], response to therapy [38], site 

of future recurrence [39], or tumor micro-environment [40] (Some graphics are from Servier Medical Art: 

smart.servier.com (access date: 14 January 2021) and [41]). 

Imaging characteristics of infiltration, cellularity, microvascularity, spatial location 

of tumor, volume of compartments, morphology, and blood–brain barrier compromise 

integrated via radiomic analysis have the potential to reveal imaging patterns that are 

highly predictive of clinical outcome and prognosis of patients, as documented in several 

studies [27,33–35,42]. Furthermore, advanced computational analytics via radiomics for 

evaluation of response to treatment and distinguishing TP from PsP have provided rich 

and highly informative characterization of the tumor and its surrounding tissues, 

extending the evaluation of tissue properties beyond the capabilities of human visual 

interpretation [38,43–45]. Specifically, these studies demonstrate that patients with TP 

demonstrate imaging features reflecting higher angiogenesis, higher cellularity, lower 

necrosis, and lower water concentration [38]. 

Radiogenomics, or imaging genomics, has emerged as a powerful tool for discovery 

of molecular associates of radiographic phenotypes. To accomplish this, a number of 

unique approaches have been developed. Most of the existing radiogenomics studies have 

adopted an exploratory analysis approach to investigate the relationships between 

molecular dynamics and tumor characteristics reflected by specific radiographic 

phenotypes (radiophenotypes) [11]. For example, radiophenotypes, including tumor 

enhancement, nonenhancing tumor, necrosis, infiltrated edema, neo-angiogenesis, 

microstructural changes, and tumor location, have been associated with genomic profiles 

of the tumors to provide a better understanding of the underlying tumor biology [11,46–

53]. Along these lines, a few radiogenomics studies have stratified high-grade glioma 

patients based on their risk, i.e., into groups of high, intermediate, and low-risk based on 

radiomic features that were predictive of overall or progression-free survival, and 

explored associations of these predictive radiomic features with gene expression profiles 

[54]. 

Figure 1. Radiomics pipeline. From left to right: (1) image acquisition; (2) general image pre-processing including image
re-orientation, co-registration of the images, and alignment of images with a reference atlas; (3) tumor detection and
segmentation; (4) skull stripping and artifact removal (bias field, noise, etc.); (5) feature extraction, such as features of
histogram, texture, wavelets, location, morphology, and hemodynamics; (6) predictive modeling using classification or
regression; (7) prediction of endpoints, such as patient’s survival [34,35], genomics [11,36,37], response to therapy [38], site
of future recurrence [39], or tumor micro-environment [40] (Some graphics are from Servier Medical Art: smart.servier.com
(access date: 14 January 2021) and [41]).

Imaging characteristics of infiltration, cellularity, microvascularity, spatial location of
tumor, volume of compartments, morphology, and blood–brain barrier compromise integrated
via radiomic analysis have the potential to reveal imaging patterns that are highly predictive
of clinical outcome and prognosis of patients, as documented in several studies [27,33–35,42].
Furthermore, advanced computational analytics via radiomics for evaluation of response
to treatment and distinguishing TP from PsP have provided rich and highly informative
characterization of the tumor and its surrounding tissues, extending the evaluation of tissue
properties beyond the capabilities of human visual interpretation [38,43–45]. Specifically,
these studies demonstrate that patients with TP demonstrate imaging features reflecting
higher angiogenesis, higher cellularity, lower necrosis, and lower water concentration [38].

Radiogenomics, or imaging genomics, has emerged as a powerful tool for discovery
of molecular associates of radiographic phenotypes. To accomplish this, a number of
unique approaches have been developed. Most of the existing radiogenomics studies
have adopted an exploratory analysis approach to investigate the relationships between
molecular dynamics and tumor characteristics reflected by specific radiographic pheno-
types (radiophenotypes) [11]. For example, radiophenotypes, including tumor enhance-
ment, nonenhancing tumor, necrosis, infiltrated edema, neo-angiogenesis, microstructural
changes, and tumor location, have been associated with genomic profiles of the tumors to
provide a better understanding of the underlying tumor biology [11,46–53]. Along these
lines, a few radiogenomics studies have stratified high-grade glioma patients based on
their risk, i.e., into groups of high, intermediate, and low-risk based on radiomic features
that were predictive of overall or progression-free survival, and explored associations of
these predictive radiomic features with gene expression profiles [54].

In contrast to exploratory studies, hypothesis-driven radiogenomic approaches in the
literature have specified a radiogenomic signature that aims to provide upfront prediction



Cancers 2021, 13, 5921 6 of 15

of genetic mutations or expression levels in the patients based on their pre-operative MRI
scans [11]. The multi-pronged goal of this method is to overcome the sampling errors
that occur with biopsies, to guide personalized therapies, and to encourage development
of future targeted drug therapies [11]. Therefore, the focus has been on development of
imaging signatures for mutations in several driver genes, including IDH, EGFR (including
EGFRvIII mutation), PTEN, and TP53; for key pathways (RTK, PI3K, MAPK, etc.) and
molecular subtypes; as well as for MGMT promoter methylation status [36,37,55–59].

The problem is also being approached from another perspective. Subgroups of similar
patients are identified based on their imaging phenotypes, with the goal of understanding
how to customize therapies for individuals [60]. Dramatic inter-tumoral heterogeneity from
patient to patient exists as a result of expression of specific molecular markers or response
to treatments [61,62]. In a few studies, distinct imaging subtypes of high-grade gliomas
have been discovered and proven to correlate with molecular subtypes and overall survival
in patients beyond IDH status [61]. With rapid development of radiomics, semi-supervised
learning methods [63,64] or multi-modal learning based on multi-omic data (e.g., genomic,
transcriptomic, radiomic) are areas of promise to noninvasively characterize subtypes of
high-grade gliomas and power clinical trials by facilitating patient stratification [65].

Within individual patients’ tumors, intra-tumoral heterogeneity is a contributor to
treatment failure in glioblastoma, due to diversity of genetic and transcriptomic aberrations
across the tumor landscape, which can lead to resistance of the tumor to standard of
care therapies and rapid recurrence [66]. This heterogeneity may not be detected by
histomolecular examination of tumor samples collected during biopsy or portions of the
tumor obtained during limited surgical resection [11,67]. This challenge to patient care is the
perfect opportunity for radiomics and radiogenomics to provide noninvasive assessment
of glioblastoma heterogeneity prior to treatment through in vivo biomarkers [68]. For
example, the method of habitat imaging identifies distinct functional tumorous regions
and cell populations based on image characteristics determined through radiomics and
machine learning, allowing a comparison among these subregions based on radiographic
imaging and histologic findings [8,12,69].

These techniques may be made more powerful through incorporation of data from
advanced imaging modalities with conventional scans in radiomics studies. Comple-
menting structural features with functional and biological characteristics of the tumor
in this way provides a more comprehensive picture of tumor evolution and response
to treatment. For instance, radiomics features extracted from structural MRI sequences,
DWI, susceptibility-weighted imaging (SWI), 55-direction high angular resolution diffu-
sion imaging (HARDI), and arterial spin labelling (ASL) were able to predict IDH and
ATRX mutations and chromosome 7/10 aneuploidies with high accuracy and CDKN2
family mutations with relatively high accuracy [70]. Another example of an advanced MRI
technique is amine CEST echoplanar imaging (CEST-EPI), which is a fast MRI molecular
imaging sequence to measure tumor pH [71]. This technique has been shown to be effective
as a noninvasive biomarker to determine IDH mutational status and 1p/19q co-deletion
status, as well as being of value as an early imaging biomarker for bevacizumab treatment
response and failure in recurrent glioma [71,72]. Recently, it has been shown that principal
component analysis of DSC MR perfusion images combined with support vector machine
(SVR) approaches had moderate to strong correlation with CEST-EPI PH maps [40].

Moving one step further than radiogenomics, radio-patho-genomic analyses incorpo-
rate microscopic tissue-scale imaging with radiographic scans and molecular information of
the tumor tissue. Advanced computational analysis of this powerful data combination may
provide new clinical insights into tumor biology and the involved pathological processes
to further aid personalized diagnostics and precision medicine [36,37,59,73–75].

Separate but likely related to the molecular features of glioma is the tumor microen-
vironment. Composed of tumor cells, vascular endothelial cells, stromal cells, astrocytes,
microglia, immune cells, extracellular matrix proteins, and cytokines, the microenviron-
ment plays a critical role in tumor cell invasion, resistance to treatments, recurrence, and
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as a result, poor patient prognosis. Unraveling this complex microenvironment could be
helpful in tumor prognostication and treatment planning [76,77]. The literature regarding
use of radiomics to predict the tumor microenvironment is sparse. In a recent study, tumor
radiomics signatures derived from apparent diffusion coefficient maps was able to predict
the tumor immune phenotypes, including T cell fraction (enriched vs. deficient group),
T cell subclass fraction, and tumor-associated macrophage (TAM) fraction [78]. Another
study discovered a radiomic subtype of GBM with poor prognosis which might respond
better to immunotherapy [79]. These findings might help answer critical clinical concerns,
including determining the difference between TP and PsP or radiation necrosis [80]. Given
the importance of tumor microenvironment, this is an emerging field in radiomics, and
many studies are currently underway.

Over the past few years, several challenges with the clinical utility of radiomics in
diagnosis and treatment of high-grade gliomas have been highlighted, and an increasing
number of studies have attempted to address these concerns. One of the main challenges
to the widespread clinical implementation of radiomic approaches is to demonstrate their
generalizability. Variations in image acquisition protocols between sites and even across
scanners at a single site secondary to differences in image contrast, voxel resolutions, slice
thicknesses, image reconstruction methods, magnetic field strengths, echo, and repetition
times can be an impediment to reproducibility of results in radiomic studies. These con-
cerns have led to standardization of imaging efforts for multicenter neuro-oncology trials.
The first consensus recommendation was published in 2015 with a pragmatic approach of
developing a balanced protocol that would be feasible for most centers and could reach
large-scale compliance and acceptance from the community and would be applicable to
both 3 and 1.5 T scanners [81]. Key elements of the suggested protocol included pre and
post-contrast volumetric, inversion recovery prepared t1-weighted gradient echo MRI,
an axial, 2-dimensional FLAIR sequence with a turbo-spin-echo (TSE) readout; an axial,
2-dimensional, 3-directional (isotropic) diffusion-weighted imaging (DWI) sequence ob-
tained using echoplanar or radial acquisition; and an axial, 2-dimensional T2-weighted
TSE sequence [82]. More recently, consensus recommendations for dynamic susceptibility
contrast (DSC) MRI protocol for use in high-grade gliomas were published [82] and con-
cluded that full-dose preload and full-dose bolus dosing using intermediate flip angle and
field strength-tailored time to echo (40–50 ms at 1.5 T, 20–35 ms at 3 T) provides overall best
accuracy and precision for cerebral blood volume estimates [82]. It has also been suggested
that in situations where such double dose bolus injection is not desirable, no-preload,
full-dose bolus dosing with a low flip angle (30◦) and a suitable time to echo provides
comparable performance and accuracy [82].

Another barrier to the development and broader adoption of accurate and translatable
computational algorithms in radiomics analysis of gliomas is the need for ample train-
ing datasets with accurate corresponding labels. Many modern medical datasets include
clinical data in multiple modalities. Often, comprehensive datasets span from patient
background to radiology scans, to histology sections, to genetic assays. Due to the cost
of data storage steadily decreasing over time, it becomes increasingly more accessible for
institutions large and small to create publicly accessible datasets. Additionally, advances in
lab methods, imaging, and storage mean that the stored data can have a higher resolution,
depth, and fidelity. Large biomedical repositories such as The Cancer Imaging Archive
(TCIA, www.cancerimagingarchive.net, access date: 19 October 2021) [83] have proven use-
ful in expediting scientific discovery. TCIA has streamlined the process of reproducibility
analyses through the release of “Analysis Results”. Publications in these ”Analysis Results”
describe augmentations of the TCIA data collections through newly released expect anno-
tations [84–86], as well as further data analysis such as outcome prediction and exploratory
radiogenomic analysis [42,47,59,87]. These large-scale repositories and analysis results can
serve as exemplary resources for single centers to create their databases in a systematic
approach. Furthermore, generalizability of the developed methods can be examined by
using these freely available datasets as a discovery cohort for ML model training which

www.cancerimagingarchive.net
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will be subsequently tested independently on an institutional patient cohort. To facilitate its
clinical translation, radiomics can be incorporated with the Picture Archiving and Commu-
nication System (PACS). Radiomic data can be stored alongside the DICOM metadata and
images and facilitate future statistical and predictive modeling. Such integration supports
creation of an institutional database in a standardized and harmonized approach [88].

In medical image analysis literature, there have been numerous manuscripts intro-
ducing novel methods always superior to the previously published methods. However,
when looking closer there seems to be an unfair comparison across published methods,
as they have been evaluated on different datasets. It was predominantly the need for a
common benchmarking environment and dataset that spearheaded the birth of compu-
tational competitions, also known as challenges, where computational researchers can
develop and compare their methods fairly. As an example, here we refer to the landmark
international challenge on brain tumor segmentation (BraTS) [85,86,89–91], in conjunction
with the conference on medical image computing and computer-assisted interventions
(MICCAI), that has been leading the development of brain tumor segmentation algorithms.

Finally, consortiums play a key role in supporting the collection of large and diverse
data for learning the underlying patterns of the diseases and overcoming the so-called
“curse of dimensionality” problem [16,92]. As an example, the Radiomics Signatures for
Precision Diagnostics (ReSPOND) consortium, as an international initiative for machine
learning in glioma imaging [16], was formed for further development, generalization,
and clinical translation of radiomic-based biomarkers for personalized prognostication.
ReSPOND is a collaborative effort of approximately 20 international institutions across the
globe. With diverse and extensive data, this consortium aims to investigate biomarkers for
prediction of risk in terms of overall and progression-free survival, upfront prediction of
tumor recurrence, differentiation of TP from PsP, and prediction of molecular characteristics
of gliomas [16,93]. Through such consortiums, multiple aspects of radiomic analysis
reproducibility can be tackled, and guidelines be provided for the research community. As
an example, the impact of image preprocessing techniques on reproducibility of radiomic
feature computations, as regulated by the Image Biomarker Standardization Initiative
(IBSI), and the potential of image harmonization techniques to mitigate the variability
of MRI scans [94–98] can be evaluated in a single controlled setting on a diverse cohort
of data.

4. Should Radiomics Be Integrated with WHO Classification? A
Neuropathology Perspective

Classification of gliomas continually evolves with the ongoing study of tumor biology
and clinical courses and outcomes. Changes in diagnostic criteria have been dramatic over
the past five years, with the advent of the 2016 update to the WHO classification [5], as well
as the establishment of and publications from The Consortium to Inform Molecular and
Practical Approaches to CNS Tumor Taxonomy—Not Official WHO (cIMPACT-NOW [99]),
and now the 2021 WHO classification [6]. Gliomas previously belonging to few general
categories are now parsed into many different tumor types based on a combination of
characteristics, including molecular features, that make the different tumors unique entities
and that correlate with clinical course.

The field of surgical pathology involves specimen analysis at both a gross and a mi-
croscopic level, with the two different scales giving complementary and equally crucial
information. However, in neuropathology, the gross assessment of glioma surgical speci-
mens can be limited due to the inherent characteristics of glial tissue and surgical methods.
Fortunately, correlation with radiological studies often can serve as a surrogate for tissue
gross examination, and this correlation is considered by many neuropathologists to be a
critical element of the diagnostic process. Therefore, it is natural that as more information
is derived from radiological images through machine learning, these results may be added
to the list of relevant properties assessed to completely characterize a glioma.

Noninvasive radiogenomic classification of tumors into categories defined by the
WHO [100–102] as well as radiomic prediction of MGMT promoter methylation status [103]
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have clear benefits in assessing tumors pre-operatively and through a patient’s course of
care. These predictions will allow administration of neoadjuvant or intraoperative targeted
therapy when these become available, and they will allow complete assessment of tumors
that have limited tissue available for laboratory testing, when surgeries yield sparse tissue
at resection or when the tumors are not resectable due to location or patient clinical status.
In addition, radiogenomic studies have the potential to assess molecular heterogeneity and
provide more information than that gleaned from laboratory testing on a single fragment
of tissue. These benefits may eventually be realized at low cost in terms of time and money,
compared to expensive molecular testing with relatively long turnaround times.

In this paper, the radiomic feature of tumor location is mentioned several times.
Location has become important in the classification of several brain tumor types, such
as diffuse midline gliomas and ependymomas. For the former, the diagnosis cannot be
made without tumor involvement of midline brain structures. For the latter, ependymoma
classification is first stratified by location in the spine, posterior fossa, or supratentorial
compartment. Depending upon location, different molecular features must be interrogated
to come to a final diagnosis. Although making the diagnosis of a high-grade glioma
such as an IDH-wildtype glioblastoma or an IDH-mutant grade 4 astrocytoma does not
currently depend on location, alternative location-dependent diagnoses such as diffuse
midline glioma must be ruled out. In addition, it is possible that as molecular features
and prognoses continue to be studied, additional subsets of glioblastoma and IDH-mutant
astrocytoma will be teased out that correlated with location. This location information
and its integration with other features predictive of histology and molecular changes are
natural applications of radiomics.

Machine learning on radiologic imaging has additional potential. One of the most
interesting categories of brain tumors is designated “not elsewhere classified (NEC)”. A
“NEC” tumor has been tested for known relevant molecular features, but despite the
availability of results, the tumor cannot be classified as one of the currently understood
entities [6]. Radiomics and radiogenomics may lend biological and clinical understanding
to these novel entities through prediction of survival and suggestion of involved biological
signaling pathways associated with low-risk and high-risk categories [50,104,105]. The
utility of the machine learning results may be envisioned in multiple ways. For a glioma
that is classified at “NEC” with no understood molecular features discovered by molecular
testing, the imaging features may suggest the pathways relevant to treatment and/or
prognosis. Alternatively, for a glioma classified as “NEC” with a combined molecular and
histologic profile that does not lead to clear understanding of the patient’s prognosis, the
imaging features and machine learning outcome prognostic prediction may shed light on
the clinical course and hence guide treatment planning. This understanding will allow
clinical care to be tailored to the patient. In addition, if biological pathways are implicated
by the imaging features, these will provide the basis for new directions of basic science
investigation into gliomagenesis and progression.

Ultimately, with progress in the field, the potential exists for radiomic and radio-
genomic criteria to be utilized as biomarkers in tumor characterization, in the way that
histologic and molecular features are currently used in the WHO classification [6]. These
imaging criteria may be incorporated into diagnoses as molecular and histologic features
are currently enumerated and integrated in layered diagnoses [106] (Figure 2).
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5. Conclusions

Radiomics in medical imaging analysis of gliomas has introduced novel solutions
to the current clinical challenges for treatment of gliomas and has shown promising
evidence for personalized diagnosis and treatments. Key applications of radiomics and
radiogenomics include risk stratification of glioma patients by upfront projection of the OS
and PFS, prediction of spatial location of tumor recurrence, distinguishing TP from PsP, and
prediction of the molecular properties of the tumor and spatial heterogeneity. As discussed
throughout this paper, radiomics has the potential to support management of gliomas but
is not yet translated into clinical decision-making. Current radiomics efforts may benefit
from addressing the challenges of reproducibility and generalizability and exploring the
impact of fully integrated diagnostics in clinical management of glioma patients.
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