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This study is aimed at exploring the potential mechanism of angiogenesis, a biological process-related gene in breast cancer
(BRCA), and constructing a risk model related to the prognosis of BRCA patients. We used multiple bioinformatics databases
and multiple bioinformatics analysis methods to complete our exploration in this research. First, we use the RNA-seq
transcriptome data in the TCGA database to conduct a preliminary screening of angiogenesis-related genes through univariate
Cox curve analysis and then use LASSO regression curve analysis for secondary screening. We successfully established a risk
model consisting of seven angiogenesis-related genes in BRCA. The results of ROC curve analysis show that the risk model has
good prediction accuracy. We can successfully divide BRCA patients into the high-risk and low-risk groups with significant
prognostic differences based on this risk model. In addition, we used angiogenesis-related genes to perform cluster analysis in
BRCA patients and successfully divided BRCA patients into three clusters with significant prognostic differences, namely,
cluster 1, cluster 2, and cluster 3. Subsequently, we combined the clinical-pathological data for correlation analysis, and there is
a significant correlation between the risk model and the patient’s T and stage. Multivariate Cox regression curve analysis
showed that the age of BRCA patients and the risk score of the risk model could be used as independent risk factors in the
progression of BRCA. In particular, based on this angiogenesis-related risk model, we have drawn a matching nomogram that
can predict the 5-, 7-, and 10-year overall survival rates of BRCA patients. Subsequently, we performed a series of pan-cancer
analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to explore
drug sensitivity. Subsequently, to gain insight into the protein expression of these risk model genes in BRCA, we used the
immunohistochemical data in the THPA database for verification. The results showed that the protein expressions of IL18,
RUNX1, SCG2, and THY1 molecules in BRCA tissues were significantly higher than those in normal breast tissues, while the
protein expressions of PF4 and TNFSF12 molecules in BRCA tissues were significantly lower than those in normal breast
tissues. Finally, we conducted multiple GSEA analyses to explore the biological pathways these risk model genes can cross in
cancer progression. In summary, we believe that this study can provide valuable data and clues for future studies on
angiogenesis in BRCA.

1. Introduction

Breast cancer (BRCA) is the most common malignant tumor
that seriously endangers women’s physical and mental
health [1]. Worldwide, the number and incidence of BRCA
have increased rapidly, and it has now surpassed lung cancer
to become the world’s largest tumor type [2], although early

diagnosis and early treatment nowadays have significantly
improved the curative effect of breast cancer [3, 4]. However,
postoperative recurrence and metastasis of BRCA are the
leading causes of BRCA death, and they have now become
the focus of BRCA treatment [5]. Our understanding of
the pathogenesis and process of breast cancer is still in its
infancy [6]. Therefore, it is necessary to continuously
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explore BRCA recurrence and metastasis molecular mecha-
nisms and look for potential intervention targets.

Tumor angiogenesis is when abnormal proliferation,
mainly capillary blood vessels, is generated based on original
blood vessels, and blood circulation is established in tumor
tissues [7]. The structure and function of new capillaries in
tumor tissues are very different from normal tissues. Com-
pared with normal blood vessels, tumor neovascularization
has the characteristics of an extensive vascular endothelial
gap, weak vessel wall, strong vascular permeability, and
structural disorder [8]. Angiogenesis plays an essential role
in the occurrence, development, invasion, and metastasis of
BRCA, and it is also an independent prognostic factor of
BRCA patients [9]. BRCA is a solid tumor, and its occur-
rence and development depend on angiogenesis [10]. Nor-
mal breast tissue has a loose structure and abundant lymph
and blood supply. Therefore, new blood vessels are easily
formed, and tumor metastasis occurs during the develop-
ment of BRCA. There will be various biological and mor-
phological changes in breast hyperplasia and precancerous
lesions, including changes in the tumor microenvironment
[11], among which tumor angiogenesis is the earliest [12].

Precision medicine is a new medical model formed
under the background of the rapid development of modern
gene sequencing and the fusion of bioinformatics and big
data based on the Human Genome Project [13]. With the
rise of precision medicine on a global scale, the precise diag-
nosis and treatment of BRCA are imminent, and traditional
histopathological classification can no longer meet the needs
of current BRCA research and treatment [14]. Traditional
histopathological classification has been unable to meet
BRCA research and treatment [15, 16]. The correct applica-
tion of tumor molecular classification is the basic premise of
contemporary precision medicine [17]. The molecular and
histopathological classifications of BRCA can be better
integrated so that clinicians can formulate effective and indi-
vidualized treatment plans for BRCA patients more scientif-
ically. Therefore, in this study, while exploring the biological
significance of angiogenesis-related genes in BRCA, we used
these genes to perform cluster analysis in BRCA. The results
show that we successfully divided BRCA patients into three
clusters with significant prognostic differences, namely
cluster1, cluster2, and cluster3. We believe that these classi-
fication data will help the precise treatment of different
BRCA patients in the future. In addition, this study used
multiple bioinformatics databases and various bioinformat-
ics methods to conduct in-depth research on angiogenesis-
related genes in BRCA. We believe that this research can
provide detailed and reliable data support for future scien-
tific research and clinical treatment.

2. Materials and Methods

2.1. Data Acquisition. The Cancer Genome Atlas (TCGA)
research network has performed a high-throughput analy-
sis of many human tumors to find molecular aberrations
at the nucleic acid, protein, and epigenetic levels [18]. In
November 2021, we downloaded the gene expression, var-
iation, and clinical information of 1,098 BRCA samples

through the GDC (Genomic Data Commons) official por-
tal of the TCGA database (https://portal.gdc.cancer.gov/).
To find genes related to angiogenesis, we collected 48
angiogenesis-related genes through the GSEA (Gene Set
Enrichment Analysis) database (https://www.gsea-msigdb
.org/gsea/index.jsp) [19, 20]. The standard name of this
gene set is ANGIOGENESIS, and the systematic name is
M14493.

2.2. Data Processing and Analysis. This study used Perl and
R language to download BRCA RNA-seq transcriptome data
and clinical-pathological information from the TCGA data-
base to process and draw graphs. First, we used the RNA-seq
transcriptome data of the BRCA dataset in the TCGA data-
base to use the “pheatmap” expansion package to draw a
heat map of the expression of angiogenesis-related genes
and use the “limma” expansion package to analyze the dif-
ferences in the expression of angiogenesis-related genes.
STRING can be used to predict the protein-protein interac-
tion (PPI) network, which is an online database platform
(https://cn.string-db.org/) [21, 22]. To explore the relation-
ship between these angiogenesis-related molecules, we used
the protein interaction data in the STRING database to draw
a PPI network. After that, we performed a univariate Cox
regression curve analysis of these angiogenesis-related mole-
cules in BRCA to show the relationship between these mol-
ecules and the progress of BRCA. Subsequently, we used
cluster analysis to classify BRCA patients into three clusters
with significant prognostic differences. Then, we used the
“glmnet” and “survival” expansion packages based on the
R language to perform LASSO regression curve analysis
and draw the corresponding survival curve. To verify the
prediction accuracy of the risk model, we used the “survival-
ROC” extension package to perform ROC curve analysis.
The risk model comprises seven genes, BTG1, IL18, PF4,
RUNX1, SCG2, THY1, and TNFSF12. Subsequently,
combined with clinicopathological data, we analyzed the
correlation between the risk model and the pathological
characteristics of BRCA patients. In particular, we per-
formed univariate and multivariate Cox regression curve
analyses through the “survival” and “forestplot” expansion
packages. Subsequently, to facilitate clinical diagnosis and
treatment in the future, we integrated various risk factors
and used the “rms” expansion package to draw the corre-
sponding nomogram. Finally, to explore the biological
pathways that the risk model gene can affect in BRCA, we
used the “plyr,” “ggplot2,” “grid,” and “gridExtra” expansion
packages to perform a multi-GSEA analysis.

2.3. GEPIA Website. Gene Expression Profiling Interactive
Analysis (GEPIA) is a website developed by Peking Univer-
sity, which can analyze the RNA-seq expression data of 9736
tumor samples and 8587 normal samples in the TCGA and
GTEx projects (http://gepia.cancer-pku.cn/) [23, 24]. In this
study, we used the online analysis tool on the GEPIA website
to perform pan-cancer analysis on CNV and SNV of
angiogenesis-related risk model genes. The results were
displayed in the form of heat maps.
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2.4. GSCA Website. Gene Set Cancer Analysis (GSCA) is a
cross-over comprehensive cancer analysis database that inte-
grates single gene analysis, multiple gene analysis, immune
infiltration analysis, mutation analysis, and drug sensitivity
analysis. It contains 33 types of cancer data from TCGA,
ImmuCellAI, and GDSC (http://bioinfo.life.hust.edu.cn/
GSCA/#/) [25, 26]. This study combined the angiogenesis-
related risk model gene mRNA expression data and drug
sensitivity data to perform a Pearson correlation analysis to
obtain the correlation between the risk model gene mRNA
expression and the drug IC50. FDR adjusts the P value.

2.5. TIMER Database. Tumor Immune Estimation Resource
(TIMER) is a database that supports the analysis of tumor-
infiltrating immune cell components (http://cistrome.org/
TIMER/) [27, 28]. When we input the gene expression pro-
file data of tumor samples, we can predict the composition
of immune cells infiltrated in each tumor sample and sup-
port the analysis of the following six types of immune cells:
B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil,
and dendritic cell. In this study, we used angiogenesis-
related risk model gene mRNA expression data, combined
with immune cell infiltration data in the TIMER database,
to explore the relationship between risk model gene mRNA
expression and immune cell infiltration in BRCA, and used
R The language “pheatmap” expansion pack draws the cor-
responding heat map.

2.6. The Human Protein Atlas Database. The Human Pro-
tein Atlas (THPA) database provides information on the tis-
sue and cell distribution of all 24,000 human proteins and is
free for public inquiries (https://www.proteinatlas.org/). The
Swedish Knut & Alice Wallenberg Foundation, which cre-
ated this database, uses special antibodies and immunohisto-

chemical techniques to examine each protein in 48 normal
human tissues, 20 types of tumor tissues, 47 cell lines, and
12 types of blood cells. The distribution and expression of
the results are read and indexed by professionals [29–31]. In
this study, we used the immunohistochemistry data in the
THPA database to explore the expression of angiogenesis-
related risk model genes in BRCA tissues and normal breast
tissues.

3. Results

3.1. The Expression of Angiogenesis-Related Genes in BRCA
and the Interaction of the Encoded Proteins. To make our
research easier to understand, we present this research’s
main analysis methods and steps in a flowchart (Figure 1).
To understand the expression of angiogenesis-related genes
in BRCA, we used the mRNA expression data in the TCGA
database to draw a heat map. We find that most
angiogenesis-related genes have significant differences in
expression between BRCA tissues and normal breast tissues
through the heat map. Among them, the expression of star
molecules VEGFA, SPHK1, and SCG2 in BRCA samples
was significantly higher than that in the control group. The
expressions of NOTCH4, STAB1, and SERPINF1 in BRCA
samples were significantly lower than those in the control
group (Figure 2(a)). The results of univariate Cox analysis
showed that SCG2, PF4, and THY1 played risk factors in
BRCA progression, while BTG1, TNFSF12, RUNX1, and
IL18 played protective factors in BRCA progression
(Figure 2(b)). Then by consulting protein-protein interac-
tion networks, we can find a strong correlation between
the PF4 molecule and the CXCL8 molecule (Figure 2C).
These molecules are potential targets for future BRCA pre-
vention and control.

BRCA dataset in TCGA

Angiogenesis-related genes

Cluster analysis

LASSO regression analysis

THPA verification

KM analysis COX analysis Nomogram Pan-cancer analysis GDSC analysis GSEA analysis

Prognostic risk model BTG1, IL18, PF4, RUNX1,
SCG2, THY1, TNFSF12

Figure 1: The schematic flow chart of this research.
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Figure 2: Continued.
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Figure 2: Continued.

5Journal of Oncology



3.2. Use Angiogenesis-Related Genes to Perform Cluster
Analysis in BRCA. In recent decades of cancer research,
scientific researchers generally consider cluster analysis to
provide theoretical support for precise cancer treatment. In
this study, based on the TCGA database, we used the
differences in the expression of these angiogenesis-related
genes in BRCA patients to perform a cluster analysis. When
k = 3, the generated consensus matrix shows a good cluster-
ing effect, and the result is verified (Figures 3(a)–3(c)).
Subsequently, we developed the survival curve of BRCA
patients based on the cluster analysis results (P = 0:027)
(Figure 3(d)). Therefore, we believe that this new type of
cluster classification is beneficial to future accurate clinical
diagnosis and treatment.

3.3. Use Angiogenesis-Related Genes to Perform LASSO
Regression Analysis in BRCA. To use these angiogenesis-
related genes to establish a risk model in BRCA, we first
performed a LASSO regression curve analysis on these

angiogenesis-related genes and verified the availability of
the results (Figures 4(a) and 4(b)). We successfully con-
structed a risk model consisting of 7 genes, including
BTG1, IL18, PF4, RUNX1, SCG2, THY1, and TNFSF12.
Based on this risk model, we divided BRCA patients into
the high-risk and low-risk groups and drew the correspond-
ing survival curves. The results of the survival curve show
that the overall survival rate of BRCA patients in the high-
risk group is significantly lower than that of BRCA patients
in the low-risk group (P = 9:307e − 05) (Figure 4(c)). Finally,
based on the risk model, our ROC curve analysis showed
that the 7-year AUC value is 0.711 (Figure 4(d)), which
implies that the risk prediction model is highly accurate.

3.4. Based on the Constructed Risk Model, Explore the
Clinical Relevance and Draw the Nomogram. The relation-
ship between the risk model and clinicopathological charac-
teristics has always been an essential direction of concern.
To explore the correlation between the risk model and

(c)

Figure 2: The expression of angiogenesis-related genes in BRCA and the interaction of the encoded proteins. (a) The heat map shows the
expression of angiogenesis-related genes in BRCA. The redder the color, the higher the expression, and the greener the color, the lower the
expression. (b) The forest plot was used to display the univariate Cox regression analysis results. (c) The PPI network was used to show the
interaction between genes related to angiogenesis. ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001.
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clinicopathological features, we conducted a correlation
analysis and displayed it in the form of a heat map
(Figure 5(a)). The results show that the risk model strongly
correlates with the two clinicopathological characteristics
of T and stage of BRCA patients.

Subsequently, we performed univariate Cox regression
analysis and multivariate Cox regression analysis based on
the risk model (Figures 5(b) and 5(c)). We found that the

age of BRCA patients and the risk score of this risk model
are independent risk factors for BRCA patients. Finally,
based on the risk model, we draw a nomogram that can
predict the overall survival rate of BRCA patients at 5, 7,
and 10 years (Figure 5(d)).

3.5. Based on the Constructed Risk Model, Pan-Cancer
Analysis and Sensitivity Analysis of Multiple Anticancer
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Figure 3: Use angiogenesis-related genes to perform cluster analysis in BRCA. (a) Consensus clustering matrix for k = 3. (b, c) Relative
change in area under the cumulative distribution function (CDF) curve for k = 2–9. Consensus clustering CDF for k = 2–9. (d) Survival
curves were drawn by three different clusters (P = 0:027).
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Drugs Were Carried Out. Although many studies have
explored the mutations of multiple risk model genes in vari-
ous cancers, the mutations in multiple cancers have not been
well summarized. In addition, modern scientific research has
confirmed that gene mutations may affect the overall survival
rate of cancer patients [32, 33]. Therefore, this study explored
and summarized the CNV, SNV, and OS of these seven risk
model genes in pan-cancer. By observing the heat map show-
ing the CNV situation, we found that RUNX1, SCG2, and
BTG1 have high heterozygous amplification in various can-
cers, including ACC, TGCT, and UCS. However, TNFSF2,
THY, and IL8 have higher heterozygous deletions in multiple
cancers, including BRCA, TGCT, and SKCM (Figure 6(a)).
In the results of subsequent SNV analysis, we found that
RUNX1 has a higher mutation frequency in BRCA, UCEC,
and BLCA, and these seven risk model genes have varying
degrees of mutation frequency in UCEC and SKCM

(Figure 6(b)). In analyzing the survival of these seven risk
model genes in pan-cancer, we found that most genes signif-
icantly correlate with the survival of BRCA, KIRC, KIRP, and
UVM patients. THY1, SCG2, and RUNX1 play risk factors in
various cancer types (Figure 6(c)).

In recent years, cancer research around methylation has
emerged one after another [34–36]. Therefore, we conducted
a differential analysis of methylation in pan-cancer for these
seven risk model genes. RUNX1 has a high methylation sta-
tus in UCEC, LUSC, and LUAD, and IL18 has a low meth-
ylation status in BRCA, BLCA, and KIRC (Figure 6(d)).
Then based on the ImmuCellAI database, we found that this
risk model is negatively correlated with the degree of
immune cell infiltration such as neutrophil, Th17, and
CD8 naive and positively correlated with the degree of
immune cell infiltration such as Tfh, NK, and macrophage
in most cancer types (Figure 6(e)). Subsequently, to discover
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Figure 4: Use angiogenesis-related genes to perform LASSO regression analysis in BRCA. (a, b) LASSO regression curve analysis and
cross-validation. (c) According to the best cut-off value, BRCA patients are divided into the high-risk and low-risk groups to draw the
Kaplan-Meier survival curve (P = 9:307e − 05). (d) ROC curve for predicting 7-year survival time, and the value of AUC is 0.711.
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Figure 5: Continued.
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candidate biomarkers and valuable small molecule drugs, we
used the GDSC database to closely integrate genes with clin-
ical information and more than 750 small molecule drugs,
which provided help for future experimental design and fur-
ther clinical trials. The results show that the expression of
IL18 and RUNX1 genes is related to the sensitivity of a vari-
ety of mainstream anticancer drugs (Figure 6(f)). We can use
this correlation to provide patients with more efficient treat-
ment options in the future.

3.6. For the Risk Model Genes, Explore Their Protein
Expression Levels in BRCA and Normal Tissues. To verify
our previous results, we used the immunohistochemical data
in the THPA database to explore the expression of these risk
model genes between BRCA tissue and normal breast tissue.
Here, we show the immunohistochemical images of IL18,
PF4, RUNX1, SCG2, THY1, and TNFSF12 (Figures 7(a)–7
(f)). These immunohistochemical results showed that the

expression of IL18, RUNX1, SCG2, and THY1 molecules
in normal breast tissues was significantly lower than that
in BRCA tissues, while PF4 and TNFSF12 molecules showed
the opposite expression. This evidence corroborates our pre-
vious findings, and our results have higher credibility.

3.7. For This Risk Model Genes, GSEA Analysis Was
Performed in BRCA. To deeply explore the potential biolog-
ical role of these risk model genes in cancer progression,
based on the TCGA database, we conducted multiple GESA
analyses in BRCA for these seven risk model genes. The
results show that these seven risk model genes are related
to various cancer pathways in BRCA (Figures 8(a)–8(g)).
For example, BTG1 and IL18 are related to abnormal activa-
tion of JAK-STAT signaling pathway. RUNX1 is related to
the abnormal activation of TGF-beta signaling pathway.
THY1 and TNFSF12 are related to abnormal inhibition of
CELL CYCLE. Therefore, we believe that these detailed data
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Figure 5: Based on the constructed risk model, explore the clinical relevance and draw the nomogram. (a) The heat map was used to show
the correlation between the angiogenesis-related risk model and the clinicopathological characteristics of BRCA patients. (b) Univariate Cox
regression analysis. (c) Multivariate Cox regression analysis. (d) The nomogram was used to predict the 5-, 7-, and 10-year overall survival
rates of BRCA patients. ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001.
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can provide important clues for future exploration of the
mechanism of these seven risk model genes in BRCA.

4. Discussion

In the research process of human anticancer progress, with
the deepening of research, researchers gradually realized that
there are many differences between the same tumors; the
most fundamental difference is at the level of biomolecules.
The concept of tumor molecular classification was first pro-
posed by the National Cancer Institute in 1999. A new
tumor classification system uses molecular analysis tech-
niques to classify tumors based on molecular characteristics.
In 2000, Perou et al. first proposed the molecular classifica-
tion of BRCA, dividing BRCA into two groups: estrogen
receptor (ER) positive and negative. The ER-positive group
is called luminal type breast cancer [37]. The ER-negative
group is divided into human epidermal growth factor
receptor-2 (HER2) overexpression type, basal cell-like type,
and normal breast-like type. Subsequently, many scholars
have further confirmed and enriched the BRCA molecular
typing theory through many studies and made significant
progress [38–40]. Similarly, in this study, we performed a

cluster analysis in BRCA using angiogenesis-related genes
and could classify BRCA patients into subgroups with differ-
ences in survival. We believe this will be very helpful for pre-
cision medicine in the future.

In addition, in the past few decades, the construction of
risk models around cancer-related biological processes or
signaling pathway-related genes has succeeded [41–43].
Therefore, inspired by previous research, we used
angiogenesis-related genes to construct a risk model for
BRCA. Based on this model, we can divide BRCA patients
into two groups with different overall survival rates: a
high-risk group and a low-risk group. With the successful
application of more and more prognostic models in clinical
practice, we believe that this angiogenesis-related predictive
risk model can accurately identify the risk differences of
different patients [44–46]. Clinicians can use this risk dif-
ference to differentiate treatment and treatment of patients.
For example, for patients in the high-risk group, the fre-
quency of clinical therapy, testing and review can be
increased, which is more conducive to patient survival.

The BTG1 gene was first identified from the chronic B
lymphocytic leukemia chromosome and then isolated from
lymphoblasts [47, 48]. It is located on chromosome 12q22
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Figure 6: Pan-cancer analysis and sensitivity analysis of multiple anticancer drugs were carried out based on the constructed risk model.
(a) The heat map shows the results of CNV analysis of seven risk model genes in pan-cancer. The light red Hete Amp represents
heterozygous amplification, the light green Hete Del represents heterozygous deletion, the dark red Homo Amp represents
homozygous amplification, the dark green Homo Del represents homozygous deletion, and the gray represents no CNV occurrence.
(b) The heat map shows the results of SNV analysis of seven risk model genes in pan-cancer. (c) The heat map shows the OS analysis
results of seven risk model genes in pan-cancer. (d) The heat map shows the methylation analysis results of seven risk model genes in
various cancers. (e) The heat map shows the correlation between seven risk model genes and immune cell infiltration in pan-cancer. Red
represents positive correlation and purple represents negative correlation. ∗P ≤ 0:05 and#FDR ≤ 0:05. (f) The heat map shows the
correlation between seven risk model genes and the sensitivity of multiple anticancer drugs. Blue bubbles represent negative correlations,
red bubbles represent positive correlations; the deeper the color, the higher the correlation. There is a positive correlation between bubble
size and FDR significance. The black outline frame indicates FDR ≤ 0:05.
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and can regulate cell proliferation by regulating the cell cycle
[49]. Previous research reports have found that the BTG1
gene has abnormally low expression in breast cancer, gastric
cancer, non-small-cell lung cancer, and pancreatic cancer
tissues compared to normal tissues and is related to multiple
clinical features such as lymph node metastasis, TNM
(Tumor Node Metastasis) stage, and prognosis [50–53]. This
shows that the BTG1 gene plays a similar role to tumor sup-
pressor genes in the occurrence and development of various

cancers and may be a potential tumor biomarker and thera-
peutic target. IL-8 is a proinflammatory cytokine, which
plays a complex role in regulating tumor microenvironment
[54] and may lead to tumor cell proliferation, survival, and
chemoresistance of malignant diseases [55, 56]. High serum
IL-8 expression is now associated with poor prognosis of
patients with various tumors (including BRCA) [57, 58]. In
BRCA, patients with high serum IL-8 levels have a worse
prognosis than patients with low IL-8 levels [59, 60].
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Figure 7: For the risk model genes, explore their protein expression levels in BRCA and normal tissues. (a) IL18, (b) PF4, (c) RUNX1, (d)
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In previous studies, researchers have determined that
PF4 can be used as an antiangiogenic factor to inhibit endo-
thelial cell proliferation, migration, and angiogenesis in a
variety of in vitro and in vivo models of cancer [61–64].
Among them, in the in vivo model of BRCA, upregulating
PF4 can increase the expression of proapoptotic protein
and downregulate the expression of antiapoptotic protein,
thereby promoting cell apoptosis and achieving the effect
of reducing tumor volume [65]. RUNX1 is a member of
the RUNX transcription factor family. It is located at
21q22 and contains 138 amino acid Runt homologous func-
tional regions. Existing studies have found that RUNX1
exerts a tumor suppressor effect in liver cancer and gastric
cancer [66, 67], but in non-small-cell lung cancer and endo-
metrial cancer [68, 69]. It plays a role in promoting cancer in
cancer and in suppressing or promoting cancer in different
subtypes of BRCA [70, 71]. As an essential transcription fac-
tor, RUNX1 mainly acts by directly or indirectly regulating
signal transduction pathways such as TGFβ, WNT, and
BMP [72]. However, the three genes SCG2, THY1, and
TNFSF12 have not been studied in BRCA. In the future,
we need to conduct in-depth exploration to determine the
potential role of these three genes in BRCA.

5. Conclusion

In this study, based on multiple biological information data-
bases, we used angiogenesis-related genes to perform a series
of analyses such as univariate Cox analysis, cluster analysis,

LASSO regression analysis, pan-cancer analysis, and multi-
GSEA analysis in BRCA and successfully constructed a pre-
dictive risk model consisting of seven genes BTG1, IL18,
PF4, RUNX1, SCG2, THY1, and TNFSF12, although this
study still has some shortcomings. For example, it has not
been supported by single-center or multicenter clinical data.
However, we believe that this research will provide many
valuable clues for future scientific research. We will continue
to explore the potential mechanisms of these risk model
genes in BRCA progression in future scientific explorations.
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