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Abstract

This study describes JE7A12T (=ATCC TSD-225T=NCTC 14479T), an isolate from the ruminal content of a dairy cow. Phenotypic 
and genotypic traits of the isolate were explored. JE7A12T was found to be a strictly anaerobic, catalase-negative, oxidase-
negative, coccoid bacterium that grows in chains. The API 50 CH carbon source assay detected fermentation of d-glucose, 
d-fructose, d-galactose, glycogen and starch. HPLC showed acetate to be the major fermentation product as a result of carbo-
hydrate fermentation. Phylogenetic analysis of JE7A12T based on 16S rRNA nucleotide sequence and amino acid sequences 
from the whole genome indicated a divergent lineage from the closest neighbours in the genus Ruminococcus. The results 
of 16S rRNA sequence comparison, whole genome average nucleotide identity (ANI) and DNA G+C content data indicate that 
JE7A12T represents a novel species which we propose the name Ruminococcus bovis with JE7A12T as the type strain.

The genus Ruminococcus was first described by Sijpesteijn 
[1] with Ruminococcus flavefaciens as the type strain [2]. 
Previously, members of the genus Ruminococcus have most 
frequently been isolated from the rumen and gastrointes-
tinal tract of a wide variety of animals, including humans 
[3]. The genus is polyphyletic and divided into two groups. 
Ruminococcus group 1 includes the type strain Ruminococcus 
flavefaciens, Ruminococcus albus, Ruminococcus bromii and 
Ruminococcus callidus. Ruminococcus group 2 species have 
recently undergone taxonomic re-classification with many 
species being reassigned to different genera [4]. It is now 
believed that true members of the genus Ruminococcus are 
the species found in group 1 [4].

Microbial fermentation plays a prominent role in the utiliza-
tion of feed by ruminants. In the rumen, bacterial fermenta-
tion is known to contribute to the stabilization of ruminal 
pH, increase volatile fatty acid production, reduce ammonia 
concentration and improve fibre digestibility [5–12]. Rumino-
cocci are ubiquitous members of the human gastrointestinal 
and rumen microbial consortia worldwide where they play 
a role in the fermentation of cellulose rich feedstuffs and 
resistant starch [13–19]. Assessment of the global distribution 
of rumen microbes by Henderson et al. found that species 
of the genus Ruminococcus were present in all ruminants 

surveyed and, on average, were found to comprise 3.6 % of the 
total rumen bacterial community [20]. While the abundance 
of members of the genus Ruminococcus is naturally high 
there is evidence that their functional role is larger than the 
abundance would suggest. Xia et al. revealed that 70–80 % of 
the starch degrading bacteria in the barley-fed beef heifers 
were members of the family Ruminococcaceae [21]. Similarly, 
shotgun metagenomics approaches have demonstrated that 
a disproportionately high number of genes encoding hemi-
cellulase and cellulase in the rumen can be associated with 
members of group 1 of the genus Ruminococcus [22]. Thus, 
characterization of novel species of the genus Ruminococcus 
has the potential to elucidate underlying microbial function-
ality in the rumen and the influence of members of the genus 
with regards to ruminant feed utilization and nutrition. The 
following description pertains to the isolation and classifica-
tion of a novel group 1 amylolytic species, represented by 
strain JE7A12T, of the genus Ruminococcus.

ISOLATION AND ECOLOGY
JE7A12T was recovered from the rumen content of a healthy, 
Holstein dairy cow obtained from a farm in Tulare, California, 
USA on a modified chopped meat broth with carbohydrates 
solid medium (DSMZ Medium 110) at 37 °C in an anaerobic 
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environment (5 % H2, 20 % CO2, 75 % N2). The medium was 
modified by the removal of fat-free ground meat and casein 
and the addition of 30.0 g peptone, 15.0 g meat extract, 10.0 g 
meat peptone, 15.0 g agar and 100 ml clarified rumen fluid 
[23] per litre of medium. After 48 h of anaerobic incubation at 
37–39 °C, JE7A12T displayed off-white colonies approximately 
0.1–0.3 mm in diameter on supplemented Bacto Tryptic Soy 
Broth (BD) with 0.4 g l-cysteine hydrochloride, 0.02 g ferric 
ammonium citrate, 10 µg vitamin K1, 2.0 mg resazurin sodium 
salt, 10.0 ml vitamin supplement ATCC MDVS (ATCC) and 
7.0 g Gelrite (CP Kelco) per litre of medium (TSB+FAC). 
Gram-staining was performed as described by Beveridge 
[24]. Cell morphology was observed under an Accu-Scope 
EXC-350 light microscope using cells grown for 48 h at 37 °C 
on TSB+FAC. Cell size was measured using the microscopy 
imaging software Captavision + (Accu-Scope). Cells were 
Gram-stain positive, non-spore-forming and presented as 
small cocci (0.9–1.2 µm in diameter) (Figs S1 and S2, available 
in the online version of this article). The strain did not grow in 
the presence of oxygen and therefore is considered obligately 
anaerobic. Consistent with previous descriptions of the genus, 
JE7A12T is a strictly anaerobic coccoid, commonly found in 

pairs and chains [3]. Although isolated from rumen content, 
JE7A12T does not require rumen fluid for growth.

16S rRNA PHYLOGENY
16S rRNA based phylogeny was computed by the neighbor-
joining method using mega X [25]. JE7A12T was placed in 
a dendrogram of all type strains of species from the order 
Clostridiales for which a full length 16S rRNA sequence was 
available in the RDP database [26]. The dendrogram was 
trimmed to include all the current members of the genus 
Ruminiococcus as well as close phylogenetic neighbours 
(Fig. 1).

To confirm the results from the tree reconstructed from 16S 
rRNA sequences, a second phylogenetic tree was recon-
structed using PhyloPhlan and a subset of 400 conserved 
proteins [27]. JE7A12T was placed in the dendrogram gener-
ated by PhyloPhlan with type strains of species of the genus 
Ruminococcus as well as type strains of species that were close 
matches from the 16S rRNA phylogenetic analysis (Fig. 2). 
Both the 16S rRNA tree reconstructed using mega X and 
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Fig. 1. JE7A12T 16S rRNA phylogenetic tree by mega X, dendrogram; JE7A12T and type strains of species of the genus Ruminococcus as 
well as type strains of closely related species. The tree was reconstructed using 16S rRNA type strain sequences from members of the 
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given at each branch point.
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the tree reconstructed using PhyloPhlan placed JE7A12T 
on a divergent branch within the Ruminococcus group 1 
cluster. In agreement with the results of the ANI analysis,  
R. bromii was revealed to be the closest neighbour of JE7A12T 
by both phylogenetic reconstruction methods. As previously 
reported, the species of Ruminococcus group 2 form a separate 
and distinct cluster.

GENOME FEATURES
DNA from a pure culture of JE7A12T was extracted by a 
modified Sambrook phenol–chloroform extraction/purifica-
tion protocol [28]. Short-read libraries for whole genome 
sequencing were generated using a Kapa HyperPlus kit 
(Roche and single-end sequenced (1×300) on a MiSeq (Illu-
mina). In parallel, long-read libraries were generated using 
the SQK-RAD004 kit (Oxford Nanopore Technologies) and 
1D sequenced on the MinION (R9.4 flowcell). Sequencing 
resulted in greater than 100× coverage by Illumina reads 
and 55× coverage by Oxford Nanopore. The genome was 
assembled by hybrid methods, utilizing both Canu [29] and 
Pilon [30], as described by George et al. [31]. The assembly 
resulted in the generation of a single, circular contig with a 
length and N50 of 2 440 231 base pairs. The DNA G+C content 
of the assembly is 34.6 mol%. The whole genome has been 
deposited at NCBI (accession number CP039381). Whole 
genome size and DNA G+C content were compared between 
JE7A12T and all current members of the genus Ruminococcus 
(Table 1). At 34.6 mol%, the DNA G+C content of JE7A12T 
should act as a differentiating characteristic for the species 
as it is significantly lower than those of any other member 
of the genus. The lowest known DNA G+C content for other 

members of the genus is 39 mol% for strains of R. flavefaciens 
and R. bromii [3].

The full length 16S rRNA sequence of JE7A12T was extracted 
from the whole genome sequence. The authenticity of the 
assembled 16S rRNA sequence was confirmed by comparison 
with a 16S rRNA amplicon sequence obtained using the 
27F and 1492R primers and previously described methods 
[32]. The full length 16S rRNA sequence was subsequently 
compared with entries in the NCBI database by blast. 
Excluding species without validly published names, the closest 
neighbours to JE7A12T based on 16S rRNA sequence simi-
larity are Ruminococcus bromii (93.3 %), Clostridium leptum 
(91.2 %) and Caproiciproducens galactitolivorans (89.2 %).

To further investigate taxonomic identity, whole genome 
average nucleotide identity (ANI) was compared between 
JE7A12T and type strains for all current species of the genus 
Ruminococcus [33]. Additionally, type strains of Clostridium 
leptum and Caproiciproducens galactitolivorans were included 
in the ANI analysis due to their close 16S rRNA similarity. 
Due to bias in ANI algorithms, the ANI of JE7A12T was evalu-
ated utilizing both MUMmer and blast algorithms [34–36] 
(Tables 2 and 3).There were no matches at the suggested 95 % 
cutoff for defining a species [33, 34, 37]. The best match by 
blast was to Ruminococcus bromii. However, the two species 
are genetically distant as their genomes share 72.7 % sequence 
similarity but at only 20.1 % coverage of the genome (Table 3). 
MUMmer offered higher sequence similarity matches than 
blast, with sequence alignment values between 81.7 and 
93.9 % for all species. However, these matches exhibited 
very low genome coverage (Table 2). The only species which 
demonstrates greater than 0.3 % genome coverage was 
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Fig. 2. JE7A12T phylogenic tree by PhyloPhlan dendrogram; JE7A12 T and type strains of species of the genus Ruminococcus as well as 
type strains of other close phylogenetic neighbours. JE7A12T is indicated in green type, type strains of members of Ruminococcus group 
1 are indicated in blue type. Branch length based on relative concatenated amino acid sequence similarity is appended to each branch. 
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Ruminococcus bromii. Whole genome nucleotide dissimilarity 
is a strong differentiator of JE7A12T from the other taxa of 
the genus.

PHYSIOLOGY AND CHEMOTAXONOMY
Catalase and oxidase activities of JE7A12T were determined 
using a 3 % (v/v) hydrogen peroxide solution and 1.2 % 
tetra-methyl-p-phenylenediamine dihydrochloride solution, 
respectively. Growth temperature ranges were determined 
in TSB+FAC medium at 25, 30, 37, 40 and 50 °C. Optimal 
growth was observed at 37 and 40 °C, reduced growth at 30 °C 
and no growth at 25 and 50°C incubation temperature. No 
motility was observed. Growth in the presence of salt was 
studied by supplementing TSB+FAC liquid medium with 
NaCl (0.5–4.5 % w/v in 0.5 % increments). Hungate tubes 
were incubated at 37 °C for 72 h and monitored for growth. 
JE7A12T was capable of growing in salt concentrations of up 
to 2.5 %. Tolerance to pH (5.0–9.0) was tested on TSB+FAC 
with pH tested in increments of 0.5 pH units. Hungate tubes 
were incubated at 37 °C for 72 h and monitored for growth. 
The optimal pH for growth was pH 7.0–7.5 with reduced 
growth at pH 6.0–6.5. No growth was observed at pH 8.0–9.0 
and pH 5.0–5.5 on TSB+FAC.

Carbohydrate fermentation of JE7A12T was qualitatively 
measured using the API 50CH carbon panel (BioMérieux). 
JE7A12T cells were grown to late exponential phase and 
recovered by centrifugation at 3000 g for 10 min. Cells were 
resuspended and 0.017 % (w/v bromocresol purple added as a 
pH indicator for acidification of carbohydrates [38]. JE7A12T 
fermented d-galactose, d-glucose, d-fructose, maltose, 
glycogen, aesculin/ferric citrate and starch. No fermentation 
of glycerol, erythritol, d-arabinose, l-arabinose, d-ribose, 
d-xylose, l-xylose, methyl β-d-xylopyranoside, d-cellobiose, 
d- adonitol, d-lactose, d-saccharose, d-trehalose, d-melibiose, 
d-mannose, l-arabitol, l-sorbose, l-rhamnose, dulcitol, 
inositol, d-mannitol, d-sorbitol, methyl d-mannopyranoside, 
methyl d-glucopyranoside, N-acetyl glucosamine, amygdalin, 
arbutin, melezitose, raffinose, xylitol,inulin, salicin, gentio-
biose, turanose, d-lyxose, d-tagatose, d-fucose, l-fucose, 
d-arabitol, potassium gluconate, potassium 2-ketogluconate 
and potassium 5-ketogluconate was observed (Table S1).

A comparison of carbon source fermentation between 
JE7A12T and all current species of the genus Ruminococcus 
can be found in Table 1. Similarly to R. bromii, JE7A12T shows 
narrow specialization with regards to carbohydrate fermenta-
tion, while other members of the genus Ruminococcus gener-
ally ferment a wider range of carbohydrates [39]. Specifically, 

Table 2. Average nucleotide identity by MUMmer

ANI using MUMmer between JE7A12T and type strains of species of the 
genus Ruminococcus as well as type trains of closely related species as 
determined by 16S rRNA sequence alignment.

Genus species (Genbank accession 
number)

ANI (%) Coverage (%)

Ruminococcus gauvreauii CCRI-16110T 
(GCA_000425525)

93.7 0.11

Caproiciproducens galactitolivorans BS-
1TT (GCA_004768785)

92.5 0.31

Clostridium leptum VPI T7-24-1T 
(GCA_000154345)

89.8 0.16

Ruminococcus champanellensis 18 P13T 
(GCA_000210095)

88.8 0.24

Ruminococcus callidus VPI57-31T 
(GCA_000468015)

87.8 0.20

Ruminococcus flavefaciens ATCC 19208T 
(GCA_000518765)

86.0 0.21

Ruminococcus albus ATCC 27210T 
(GCA_000179635)

85.8 0.14

Ruminococcus bromii VPI 6883T 
(GCA_002834225)

84.5 1.66

Ruminococcus gnavus VPI C7-9T 
(GCA_009831375)

82.3 0.13

Ruminococcus torques VPI B2-51T 
(GCA_000153925)

82.2 0.18

Ruminococcus lactaris VPI X6-29T 
(GCA_000155205)

81.7 0.21

Table 3. Average nucleotide identity by blast

ANI using blast between JE7A12T type strains of species of the genus 
Ruminococcus as well as type species of closely related species as 
determined by 16S rRNA sequence alignment.

Genus species (Genbank accession 
number)

ANI (%) Coverage (%)

Ruminococcus bromii VPI 6883T 
(GCA_002834225)

72.8 20.2

Ruminococcus torques VPI B2-51T 
(GCA_000153925)

71.9 3.32

Ruminococcus albus ATCC 27210T 
(GCA_000179635)

71.6 2.76

Ruminococcus flavefaciens ATCC 19208T 
(GCA_000518765)

70.9 3.28

Ruminococcus gnavus VPI C7-9T 
(GCA_009831375)

70.9 2.54

Ruminococcus lactaris VPI X6-29T 
(GCA_000155205)

70.8 3.69

Caproiciproducens galactitolivorans BS-
1TT (GCA_004768785)

70.1 5.48

Ruminococcus champanellensis 18 P13T 
(GCA_000210095)

70.1 2.88

Ruminococcus callidus VPI57-31T 
(GCA_000468015)

70.0 3.08

Clostridium leptum VPI T7-24-1T 
(GCA_000154345)

69.7 3.93

Ruminococcus gauvreauii CCRI-16110T 
(GCA_000425525)

69.3 1.38

http://doi.org/10.1601/nm.4154
http://doi.org/10.1601/nm.4151
http://doi.org/10.1601/nm.4154
http://doi.org/10.1601/nm.4151
http://doi.org/10.1601/nm.4151
http://doi.org/10.1601/nm.13592
http://doi.org/10.1601/nm.27942
http://doi.org/10.1601/nm.3964
http://doi.org/10.1601/nm.22786
http://doi.org/10.1601/nm.4155
http://doi.org/10.1601/nm.4152
http://doi.org/10.1601/nm.4153
http://doi.org/10.1601/nm.4154
http://doi.org/10.1601/nm.4156
http://doi.org/10.1601/nm.4166
http://doi.org/10.1601/nm.4159
http://doi.org/10.1601/nm.4151
http://doi.org/10.1601/nm.4154
http://doi.org/10.1601/nm.4166
http://doi.org/10.1601/nm.4153
http://doi.org/10.1601/nm.4152
http://doi.org/10.1601/nm.4156
http://doi.org/10.1601/nm.4159
http://doi.org/10.1601/nm.27942
http://doi.org/10.1601/nm.22786
http://doi.org/10.1601/nm.4155
http://doi.org/10.1601/nm.3964
http://doi.org/10.1601/nm.13592
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R. bromii has been reported to ferment most of the same 
carbon sources as JE7A12T, including galactose, glucose, 
fructose, maltose, glycogen and starch [3, 40]. Despite the 
similarities between the species, strains of R. bromii derived 
from the bovine rumen are not known to ferment fructose or 
galactose and are rarely able to ferment glucose. Utilization 
of these carbon sources have more commonly been observed 
in human derived R. bromii [41]. Therefore, fermentation 
of glucose, fructose and galactose could act to differentiate 
JE7A12T from ruminally derived Ruminococcus bromii.

Metabolite production was measured using a Waters Acquity 
UPLC Q System with RI detector. The column used was a 
Phenomenex 00 H-0138-K0 Rezex ROA Organic Acid H+ 
(8 %) operated at 60 °C. The mobile phase was 0.001625 M 
H2SO4 at 0.5 ml min−1. Pure standards of acetate, ethanol, 
glycerol, lactate, butyrate, butanol, propionate, succinate 
and pyruvate were used for calibration at varying concen-
trations. JE7A12T produces acetate as a major fermentation 
product as well as ethanol and glycerol as minor products. No 
lactate, butyrate, butanol, propionate, succinate or pyruvate is 
produced. A comparison of metabolite production between 
JE7A12T and all current species of the genus Ruminococcus 
can be found in Table 1. The fermentation profile of JE7A12T 
most closely resembles that of R. bromii and R. gauvreauii 
which are the only species in the genus that produce acetate, 
and only acetate, as a major metabolic product. While the 
other members of the genus produce acetate, they also 
produce high levels of succinate, lactate and formate.

DESCRIPTION OF RUMINOCOCCUS BOVIS SP. 
NOV.
Ruminococcus bovis (bo'vis. L. gen. n. bovis of the cow)

Ruminococcus bovis is an obligately anaerobic, catalase-
negative and oxidase-negative bacterium. It is Gram-stain-
positive and forms chains of small cocci when cultured in 
liquid medium. When cultured on TSB+FAC solid medium, 
it forms small, slightly opaque, off-white, circular colonies 
with even margins. Fermentation of d-galactose, d-glucose, 
d-fructose, maltose, glycogen, aesculin/ferric citrate and 
starch is indicated by API CH50. The major fermentation 
product is acetate, with ethanol and glycerol as minor prod-
ucts. No lactate, butyrate, butanol, propionate, succinate or 
pyruvate is produced.

The type strain is JE7A12T (=ATCC TSD-225T=NCTC 
14479T) and was originally isolated from rumen content of 
a healthy, Holstein cow from Tulare, California, USA. The 
genomic DNA G+C content of the type strain is 34.6 mol%.
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