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Abstract: Wearable electronic devices have experienced increasing development with the advances
in the semiconductor industry and have received more attention during the last decades. This paper
presents the development and implementation of a novel inertial sensor-based foot-mounted wearable
electronic device for a brand new application: game playing. The main objective of the introduced
system is to monitor and identify the human foot stepping direction in real time, and coordinate
these motions to control the player operation in games. This proposed system extends the utilized
field of currently available wearable devices and introduces a convenient and portable medium to
perform exercise in a more compelling way in the near future. This paper provides an overview of
the previously-developed system platforms, introduces the main idea behind this novel application,
and describes the implemented human foot moving direction identification algorithm. Practical
experiment results demonstrate that the proposed system is capable of recognizing five foot motions,
jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy
performance for different users. The functionality of the system for real-time application has also
been verified through the practical experiments.
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1. Introduction

In recent years, with the rapid development of MEMS (Micro-Electro-Mechanical System)
technology, the inertial sensor production has made a leap forward in terms of chip-size minimization,
low-cost manufacturing, low-power consumption, and simplification in operation. Due to these
advancements, various types of inertial MEMS sensors have been adapted for multiple applications,
such as vehicles and personal navigation [1], motion tracking systems [2], and consumer electronic
devices (smartphones) [3]. The wearable electronic devices, which emerged during the last few
years, also utilize the low-cost MEMS inertial sensor, and are becoming more attractive in the
consumer market.

Wearable electronic devices refer to electronic technologies or devices that are incorporated into
items of clothing and accessories which can be comfortably worn [4]. Generally, these devices can
perform communications and allow the wearers to access their activity and behavior information.
The foot-mounted inertial sensor based electronic device is one commonly existing type and has
attracted attention for further study, development and implementation. The application fields of
foot-mounted wearable device can mainly be categorized into: pedestrian navigation, human daily or
sports activity recognition, and medical field.
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The foot-mounted personal navigation system is the most universal usage of this kind of
device and has been reported several times before [5–7]. It makes use of the self-contained and
autonomous attributes of inertial sensor to derive the navigation solution, which is capable of
effectively avoiding the negative effect of environmental elements. This system is meaningful to
be utilized for firefighters, tracking military personnel, first responders and offenders, visually
impaired and blind people [8]. The fundamental of such system is to apply Inertial Navigation
System (INS) mechanization equation to calculate navigation parameters (i.e., position, velocity,
and attitude), and combines the Zero velocity update (ZUPT) technology to mitigate accumulated
error and estimate the sensor error [9,10]. In order to improve the positioning performance, several
other technical algorithms or estimation approaches, such as particle filter [11], integration with
RFID (Radio Frequency Identification) measurements [12], map matching [13], and improvement on
hardware structure [14] are also employed in the foot-mounted navigation devices. However, due to
the requirement of initial position and the INS accumulated error caused by integral computation [15],
the foot-mounted navigation system is rarely capable of acquiring long-term stable solution and is
limited for further industrial utilization.

Additionally, the foot-mounted wearable device is applied in the field of sports exercises or daily
activities tracking. With the inertial sensor attached on shoe, gait cycle, daily energy expenditure for
activities (i.e., running, and walking) and sportive activities can be fed back to the users [16,17].
The activity recognition process basically segments data, extracts features and classifies human
motions [18]. Wang designs a walking pattern classifier to determine the phases of a walking
cycle: stance, push-off, swing, and heel-strike. Chen introduces employing Hidden Markov Model
(HMM) to pre-process the inertial sensor data and classify common activities: standing, walking,
going upstairs/downstairs, jogging and running, and other similar research work can be found in
literatures [19,20]. In industry, miCoach [21] and Nike+ [22] are examples of foot-mounted commercial
wearable products for monitoring sportive activities. These fitness products provide the user with
information on speed, distance, and energy cost, and have achieved a tremendous popularity among
users. However, they are limited to the provision of the users’ general motion information, such
as discrimination of movement activity from rest, classification of activities (i.e., running, walking,
and sleeping), and the quantization of general movement intensity (i.e., percentage of time spent
moving, sleeping, and sitting) [23]. These systems are merely data recorders or monitors, and their
performance does not have a direct impact on the user experience because the user cannot identify
whether the motion identification result is accurate or not.

In medical field, since gait disturbances are very common factors in patients with Parkinson’s
disease, several research works concern with Parkinson patients who suffer from walking abnormality,
and aim to help them in aspects of diagnosing, monitoring, and rehabilitating. Filippo [24] proposes
a system that is able to provide real-time computation of gait features, and feeds back to the user in
the purpose of helping him/her execute the most effective gait pattern. Joonbum [25] makes use of
pressure sensor to monitor patients’ gait by observing the ground reaction force (GRF) and the center of
GRF to give the quantitative information of gait abnormality. He [26] improves the work by integrating
Inertial Measurement Unit (IMU), employing the HMM to identify gait phases and developing it into
a tele-monitoring system. Moreover, Strohrmann [27] utilizes the motion data measured by inertial
sensor for runner’s kinematic analysis to avoid risks provoked by fatigue or improper technique.
Chung [28] compares the motion data of Alzheimer patient and healthy people collected during
walking, and concludes that the Alzheimer patients exhibited a significantly shorter mean stride length
and slower mean gait speed than those of the healthy controls. The foot-mounted device, which
provides continuous physical monitoring in any environment, is beneficial in shortening patent’s
hospital stay, improving both recovery and diagnosis reliability, and raising patients’ quality of life.

This paper aims to introduce a novel application of foot-mounted wearable electronic device:
game play. The inertial sensor has been successfully applied in game play scenario before and received
massive attentions. The most popular and famous example is Wii remote controller, which integrates
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infra-red and three-axis accelerometer information to capture users’ hand motion and enables them
to play games such as Golf, Tennis ball, Balling, etc. [29,30]. The MotionCore controller, proposed
by Movea, can play the role of an air mouse and is employed to play Fruit Ninjia, or Shooting
games. Shum [31] introduces a fast accelerometer based motion recognition approach and applies this
technology to plays boxing game. Ernst [32] attempts an initial experiment of using wearable inertial
sensor in game of material arts. These proposed or stated inertial sensor based game applications
are all expressed in hand operating mode that users need to shake and swing their hands to interact
with game operation in real time. To the best knowledge of the authors, attaching inertial sensor
on shoe and using foot motion to play game has not been discussed in previous academic work or
industry product; hence, it is a novelty of suggesting such game play manner. The main idea behind
the proposed system is to identify human foot stepping directions in real-time and coordinate these
directions to control the virtual player actions in game. In our work, one IMU configuration is selected
to make it convenient and suitable for user to wear. The proposed motion identification procedure is
then implemented in three successive steps: (1) the collected dynamic data are initially preprocessed
to compensate sensor error (i.e., bias, scale factor error, and non-orthogonality error) and correct the
inertial sensor misalignment during placement; (2) the peak points of acceleration norm are detected
for acceleration data segmentation and the selected features (e.g., mean, variance, position change,
etc.) in the vicinity of each peak point are extracted; and (3) the extracted features are finally fed into a
machine learning process to train the classifier. Notably, to improve the robustness of the proposed
system, each stepping motion type has its own corresponding classifier.

The advantages of proposed system can be described as follows: (1) it extends the current
foot-mounted electronic wearable devices beyond pedestrian navigation or human activity recognition
and monitoring to the game play field, (2) some of the kinetic games will not be limited to a confined
space (i.e., living room) and specific game boxes (i.e., XBOX or Wii) anymore, and, on the contrary,
will be playable almost anywhere or anytime on various terminals (i.e., smartphones or tablets); and
(3) it introduces the possibility of building the low-cost, portable, real-time wearable exercising and
entertainment platforms, with which people are able to conveniently perform virtual sports or exercise
in an interesting manner without environmental constrains.

The paper is structured as follows: Section 2 introduces the main concept of the proposed system.
Section 3 describes the system overview with the introduction of both hardware and software platforms.
Section 4 illustrates the specific implementation of the foot motion detection algorithm. Section 5 shows
the experimental results and analysis. Section 6 presents conclusions and provides recommendations
for future research work.

2. Main Concept

One of the commonly-used game operating modes is that user controls the character’s movements
(i.e., forward, backward, left or right) to avoid obstacles or achieve more points in popular smartphone
running games, such as Temple Run, Surway Surf. According to this operation mode, the main concept
of the foot-mounted systems is to utilize user’s steps to control the virtual player in game, instead of
using the conventional manner (i.e., finger sliding, and button press). Specifically, the inertial sensor is
attached to the user’s foot and the sensor data are collected during moving phase; then, the stepping
direction is derived from collected data and used to control the character moving in game. Figure 1
illustrates the main concept of the proposed system.

This illustration shows the human foot’s kinetic motions, detected by an inertial sensor,
will substitute the traditional game controller. Concretely, the user’s stepping forward or jumping
correlates to the press of up button (or finger slides up); stepping backward correlates to the press of
down button (or finger slides down). Similarly, a person’s walking left or right correlates to the press
of left or right buttons (or finger slides right or left).

This system has high real-time and detection accuracy requirements because any lag or false
detection of steps will cause the user to discontinue playing game normally and contribute to a poor
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user experience. Hence, the main challenge of this system is to correctly determine step motion and
moving directions when the step event happens with little delay, and synchronize those motions to
game controls, which is meaningful to provide a favorable feedback to user. Moreover, due to the
diversity of shoe styles, sensor mounted manners and user habits, the system robustness and algorithm
compatibility are other difficult challenges to overcome.
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Figure 1. The main concept of proposed system.

3. System Architecture

The proposed system architecture is shown in Figure 2. In this system, the foot moving dynamic
data are captured by inertial sensor, and is then wirelessly transmitted to various kinds of terminals
(i.e., smartphone, tablets, computer, and smart TV) through Bluetooth 4.0. The software, which is
compatible in different platforms, plays the role of receiving data, performing the step motion detection
algorithm, and interacting with games. Both hardware and software platforms are included in this
system, and are described as follows.
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3.1. Hardware Platform

The system hardware platform mainly combines a CC 2450 microprocessor (Texas Instrument,
Dallas, TX, USA), a MPU9150 9-axis inertial sensor (InvenSense, Sunnyvale, CA, USA), and other
necessary electronic components. The CC2540 [33] processor has a high performance and low-power
8051 microcontroller and includes a 2.4 GHz Bluetooth low energy System on Chip (SOC). It can
run both application and BLE (Bluetooth Low Energy) protocol stack, so it is compatible with
multiple mobile devices (i.e., Smartphone, and tablets). The MPU9150 [34] is an integrated nine-axis
MEMS motion tracking device that combines a three-axis gyroscope, a three-axis accelerometer,
and a three-axis magnetometer. Figure 3 shows the system hardware platform. In our system, the three
tasks of the hardware platform are to derive inertial sensor data through II2 (I2C) interface in a
pre-set sampling frequency (200 Hz), to package data in a pre-defined user protocol and send data via
Bluetooth to the host.
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3.2. Software Platform

The system software platform is developed in C++ programming language in Visual Studio.
The main functions of the software include the following: receive and decode data, log user’s motion
data, calculate the attitude, run the human foot detection algorithm and interact the human motion
with game control. For real-time processing, a multi-threaded program is designed to simultaneously
implement the listed tasks. Multithreading is a widespread programming and execution model
that allows multiple threads to exist within the context of a single process. These threads share the
processor's resources, but execute their functions independently. This multi-threaded software can
guarantee the whole system’s real-time application, and moreover introduces a clear structure, which
is beneficial for further revision or development.

4. Methodology

The inertial sensor is attached on human foot and the measured rotation and acceleration
information is applied for stepping direction classification. The motion recognition process of the
proposed system is illustrated in Figure 4.
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As shown in Figure 4, the identification process is executed as: first, the collected raw inertial
data is pre-processed for error compensation, noise reduction and misalignment elimination; second,
the peak points of the norm of 3-axis acceleration are detected to segment data; and, finally, the selected
features in the divided data segment are extracted and put into the classifier to derive the foot motion
types. The detailed description of each procedure is provided in the following subsections.

4.1. Preprocessing

MEMS inertial sensor has the advantages of being small-size, low cost, affordable; however,
they suffer from various error sources, which cause negative effects on their performance. Therefore,
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calibration experiments are indispensable to remove the deterministic errors, such as bias, scale factor,
misalignment before using MEMS sensor. The inertial sensor error model [35] is described as follows
and it is employed for the error compensation:

ω̃b = ω + bω + Sω ·ωb + Nω ·ωb + ε(ω)

f̃ b = f + b f + S f · f + N f · f + ε( f )
(1)

where f̃ b, ω̃b denote the measurements of specific force and rotation and f b, ωb denote the true specific
force and angular velocity. ba, bω , respectively, denote the accelerometer and gyroscope instrument bias;
Sb, Sω separately denote the matrices of the linear scale factor error of gyroscope and accelerometer;
and Nb, Nω denote the matrices of representing axes non-orthogonality. ε(ω), ε( f ) denote the stochastic
error of the sensors. The parameters Sb, Sω, ba, bω, Nb, Nω can be derived through a calibration
experiment before sensor usage [36,37]. With a hand rotating calibration scheme, the experiment
can be accomplished in approximately one minute [38].

In the proposed system, the IMU is attached on shoes to detect the user’s foot motions and control
the game. However, due to the difference between various shoe styles and the sensor placement,
the IMU orientation (pitch and roll) varies when mounting on different users’ shoes, which causes the
misalignment with different users.

Hence, in order to achieve a satisfactory identification result for different shoe styles or placement
manners, the data should be collected under various attachment conditions and put into the training
process to derive the classifier. However, this process is time-consuming and the performance is not
guaranteed if the sensor is attached with a new placement that is not included in the training set.

To avoid such drawbacks, we propose to project the measured acceleration and rotation data from
the sensor frame (shoe frame) to the user frame, where the user frame is defined as the user’s right,
left and up directions as three axes to construct the right handed coordinate system. Thus, no matter
how the inertial sensor is placed on the shoes (sensor frame is always different), the measured data can
be unified to be expressed in the same coordinate. During the sensor installation, the forward axis of
the IMU (y-axis in proposed system), is always aligned with the foot moving forward direction, so we
only need to consider the misalignment of pitch and roll angles. This proposed data transformation
from sensor frame to user frame is able to effectively eliminate the misalignment caused by different
shoes styles and sensor placement because it aligns all the collected data in the same frame. Figure 5
shows this process.
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Figure 5 shows the alignment process with the rotation matrix Cn
b , where the inertial data,

collected under different misalignment conditions, are scaled in the same frame (Right-Forward-Up).
More importantly, the data expressed in this frame can directly reflect the actual user moving direction
in horizontal plane, which provides a better data basis for the consequent signal process, and is
beneficial to achieve a more robust result.
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Therefore, a reliable and accurate attitude result is very significant and necessary since it can be
used to correctly project the inertial measurement onto user frame with the rotation matrix to perform
the data standardization process (align in the same frame), and consequently derive a dependable
feature extraction section. Considering the given initial attitude and gyroscope measurement,
the orientation results can be derived by integrating the angular velocity measured by 3-axis gyroscope.
However, due to the error of MEMS gyroscope, the attitude result drifts quickly with time and is not
able to provide long term solution. On the other side, the accelerometer can provide attitude angles
without suffering from long term drift which is complementary with gyroscope, and is effective to
compensate the attitude drift error. Hence, an attitude filter is used to integrate the gyroscope and
accelerometer measurement together and derive the non-drift attitude solution. The Kalman filter is
then used to blend the information in a feature-level fusion [39]. The dynamic model, measurement
model of the filter and an adaptive measurement noise tuning strategy implemented are subsequently
described as follows.

4.1.1. Dynamic Model

The attitude angle error model, which is the angle difference between true navigation frame and
the computed navigation frame, is employed as the dynamic model [40]. This model is expressed in
linear form, and easy to implement. The 3-axis gyro biases are also included in the dynamic model;
and they are estimated in the filter and work in the feedback loop to mitigate the error from raw
measurement. The equation of dynamic model is written as:

.
ψ = ψ×ωn

in + Cn
b εb

.
ε

b
= (−1/τb)

.
ε

b
+ ωb

(2)

where ψ denotes the attitude error. ωn
in denotes the n-frame rotation angular rate vector relative to the

inertial frame (i-frame) expressed in the n-frame. Cn
b denotes the Direction Cosine Matrix (DCM) from

b-frame (i.e., the body frame) to n-frame (i.e., the navigation frame). The symbol “×” denotes cross
product of two vectors. εb denotes the gyros output error. Here, we only consider the effect of gyro
bias and it is modeled as first order Gauss-Markov process. Finally, τb denotes the correlation time of
the gyro biases and ωb is the driving noise vector.

4.1.2. Measurement Model

The acceleration residuals in the body frame are used to derive the system measurement model.
In our model, instead of using attitude difference separately derived by accelerometer and gyroscope,
the acceleration difference is applied to avoid the singularity problem when the pitch angle is±90◦ [41].
The acceleration residuals in body frame are defined as the difference between accelerometer direct
measurements and the projection of local gravity on the body frame.

δa = ab
m − ab

nc

ab
nc = Cb

nc an (3)

where ab
m denotes the accelerometer measurement. ab

nc denotes the local gravity acceleration project on
the body frame using the gyros derived rotation matrix Cb

nc . The subscript nc denotes the computed
frame. According to the DCM chain rule, Cb

n is expressed as:

Cb
n = Cb

nc Cnc
n

Cnc
n = I − [ψ×] (4)
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where [ψ×] denotes the skew matrix of attitude error. Substituting Equation (4) into Equation (3),
the relationship between acceleration residuals in body frame and attitude error is written as:

δa = ab
m − ab

nc = Cb
nan − Cb

nc an

=
(

Cb
n − Cb

nc

)
an =

(
Cb

nc Cnc
n − Cb

nc

)
an

= Cb
nc (I − [ψ×]− I) an = Cb

nc (−[ψ×]) an

= Cb
nc ([a

n×])ψ

(5)

Then, the measurement model can be obtained by Equation (5). The measurement Z is the
acceleration in body frame [δax δay δaz ]

T , and the measurement matrix H is expressed as:

H =

 −gCb
nc(1, 2) gCb

nc(1, 1) 0 0 0 0
−gCb

nc(2, 2) gCb
nc(2, 1) 0 0 0 0

−gCb
nc(3, 2) gCb

nc(3, 1) 0 0 0 0

 (6)

This attitude filter works effectively under stationary or low acceleration conditions. In these
situations, the specific force measured by accelerometer equals to local gravity acceleration,
so the pitch and roll angles derived through accelerometer are accurate and can be positive in
fixing the accumulated attitude error caused by gyroscope error, while, in high dynamic situation,
the accelerometer will sense the external dynamic acceleration, which is undesirable in the filter.
Hence, if the contribution of measurement update remains a same weight as that in low dynamic
situation, a side effect will be introduced and lead to a degraded performance. Hence, to achieve an
optimal attitude estimation result, we propose to adaptively tune the measurement covariance matrix
R according to a system dynamic index ε [42] and is designed as:

ε = | f − g| (7)

where f denotes the norm of measured acceleration and g denotes the local gravity acceleration.
Then the specific tuning strategy of covariance matrix R is described as follows:

1 Stationary mode: If the scalar subjects to ε < Thres1, the system is considered to be stationary.
Correspondingly, the covariance matrix R is set as R = diag[σ2

x σ2
y σ2

z ], where σ2
x , σ2

y , σ2
z denote

the velocity random walk of three-axis accelerometer. In our approach, the Thres1 is set as
3 · (σ2

x + σ2
y + σ2

z ) .
2 Low acceleration mode: If the index satisfies the condition Thres1 < ε < Thres2, the system

suffers from low acceleration and is treated as measurement noise. The covariance matrix R is set
as R = diag[σ2

x σ2
y σ2

z ] + kε2, where k is the scale. Thres2 is set as 2g
3 High dynamic mode: If the scalar subjects to ε > Thres2, norm of the three accelerations is far

from the specific force, which equals to gravity acceleration. The acceleration residuals are not
reliable. In this situation, we only use the angular velocity to calculate attitude, and the filter only
performs the prediction loop without measurement update.

4.2. Data Segmentation

Data segmentation is carried out to divide the continuous stream of collected sensor data into
multiple subsequences, and retrieve the important and useful information for the activity recognition.
The sliding windows algorithms are commonly used to segment data in various applications because
they are simple, intuitive and online algorithms. However, this approach is not suitable here because
an entire human stepping motion signal may not be included in the current detected window, and is
separated in two adjacent windows, which is possible to cause poor result in some cases. Moreover,
this algorithm works with a complexity of O(nL), where L is the average length of a segment, and it
affects the system real-time capability.
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Hence, the relationship between gait cycle and acceleration signal is analyzed to derive a practical
approach to segment data. Generally, a gait cycle can be divided into four phases [43], namely:
(1) Push-off, heel off the ground and toe on the ground; (2) Swing, both heel and toe off the ground;
(3) Heel Strike, heel on the ground and toe off the ground; and (4) Foot stance phase, heel and toe on
the ground at rest. Figure 6 shows these four phases and their correlated acceleration signal.
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As shown in Figure 6, the blue line is the norm of three accelerations and red line denotes the
smoothed acceleration signal by a moving average algorithm, where, for each epoch, a window
containing the previous N sample points is averaged to produce the acceleration value; and the reason
is to derive a smoother form of signal, deduce noise, and eliminate unexpected peak points.

Figure 6 illustrates that the smoothed acceleration signal during one walking cycle generally
features two peak points, one is in the push-off phase that the foot is leaving the ground and another
one is in the heel-strike phase that the foot hits the ground. Although it may not hold for each walking
cycle, that more than two peak points are available in one cycle, due to different user habits of motion
strength, these two points are always available in each gait cycle. Here, the utilization of the peak point
for triggering the date segmentation process is proposed. Once one peak point is detected, the feature
in the vicinity of this point is extracted and consequently the foot motion type is identified.

The reason for using peak point is that one peak point is always available in the push-off
phase when the foot leaves ground, which will not vary for different users or stepping patterns.
This point facilitates the detection of the beginning phase of each step, and ensures the reliable real
time performance. On the other side, the foot motion detection algorithm works with the O (peak
point number) complexity. Therefore, the classification process is only performed when the peak point
is detected, which decreases the computation burden. Moreover, the specific phase of each walking
circle do not need to be classified, as it simplifies the identification process

Additionally, the length of data for feature extraction also needs to be ascertained. A tradeoff is
available here between discrimination accuracy of motion types and real-time applicability. Involving
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more data in the segmentation procedure is beneficial to correctly identify human motion and achieve
more reliable results, but will cause a lag response, whereas less data can achieve a quick and less delay
judgment on human motion. However, there is not enough information included for classification.
Hence, the distribution of three separate axis acceleration signal of different motions is analyzed to
figure out the length of data segment for feature extraction.

Figure 7 draws the collected three axes acceleration signals in the vicinity of the peak points
in the initial stage of a step, and Figure 7a–e, respectively, represents acceleration signals collected
from forward, backward, left, right and jump motions. The blue, red and green solid lines separately
denote the acceleration signals represented in user frame. The green dashed line, which drawn from
top to bottom, denotes the position of the peak points. The peak points line suffers a shift in right
side and it is due to the implementation of the mean average algorithm, but it will not cause any
negative effect to the identification process. It is suggested to use the acceleration signals to invest the
data segment length because they experience different performances during the process of human
stepping in various directions, and they are able to provide an intuitive, direct, and easy understanding
manner to recognize the moving directions. For example, Figure 7c illustrates the left motion and the
acceleration (red line) in user’s right direction features an obvious difference compared with the other
two axes. Similarly, for the forward and backward motions, the accelerations in forward or backward
directions exhibit more diversity.
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Additionally, each figure illustrates the acceleration distribution of 500 motion samples performed
by different testers where for each motion 500 data groups are collected. Acceleration data in the
vicinity of first peak point are extracted, and the mean and standard deviation of these segments are
calculated. The solid lines and dashed lines represent the mean and standard deviation, respectively.
The acceleration distribution shown in the Figure 7 provides an intuitive statistical result of acceleration
in the initial phase of a step and is helpful to confirm the data segment length. The data segmentation
length selected for feature extraction is 31 samples and it is presented in orange rectangle in the figure,
where it includes 20 samples before the peak point with 10 samples after the peak point and the peak
point itself. The main justifications to choose this length of data are: first, the extracted feature within
the selected interval is able to provide enough distinguished information for the motion identification;
and, second, it ensures a reliable real-time applicability. The data shown in Figure 7 is sampled in
200 Hz and the first 30 samples of a gait cycle are utilized for classification, which means that the
motion type can be decided in approximately 0.15 s after this motion occurs.

4.3. Feature Extraction

Generally, features can be defined as the abstractions of raw data. The objective of feature
extraction is to find the main characteristics of a data segment which can accurately represent the
original data and identify valid, useful and understandable patterns. Basically, the features can
be divided into various categories, time domain and frequency domain are the most commonly
ones used for recognition. The feature selection is an extremely important step because a
good feature space can lead to a clear and easy classification and poor feature space may be
time-consuming, computationally-expensive, and cannot lead to good result. In our system, not all
of the commonly-used features in activity recognition field in our system are selected; however,
the collected signal is analyzed and the foot moving physical discipline is considered to choose the
features, which are not only effective to discriminate motion types but also has less computation
complexity. In this system, the selected features for foot motion classification are described as follows.



Sensors 2016, 16, 1752 12 of 24

4.3.1. Mean and Variance

The mean and variance value of the three axis accelerometer and gyroscope measurements are
derived from the data segment to consider as the feature, according to the following equations: x =

N
∑
1

xi

N

σ2 =
N
∑

i=1
(xi − x)2

(8)

where xi denotes the signal, N denotes the data length, and x, σ2 denote the mean and variance value
of the data sequence.

4.3.2. Signal Magnitude Area

The signal magnitude area (SMA or sma) is a statistical measure of the magnitude of a varying
quantity, and actually is the absolute values of the signal. SMA is calculated according to Equation (9).

fSMA =
∫ t2

t1

|x| dt (9)

where x denotes the signal and (t1, t2) denotes the integration time period.

4.3.3. Position Change

Position change is an intuitive feature for the foot direction identification because different foot
moving directions cause various position changes. For example, jumping features a larger change in
vertical direction, and stepping right and left lead to an obvious position change in horizontal plane.
The Inertial Navigation System (INS) mechanization equation is able to provide the trajectory of a
moving object in three dimensions with the measured rotations and accelerations [44], while, due to
the double integration strategy of INS mechanization and the noise of sensor, the accumulated errors
will be involved in the trajectory estimation and lead to a drift of position, especially when using a
MEMS sensor.

Hence, it is not feasible to calculate the position during the whole identification process,
the position is only derived in the data segmentation, with an initial velocity (0,0,0), initial position
(0,0,0), and a zero azimuth during the calculation process. The inertial sensor has the characteristic of
keeping accurate in short term, so the position result computed in the 31 samples interval is reliable
and trustworthy. The position calculation equation is described as follows:

an = Cn
b ab

v = v0 +
∫

andt
p = p0 +

∫
v dt

(10)

where ab denotes the measured acceleration in body frame, Cn
b is the rotation matrix that projects the

acceleration from body frame to the navigation frame (local-level frame,) and an denotes the projected
acceleration in navigation frame. v, p denote the computed velocity and position and v0, p0 denote the
initial velocity and position.

4.3.4. Ratio

The ratio feature is used to calculate the proportion of feature in single axis and the norm of
features in three axes. The aim of introducing the ratio metric is to normalize the feature of three
axes to best deal with the motions performed in different strength performed by different users.
For example, for the jump motion, the position change in up direction (jump height) is more than that
in horizontal plane and is dominant in the position change, though the jump height is different for
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various users, the proportion of jump height in position change still occupy significantly. Specifically,
the position feature (the position change) derived from a heavy jump motion maybe (0.2, 0.2, 0.5),
and is (0.05, 0.05, 0.2) from a slight jump motion; though the jump height amplitude varies significantly
depending on different user habits, the ratio of jump height occupies over 50% of whole position
change for the both groups. Hence, the ratio feature of position change in different directions is a
good metric to distinguish and evaluate the motion types with different strengths. The ratio feature
introduced here is calculated as in Equation (11):

FeatureNorm =
√

FeatureX2 + FeatureY2 + FeatureZ2

ratioFeatureX = FeatureX
FeatureNorm

ratioFeatureY = FeatureY
FeatureNorm

ratioFeatureZ = FeatureZ
FeatureNorm

(11)

where, FeatureX, Y , Z denote the calculated features in different axes and ratioFeature denotes the
ratio. In our proposed system, the position, mean, variance, and SMA features calculated in three
directions or axes are all considered to derive the ratio feature.

4.4. Classification

The classification is a process to predict or reorganize the motions with the extracted features.
In order to achieve a good motion classification performance, three popular supervised classification
approaches are employed in our research work for the validation and these three classifiers are
described as follows.

4.4.1. Decision Tree

A decision tree is a decision support tool that uses a tree-like graph or model of decisions and
their possible consequences. Generally, internal node, branch, and leaf nodes are included in a decision
tree classifier, where, the internal node represents a test on the selected feature, branch denotes the
outcome of the test, and the leaf nodes represent the class labels (different moving directions). Figure 8
graphically illustrates the decision tree model.
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Figure 8 draws the graphical model of the decision tree. The blue circles denote the internal node
that executes the test on the feature (comparison of the feature with trained parameter), the green
arrows denote the test outcomes and the rectangles denote the different labels or classes. The red
dashed lines from top nodes to the leaf nodes represent a decision process or classification rule.

The tree generation is the training stage of this classifier and it works in a recursive procedure.
The general tree generation process is that, for each feature of the samples, a metric (the splitting
measure) is computed from splitting on that feature. Then, the feature that generates the optimal
index (highest or lowest) is selected and a decision node is created to split the data based on that
feature. The recursion procedure stops when the samples in a node belong to the same class (majority),
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or when there are no remaining features on which to split. Depending on different splitting measures,
the decision tree can be categorized as: ID3 (Iterative Dichotomiser 3), Quest (Quick, Unbiased,
Efficient, Statistical Tree), CART (Classification And Regression Tree), C4.5, etc. [45,46].

4.4.2. K-Nearest Neighbors

K-nearest neighbors algorithm (kNN) [47] is an approach based on the closest training samples in
the feature space, where k denotes the number of classes. In the kNN approach, an object is classified
by a majority vote of its neighbors, with the object being assigned to the most common class among its
nearest neighbors. Similarity measures are fundamental components in this algorithm and different
distance measures can be used to find the distance between data points. Figure 9 illustrates the main
concept of kNN algorithm.
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Figure 9. K-nearest neighbors algorithm (kNN) algorithm concept.

As shown in Figure 9, the test sample (blue circle) is classified by the neighbors class, either green
square or green triangle. If k is selected as 3, the test sample is assigned to the red square because two
of its k neighbors belong to red square. In the same way, if k = 5, the test sample is assigned to green
triangle class. Hence, the main idea of kNN is that the category of the predicted object is decided by
the labels of the neighbors’ majority. Additionally, the votes of these neighbors could be weighted
based on the distance to overcome the problem of non-uniform densities of the neighbor classes.

4.4.3. Support Vector Machine

The support vector machine (SVM) is used to construct a hyperplane or set of hyperplanes in a
high- or infinite-dimensional space for classification, regression, or other tasks. Since several available
hyperplanes are able to classify the data, the SVM is employed to use the one that represents the
largest separation, or margin, between the two classes to classify. The hyperplane chosen in SVM
maximize the distance between the plane and the nearest data point on each side. Figure 10 draws the
SVM classifier.

As shown in this figure, the optimal separating hyper-plane (solid red line) locates the samples
with different labels (blue circles 1, red square −1) in the two sides of the plane, and the distances of
the closest samples to the hyper-plane in each side become maxima. These samples are called support
vectors and the distance is optimal margin. The specific illustration of the SVM classifier can be found
in the literature [48–50].
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5. Experiments and Results

The experiment is designed to include two parts. In the first part, different testers are invited
to perform the five foot motions in their own manners. Then, we collect the data, preprocess data
to remove error, divide the data into segments, extract the features and put them into the training
process of introduced machine learning algorithms to derive the classifiers. Additionally, the classifiers
are tested by two cross validation approaches. In the second part, the data processing procedure is
transformed in our software platform and is programmed in C++, the program is also connected to the
game control interface to perform the practical game playing experiment.

5.1. Date Set

In order to obtain a sufficient amount of data for training, ten testers—two females and eight
males—are invited to participate in experiments. All testers are in good health condition without any
abnormality in their gait cycles. The IMU sensor was attached on the testers’ shoes, and they were
guided to perform the five stepping motions in their natural manners. In order to have diverse
characteristic of each motion, some actions of the testers were conducted at different strengths
(heavy or slight), different frequencies (fast or slow), and different scopes (large or small amplitude),
and some actions were performed by the same tester on different days. The data collected during
this experiment were stored to form the training dataset. Figure 11 shows the system hardware
platform. In this platform, a 3.7 V lithium battery (blue one) is used to provide the power supply.
The IMU module has a small size, and is very convenient to mount on user’s shoe. Table 1 provides a
summary of the collected training dataset, where the quantitative information of the collected human
stepping motions is listed in this table. The second row lists the actual motion numbers collected in
the experiment, and they include 895 jump, 954 stepping left, 901 stepping right, 510 moving forward
and 515 moving backward.
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Table 1. Stepping motion training set.

Jump Left Right Forward Backward

Action numbers 895 954 901 510 515

5.2. Classification Results

In our proposed system, a corresponding classifier is trained for each motion instead of using a
single classifier for the five motions. This training strategy is beneficial to improve the robustness and
decrease the complexity of this system, since one classifier only needs to recognize two classes instead
of five. Moreover, it offers the possibility of selecting typical features for each motion based on motion
principle or data analysis in future work.

In order to have a better evaluation of the classification performance, two cross-validation approaches
for test were chosen: k-fold cross validation and holdout validation. In k-fold cross-validation approach,
the original sample is randomly partitioned into k equal sized subsamples. A single subsample is
then retained from these k subsamples as the validation data for testing the model, and the remaining
(k − 1) subsamples are used as training data. The cross-validation process is then repeated k − 1
times, with each of the k − 1 subsamples used exactly once as the validation data. The k − 1 results
from these folds can then be averaged to produce a single estimation. The advantage of this method
over repeated random sub-sampling is that all of the observations are used for both training and
validation, and each observation is used for validation exactly once. Here, a commonly used 10-fold
test is employed. In holdout validation, a subset of observations is chosen randomly from the initial
samples to form a validation or testing set, and the remaining observations are retained as the training
data. Twenty-five percent of the initial samples are chosen for test and validation. The two cross
validation approaches are also performed for the three classifiers and the classification results are listed
in Tables 2 and 3.

Table 2. Classification result of 10-fold cross validation.

Decision Tree kNN SVM

Class 1 Class 0 Class 1 Class 0 Class 1 Class 0

Jump 813/895 75/2880 870/895 38/2880 868/895 36/2880
Left 914/954 36/2821 939/954 34/2821 936/954 19/2821

Right 806/901 84/2874 881/901 77/2874 885/901 62/2874
Forward 470/510 47/3265 498/510 39/3265 493/510 20/3265

Backward 445/515 60/3260 502/515 27/3260 498/515 22/ 3260
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Table 3. Classification result of 25% held out validation.

Decision Tree kNN SVM

Class 1 Class 0 Class 1 Class 0 Class 1 Class 0

Jump 212/223 15/718 219/223 8/718 216/223 8/718
Left 226/238 6/703 234/238 15/703 233/238 10/703

Right 198/225 18/716 219/225 16/716 217/225 13/716
Forward 16/127 9/814 125/127 13/814 123/127 7/814

Backward 114/128 7/813 126/128 4/813 126/128 4/813

For each motion, the column tagged with Class 1 shows the correct detection result of actual
motions and the column tagged with Class 0 denotes the undesired jump motion detected from
other motions. Specifically, for the jump motion detected by decision tree classifier, 813 motions are
successfully identified out of 895 jump motions (where 82 actual jump motions are missed or falsely
detected), and 75 motions of totally 2880 other motions (the sum of left, right, forward and backward)
are falsely considered as jump motions.

Additionally, in order to have a quantitative evaluation of the classifier performance, the Accuracy,
Precision, and Recall metrics are also introduced. The definition of these metrics and their calculation
equations are described below.

• Accuracy: The accuracy is the most standard metric to summarize the overall classification
performance for all classes and it is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

• Precision: Often referred to as positive predictive value, it is the ratio of correctly classified
positive instances to the total number of instances classified as positive:

Precision =
TP

TP + FP
(13)

• Recall: Also called true positive rate, it is the ratio of correctly classified positive instances to the
total number of positive instances:

Recall =
TP

TP + FN
(14)

where TP (True Positive) indicates the number of true positive or correctly classified results,
TN (True Negatives) is the number of negative instances that were classified as negative, FP (False
Positives) is the number of negative instances that were classified as positive and FN (False
Negatives) is the number of positive instances that were classified as negative. According to the
evaluation metrics, the accuracy, precision, recall, for the test result of each motion are calculated
and listed in Tables 4–6.

Table 4. Evaluation of Decision tree classifier.

10-Fold Cross Validation 25% Hold Out Validation

Accuracy Precision Recall Accuracy Precision Recall

Jump 95.84% 91.55% 90.83% 97.24% 93.41% 95.08%
Left 97.98% 96.21% 95.80% 98.09% 97.41% 94.96%

Right 95.25% 90.56% 89.45% 95.23% 91.67% 88.01%
Forward 97.69% 90.90% 92.15% 97.35% 92.53% 87.45%

Backward 96.55% 88.11% 86.40% 97.77% 94.25% 89.12%
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Table 5. Evaluation of kNN classifier.

10-Fold Cross Validation 25% Hold Out Validation

Accuracy Precision Recall Accuracy Precision Recall

Jump 98.33% 95.81% 97.20% 98.72 % 96.47% 98.20%
Left 98.70% 96.50% 98.42% 97.98% 93.97% 98.31%

Right 97.43% 91.96% 97.78% 97.66% 93.19% 97.33%
Forward 98.64% 92.73% 97.64% 98.40% 90.57% 98.42%

Backward 98.94% 94.89% 97.47% 99.36% 96.92% 98.43%

Table 6. Evaluation of SVM classifier.

10-Fold Cross Validation 25% Hold Out Validation

Accuracy Precision Recall Accuracy Precision Recall

Jump 98.33 % 96.01% 96.98 % 98.40% 96.42% 96.86%
Left 99.09% 98.01% 98.11% 98.40% 95.88% 97.89%

Right 97.93% 93.45% 98.22% 97.76% 94.34% 96.44%
Forward 99.09% 96.10% 96.66% 98.83% 94.61% 96.85%

Backward 98.96% 95.76% 96.69% 99.36% 96.92% 98.43%

Based on the evaluation metrics listed in Tables 4–6, and according to the graphically comparison
of accuracy and precision shown in Figures 12 and 13, the SVM classifier has an overall better
performance than the other approaches. Moreover, the average time for each classifier to make the
decision on the motion type is: decision tree classifier 0.0056 ms; kNN, 0.53 ms; and SVM, 0.0632 ms.
Although the decision tree classifier has the least response time for identification, its performance on
the motion type is not satisfied. The response time for SVM is 0.06 ms and it is in an acceptable time
frame because this lag level will not cause an observable delay on user experience. Hence, combined
with the performance and the decision time of each classifier, the SVM classifier achieves the best result
and is selected in our proposed system to classify the stepping motions. Additionally, we analyze
the misclassified events of each motion to give the profile of errors, aiming to avoid that one specific
stepping motion always contributes to the wrong recognition, which is potentially due to unsuitable
feature selection or data segmentation. The statistical result is listed in Table 7.
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Table 7. Foot motion identification error of SVM.

Jump Left Right Forward Backward Corresponding
Motion Error

Other
Motions Error

10-fold cross
validation

Jump 27 8 7 9 12 42.86% 57.14%
Left 4 18 5 7 3 48.65% 51.35%

Right 13 15 16 16 18 20.51% 79.49%
Forward 6 5 4 17 5 45.95% 54.05%

Backward 7 6 5 2 17 43.59% 56.41%

25 hold out
validation

Jump 7 1 4 2 1 46.67% 53.33%
Left 3 5 2 1 4 33.33% 66.67%

Right 2 5 8 4 2 38.10% 61.90%
Forward 1 3 2 4 1 36.36% 63.64%

Backward 2 1 0 1 2 33.33% 66.67%

Table 7 provides the false identification of each motion in the two cross-validation approaches.
For example, in 10-fold cross validation, 27 true jump motions are missing or mistakenly classified,
which occupies 42.86% of the misclassified events; however, eight left, seven right, nine forward,
and 12 backward are wrongly treaded as jump motion by classifier, which totally contributes
57.15% of the misclassified events. In each classifier, the identification error of its corresponding
motion type (i.e., the wrong categorization of jump motion in the jump classifier) occupies
approximately 33% to 48%, and the misclassified percentage of other motion varies from 51% to
66%. Moreover, the error result also shows that the misclassified events are averagely distributed in
each motion, and demonstrates that no one specific motion error is predominant during the motion
determination process.

5.3. Practical Experiment Result

A running game we programmed in Unity is used to practically test the algorithm. In this game,
a man is running in the forest with numerous obstacles and the traditional play manner is that the user
needs to control the object to jump, go left, go right or get down to avoid the obstacles. Here, we use
foot movement direction to control the man and the result is shown in following figures.

As shown in Figure 14, the red rectangle shows the virtual player presented in game, the arrow
denotes the player’s moving direction, the green rectangle illustrates the step motion identification
result, and the orange rectangle shows the person moving direction.

Figure 15 shows practical test result in the game Subway Surfers. Figure 15a illustrates that a
person walking forward correlates to the jump of kid in game operation. In the left side of this figure,
the person steps forward and the red arrow presents the stepping direction. The right side shows the
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game environment, where we can see that the kid selected in the green circle jumps up to avoid the
front obstacle. In the same way, Figure 15b shows the person stepping left and it correlates to the kid
moving to left.

Sensors 2016, 16, 1752 20 of 24 

 

(a) (b) 

(c) (d) 

 
(e) 

Figure 14. Practical game play test in running game: (a) Jump motion; (b) Forward motion; (c) 
Backward motion; (d) Right motion; and (e) Left motion. 

 
(a)

Figure 14. Practical game play test in running game: (a) Jump motion; (b) Forward motion;
(c) Backward motion; (d) Right motion; and (e) Left motion.

Sensors 2016, 16, 1752 20 of 24 

 

(a) (b) 

(c) (d) 

 
(e) 

Figure 14. Practical game play test in running game: (a) Jump motion; (b) Forward motion; (c) 
Backward motion; (d) Right motion; and (e) Left motion. 

 
(a)

Figure 15. Cont.



Sensors 2016, 16, 1752 21 of 24

Sensors 2016, 16, 1752 21 of 24 

 

 
(b)

Figure 15 Practical game play test in Game Subway Surfers: (a) Step forward; and (b) Step left. 

6. Conclusions 

This paper introduces a novel application of foot-mounted inertial sensor based wearable 
electronic devices—game play. The main contributions of this paper can be summarized as: (1) This 
paper presents the first attempt to employ user’s stepping direction for controlling the player 
operation in game play. (2) This paper proposes and implements a novel computationally-efficient, 
real-time algorithm for the identification of foot moving direction. (3) In the proposed system, the 
acceleration and gyroscope measurements are fused to derive the attitude and use it to correct the 
misalignment error. This makes the proposed algorithm compatible with various shoe styles and 
sensor placements. (4) The stepping motion type can be recognized in the beginning phase of one 
step cycle, which guarantees the system real-time applicability. (5) It is suggested to design the 
corresponding classifier for each motion where each classifier only needs to identify two classes 
instead of using one classifier to recognize all five motions. This is beneficial to acquire a more precise 
and reliable identification result. (6) Three commonly-used classifiers in the aspects of cross 
validation performance and response time are compared. Based on this comparison, it is concluded 
that the SVM classifier achieves the best performance. (7) It extends the inertial sensor based game 
play scenario to the foot motion control mode, which introduces the possibility of playing running 
game indoor or anywhere and is potentially beneficial to encourage the user to exercise more for 
good health. Practical experiments of different users illustrate that the proposed system reaches a 
high accuracy classification result and excellent user experience, and it effectively broadens the 
application of current available wearable electronic devices. 
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6. Conclusions

This paper introduces a novel application of foot-mounted inertial sensor based wearable
electronic devices—game play. The main contributions of this paper can be summarized as:
(1) This paper presents the first attempt to employ user’s stepping direction for controlling the player
operation in game play. (2) This paper proposes and implements a novel computationally-efficient,
real-time algorithm for the identification of foot moving direction. (3) In the proposed system,
the acceleration and gyroscope measurements are fused to derive the attitude and use it to correct
the misalignment error. This makes the proposed algorithm compatible with various shoe styles
and sensor placements. (4) The stepping motion type can be recognized in the beginning phase of
one step cycle, which guarantees the system real-time applicability. (5) It is suggested to design the
corresponding classifier for each motion where each classifier only needs to identify two classes instead
of using one classifier to recognize all five motions. This is beneficial to acquire a more precise and
reliable identification result. (6) Three commonly-used classifiers in the aspects of cross validation
performance and response time are compared. Based on this comparison, it is concluded that the SVM
classifier achieves the best performance. (7) It extends the inertial sensor based game play scenario to
the foot motion control mode, which introduces the possibility of playing running game indoor or
anywhere and is potentially beneficial to encourage the user to exercise more for good health. Practical
experiments of different users illustrate that the proposed system reaches a high accuracy classification
result and excellent user experience, and it effectively broadens the application of current available
wearable electronic devices.
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