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Generalized and scalable trajectory inference in
single-cell omics data with VIA
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Inferring cellular trajectories using a variety of omic data is a critical task in single-cell data

science. However, accurate prediction of cell fates, and thereby biologically meaningful dis-

covery, is challenged by the sheer size of single-cell data, the diversity of omic data types, and

the complexity of their topologies. We present VIA, a scalable trajectory inference algorithm

that overcomes these limitations by using lazy-teleporting random walks to accurately

reconstruct complex cellular trajectories beyond tree-like pathways (e.g., cyclic or dis-

connected structures). We show that VIA robustly and efficiently unravels the fine-grained

sub-trajectories in a 1.3-million-cell transcriptomic mouse atlas without losing the global

connectivity at such a high cell count. We further apply VIA to discovering elusive lineages

and less populous cell fates missed by other methods across a variety of data types, including

single-cell proteomic, epigenomic, multi-omics datasets, and a new in-house single-cell

morphological dataset.
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S ingle-cell omics data captures snapshots of cells that catalog
cell types and molecular states with high precision. These
high-content readouts can be harnessed to model evolving

cellular heterogeneity and track dynamical changes of cell fates in
tissue, tumor, and cell population. However, current computa-
tional methods face four critical challenges. First, it remains dif-
ficult to accurately reconstruct high-resolution cell trajectories
and automatically detect the pertinent cell fates and lineages
without relying on prior knowledge of input parameter settings.
This is a foundational but unmet attribute of trajectory inference
(TI) that could make lineage prediction less biased towards input
parameters, and thus minimize the confounding factors that
impact the underlying hypothesis testing. However, even the few
algorithms which automate cell fate detection (e.g., SlingShot1,
Palantir2, STREAM3, and Monocle34) exhibit low sensitivity to
cell fates and are highly susceptible to changes in input para-
meters. Second, current trajectory inference (TI) methods pre-
dominantly work well on tree-like trajectories (e.g., Slingshot and
STREAM), but lack the generalizability to infer disconnected,
cyclic or hybrid topologies without imposing restrictions on
transitions and causality5. This attribute is crucial in enabling
unbiased discovery of complex trajectories which are commonly
not well known a priori, especially given the increasing diversity
of single-cell omic datasets. Third, the growing scale of single-cell
data, notably cell atlases of whole organisms4,6, embryos7,8, and
human organs9, exceeds the existing TI capacity, not just in
runtime and memory, but in preserving both the fine-grain
resolution of the embedded trajectories and the global con-
nectivity among them. Very often, such global information is lost
in current TI methods after extensive and multiple rounds of
dimension reduction or subsampling. Fourth, fueling the advance
in single-cell technologies is the ongoing pursuit to understand
cellular heterogeneity from a broader perspective beyond tran-
scriptomics. A notable example is the emergence of single-cell
imaging technologies that now allow information-rich profiling of
morphological and biophysical phenotypes of single cells, and
thus offer mechanistic cues to cellular functions that cannot be
solely inferred by proteomic or sequencing data (e.g., in cancer10,
ageing11, and drug responses12). However, the applicability of TI
to a broader spectrum of single-cell data has yet to be fully
exploited.

To overcome these recurring challenges, we present VIA, a
graph-based TI algorithm that uses a new strategy to compute
pseudotime, and reconstruct cell lineages based on lazy-
teleporting random walks integrated with Markov chain Monte
Carlo (MCMC) refinement (Fig. 1). VIA relaxes common con-
straints on traversing the graph, and thus allows capture of cel-
lular trajectories not only in multi-furcations and trees, but also in
disconnected and cyclic topologies. The lazy-teleporting MCMC
characteristics also make VIA robust to a wide range of pre-
processing and input algorithmic parameters, and allow VIA to
consistently identify pertinent lineages that remain elusive or
even lost in other top-performing and popular TI algorithms we
benchmark5, which are chosen for comparative analysis condi-
tional on meeting several of the following criteria: automated
lineage path and cell fate prediction, recovery of complex topol-
ogies not limited to trees, scalability and generalizability to
multiple single-cell-modalities. We validate the performance of
VIA and thus its ability to offer better interpretation of the
underlying biology across a variety of transcriptomic, epigenomic,
and integrated multi-omic datasets (seven biological datasets with
a further two datasets presented in Supplementary). Notably, we
show in subsequent sections that VIA accurately detects minor
dendritic sub-populations and their characteristic gene expression
trends in human hematopoiesis; automatically identifies pan-
creatic islets including rare delta cells; and recovers endothelial

and cardiomyocyte bifurcation in integrated data sets of single-
cell RNA-sequencing (scRNA-seq) and single-cell sequencing
assay for transposase-accessible chromatin (scATAC-seq).

Another defining attribute of VIA is its resilience in handling
the wide disparity in single-cell data size, structure and dimen-
sionality across modalities. Specifically, VIA is highly scalable
with respect to number of cells (102 to >106 cells) and features,
without requiring extensive dimensionality reduction or sub-
sampling which compromise global information. Most TI meth-
ods require two stages of dimensionality reduction in the form of
PCA followed by a subsequent stage of UMAP, MLLE, or diffu-
sion components. Only a low number of components from the
second layer of dimensionality reduction is retained as an input to
the TI method (e.g., STREAM, Monocle3, Slingshot, and even
PAGA and Palantir which subset the diffusion components after
PCA). In VIA, we show that for cytometry data there is no need
for any dimensionality reduction, and for transcriptomic data we
show that VIA does not need a second dimensionality reduction
step but robustly infers lineages on a wide range of input principal
components (PCs). Although PCA is a common step in analyzing
transcriptomic data in order to strengthen the signal in the data,
we also show that in-principle, VIA can handle 1000 s of genes as
direct inputs without any PCA at all (Supplementary Note 5 and
Figs. 27–29). We showcase the scalability of sample size by ana-
lyzing the fine-grained developmental sub-trajectories in the 1.3-
million-cell mouse organogenesis atlas in terms of fast runtime
and preservation of global cell-type connectivity, which is
otherwise lost in existing TI methods. We also show that VIA is
robust against the dimensionality drop (down to 10’s–100’s
antibodies or morphological features) in mass cytometry (pro-
teomics) and imaging cytometry (morphological) data. For
instance, VIA consistently reconstructs the pseudotime that
recapitulates murine embryonic stem cells (ESCs) differentiation
toward mesoderm cells in CyTOF data, where the lazy-teleporting
MCMCs contribute to the high accuracy of inference. Lastly, we
hypothesize that VIA can also be applied to imaging cytometry
for gaining a mechanistic biophysical understanding of cellular
progress. To this end, we profiled the biophysical and morpho-
logical phenotypes of single-cell live breast cancer cells with our
recently developed high-throughput imaging flow cytometer,
called FACED13. Validated with the in situ fluorescence (FL)
image capture, we found that VIA reliably reconstructs the con-
tinuous cell-cycle progressions from G1-S-G2/M phase, and
reveals subtle changes in cell mass accumulation.

Results
Algorithm. VIA first represents the single-cell data as a cluster
graph (i.e., each node is a cluster of single cells), computed by our
recently developed data-driven community-detection algorithm,
PARC, which allows scalable clustering whilst preserving global
properties of the topology needed for accurate TI14 (Step 1 in
Fig. 1). The root (starting point) is designated by the user, either
as a single-cell index or using group or cluster level labels. The
cell fates and their lineage pathways are then computed by a two-
stage probabilistic method, which is the key algorithmic con-
tribution of this work (Step 2 in Fig. 1, see “Methods” for detailed
explanation). In the first stage of Step 2, VIA models the cellular
process as a modified random walk that allows degrees of laziness
(remaining at a node/state) and teleportation (jumping to any
other node/state) with pre-defined probabilities. The pseudotime,
and thus the graph directionality, can be computed based on the
theoretical hitting times of nodes (see the theory and derivation in
“Methods” and Supplementary Note 2). The lazy-teleporting
behavior prevents the expected hitting time from converging to a
local distribution in the graph as otherwise occurs in regular
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random walks, especially when the sample size grows15. More
specifically, the laziness and teleportation factors regulate the
weights given to each eigenvector-value pair in the expected
hitting time formulation such that the stationary distribution
(given by the local-node degree-properties in regular walks) does
not overwhelm the global information provided by other “eigen-
pairs”. Moreover, the computation does not require subsetting the
first k eigenvectors (bypassing the need for the user to select a
suitable threshold or subset of eigenvectors) since the dimen-
sionality is not on the order of number of cells, but is equal to the
number of clusters. Hence all eigenvalue-eigenvector pairs can be
incorporated without causing a bottleneck in runtime. Conse-
quently in VIA, the modified walk on a cluster-graph not only
enables scalable pseudotime computation for large datasets in
terms of runtime, but also preserves information about the global
neighborhood relationships within the graph. In the second stage
of Step 2, VIA infers the directionality of the graph by biasing the
edge-weights with the initial pseudotime computations, and
refines the pseudotime through lazy-teleporting MCMC simula-
tions on the forward biased graph.

Next (Step 3 in Fig. 1), the MCMC-refined graph-edges of the
lazy-teleporting random walk enable accurate predictions of
terminal cell fates through a consensus vote of various vertex
connectivity properties derived from the directed graph. The cell

fate predictions obtained using this approach are more accurate
and robust to changes in input data and parameters compared to
other TI methods (Fig. 2 simulated complex topologies and
Supplementary Fig. 1 summary of lineage detection accuracy for
all benchmarked real datasets). Trajectories towards identified
terminal states are then resolved using lazy-teleporting MCMC
simulations (Step 4 in Fig. 1). The single-cell level KNN graph
constructed in Step 1 is then used to project the lineage
probabilities of trajectories (pathways from root to cell fate),
and temporal ordering derived from the cluster-graph topology
onto a single-cell level. Together, these four steps facilitate holistic
topological visualization of TI on the single-cell level (e.g., using
UMAP or PHATE16,17) and critically enable data-driven down-
stream analyses such as recovering gene expression trends and
single-cell level pathways of lineages, that are essential to
biological validation and discovery of lineage commitment
(Methods) (Step 5 in Fig. 1).

VIA accurately captures complex topologies obscured in other
TI methods. We first generate and analyze simulated datasets
(see Methods) to demonstrate that VIA’s probabilistic approach
to graph-traversal allows it to infer cell fates when the underlying
data spans combinations of multifurcating trees and cyclic/dis-
connected topologies - topologies and lineages often obscured in
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Fig. 1 General workflow of VIA algorithm. Step 1: Single-cell level graph is clustered such that each node represents a cluster of single cells (computed by
our clustering algorithm PARC14). The resulting cluster graph forms the basis for subsequent random walks. Step 2: 2-stage pseudotime computation: (i)
The pseudotime (relative to a user defined start cell) is first computed by the expected hitting time for a lazy-teleporting random walk along an undirected
graph. At each step, the walk (with small probability) can remain (orange arrows) or teleport (red arrows) to any other state. (ii) Edges are then forward
biased based on the expected hitting time (see forward biased edges illustrated as the imbalance of double-arrowhead size). The pseudotime is further
refined on the directed graph by running Markov chain Monte Carlo (MCMC) simulations (see three highlighted paths starting at root). Step 3: Consensus
vote on terminal states based on vertex connectivity properties of the directed graph. Step 4: lineage likelihoods computed as the visitation frequency
under lazy-teleporting MCMC simulations. Step 5: Projection of temporal ordering and lineage probabilities to single-cell level using the original single-cell-
KNN graph to enable visualization that combines network topology and single-cell level pseudotime/lineage probability properties onto an embedding
using GAMs, as well as unsupervised downstream analysis (e.g., gene expression trend along pseudotime for each lineage).
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existing TI methods. In VIA, the relaxation of edge constraints in
computing lineage pathways and pseudotime enables accurate
detection of cell fates and complex trajectories by avoiding pre-
maturely imposing constraints on node-to-node mobility. Other
methods resort to constraints such as reducing the graph to a tree,
imposing unidirectionality by thresholding edges based on
pseudotime directionality, removing outgoing edges from term-
inal states2,18, and computing shortest paths for pseudotime1,2.

The availability of a reference truth model for the synthetics
datasets allows us to quantify TI accuracy using a composite
metric which assesses multiple layers of the inferred trajectory
including topology, pseudotime and lineage prediction. The
metric assesses “local” graph similarity between the inferred and
reference graphs using the Graph Edit Distance (GED) and an
F1-Branch score (which labels branches in the inferred topology
as true or false positives, or the lack thereof as a false negative).
“Global” graph similarity is computed using the Ipsen–Mikhailov
metric19 (Methods), and pseudotime quality is captured by the

Pearson correlation between the inferred and reference pseudo-
times. Terminal cell fate prediction is evaluated using the F1-
score. The breakdown of the composite score and further detail
on each metric is available in Supplementary Note 3 and
Supplementary Figs. 2–5.

The differences in accuracy between VIA and other methods is
most significant for complex topologies, particularly those with
disconnected components comprising various connected topolo-
gies, whilst the ability to accurately detect cell fates is highlighted
by multilineage furcating topologies. In the four-leaf multi-
furcation (Fig. 2a top), VIA accurately captures the two cascading
bifurcations which lead to four leaf nodes. In particular, VIA
detects the elusive “M2” terminal state whereas other methods
(Palantir, PAGA, Slingshot, STREAM, and Monocle3) merge it
with the “M8” lineage. Monocle3 and STREAM typically only
capture a single bifurcation and thus merge the pairs of leaves
that otherwise arise from the second layer of bifurcation (Fig. 2a).
Even for the fairly simple cyclic topology (Fig. 2a), other methods
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tend to fragment the structure to varying degrees depending on
the parameter choice whereas VIA consistently preserves the
global cyclic structure (Supplementary Fig. 4c under various K
(KNN)). This is not to say VIA is invariant to parameter choice,
but rather that VIA predictably modulates the graph resolution
across a wide range of K without disrupting the underlying global
topology (see the increase in the number of nodes in K= 30
versus K= 5 in Supplementary Fig. 4c). This characteristic is
important for robustly analyzing multiple levels of resolution in
complex graph topologies, as also shown in our later investigation
of the 1.3-million-cell mouse atlas. The performance comparison
for the disconnected hybrid topologies (Fig. 2) shows that VIA
disentangles the cyclic and bifurcating lineages (that comprise
Disconnected1) and captures the key leaf-states in the bifurcation
as well as the “tail” extending from the cyclic topology. Palantir
overly fragments the two trajectories, whereas Monocle3 and
Slingshot merge them, STREAM is not well suited to non-tree
trajectories given the underlying structure is assumed to be a
spanning tree.

We also show that VIA is flexible to using clustering methods
other than PARC by substituting PARC with Kmeans clustering
to show that the lazy-teleporting MCMCs still enable faithful
recovery of various topologies as well as the associated cell fates
(Supplementary Note 6 and Figs. 30–32). The main drawback of
using K-means is that under- or over-clustering can occur based
on the user-choice of K, whereas methods like PARC enable a
more data-driven resolution of the data where the recovery of less
populous cell types is not dependent on an adequately large
number of clusters.

VIA reveals rare lineages in epigenomic and transcriptomic
landscapes of human hematopoiesis. To assess the performance
of VIA on inferring real cellular trajectory, we first considered a
range of scRNA-seq datasets, including hematopoiesis2,20, endo-
crine genesis, B-cell differentiation21, and embryonic stem (ES)
cell differentiation in embryoid bodies17. We present the analyses
of CD34+ human hematopoiesis and endocrine differentiation
here, whereas the generalizable performance of VIA on other
scRNA-seq datasets is presented in Supplementary Figs. 1, 6, 13.
We highlight human hematopoiesis as it has been extensively
studied not only with scRNA-seq, but also other single-cell omics
modalities, notably scATAC-seq. Hence, it allows us to reliably
assess lineage identification performance and downstream ana-
lyses using VIA.

First, we show that VIA consistently reveals from the scRNA-
seq dataset the typical hierarchical bifurcations during hemato-
poiesis that result in key committed lineages of hematopoietic
stem cells (HSCs) to monocytic, lymphoid, erythroid, classical
and plasmacytoid dendritic cell (cDCs and pDCs) lineages and
megakaryocytes (Fig. 3a). The automated detection of these
terminal states in VIA, as quantified by F1-scores on the
annotated cells, remains robust to varying the number of
neighbors in the KNN graph, and the number of PCs (Fig. 3c).
Specifically, VIA’s sustained sensitivity to rarer cell types (e.g.,
DCs and megakaryocytes) can be attributed to a better underlying
graph structure where nodes are well delineated by PARC (as rare
cell types are well separated by graph pruning in the clustering
stage) and edges governing the random walk pathways are not
prematurely removed due to restrictions on causality.

In contrast, the sensitivity of Palantir and Slingshot in
detecting rarer lineages drops significantly outside a favorable
“sweet spot” of parameters. Slingshot can only recover the major
cell populations (monocytes, erythroid, and B cells) and confuses
the DC populations with the monocytes and the megakaryocytes
with the erythroid cells. Palantir can only identify the DCs and

megakaryocytes for a handful of parameter options, whereas VIA
achieves this goal across a wider range of parameters (Fig. 3c). To
verify that VIA reliably delineates the megakaryocyte, cDC and
pDC lineages, we used VIA to automatically plot the lineage
specific trends for selected marker genes. We showed that while
both DC lineages exhibit elevated IRF8, the CSF1R is specific to
the cDC, and the CD123 remains elevated for pDCs whereas it is
first up-regulated, then down-regulated in cDCs (Fig. 3b and
Supplementary Figs. 7–9). Marker genes known to increase along
a specific lineage are correlated against the pseudotime along each
lineage as an indicator of correct cell ordering (Fig. 3d). The gene
trends inferred by each method are provided in Supplementary
Fig. 9 to show a side-by-side comparison of nuances in the quality
of plotted expressions, such as the presence of cross-talk between
distinct lineages, or distortion of the trends due to unrelated cells
assimilated into lineages.

We find that VIA’s interpretation of the human scATAC-seq
profiles (Fig. 3e) mirrors the continuous landscape of scRNA-seq
human hematopoietic data (Fig. 3a). We use two common
preprocessing pipelines20,22 (see Methods), intended to alleviate
challenges posed by the sparsity of scATAC-seq data, to show
that VIA consistently predicts the expected hierarchy of lineages
furcating from hematopoietic progenitors to their descendants.
The graph topology of VIA (colored by pseudotime) captures the
progression of multipotent progenitors (MPPs) toward the
lymphoid-primed MPPs (LMPP) and the common myeloid
progenitors (CMPs) which in turn give rise to the CLP and MEP
lineages respectively. The known joint contribution of LMPPs
and CMPs towards the GMP lineage is also captured by the VIA
graph. We verified the lineages identified by VIA by analyzing the
changes in the accessibility of TF motifs associated with known
regulators of the lineage commitments, e.g., GATA1 (erythroid),
CEBPD (myeloid) and IRF8 (DCs) (Fig. 3e, Supplementary
Fig. 10c). Again, we note that the detection of these lineages is less
straightforward in other methods, which generally face a sharp
drop in accuracy of detecting relevant cell fates as the input
number of PCs exceeds ~50PCs (e.g., Palantir often misses the
CLP and monocyte lineages, see Supplementary Fig. 6 for
Palantir’s outputs across parameters and Fig. 3g for the
corresponding prediction accuracy). The quality of the lineage
pathways and gene trends is indicated in Fig. 3h by the
correlation of lineage cell ordering against marker gene expres-
sion. Visual comparisons of the topologies and predicted gene
trends of each method are shown in Supplementary Fig. 11. We
emphasize that VIA’s robustness in handling both the scRNA-seq
and scATAC-seq datasets demonstrates its unique ability to
achieve stable prediction and thus faithful query of the underlying
biology without biasing specific sets of input parameters which
nontrivially vary across datasets—as also evident from our series
of “stress tests” on VIA’s performance and the gene-trend
comparisons (Supplementary Fig. 1).

VIA detects small endocrine Delta lineages and Beta subtypes.
We use a scRNA-seq dataset of E15.5 murine pancreatic cells to
again examine whether VIA can automatically detect multiple
lineages, in particular less populous ones. This data spans all
developmental stages from initial endocrine progenitor-precursor
(EP) state (low level of Ngn3, or Ngn3low), to intermediate EP (high
level of Ngn3, or Ngn3high) and Fev+ states, to terminal states of
hormone-producing alpha, beta, epsilon and delta cells23 (Fig. 4a).

A key challenge in analyzing this dataset is the automated
detection of the small delta-cell population (a mere 3% of the total
population), which otherwise requires manual assignment in
CellRank and Palantir (see Supplementary Figs. 15, 16 for a
comparison of topology and automated gene trend plots along
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predicted lineages by different methods). In contrast, the well-
delineated nodes of the VIA cluster-graph (a result of the accurate
terminal state prediction enabled by the lazy-teleporting MCMC
property of VIA on the inferred topology) lends itself to
automatically detecting this small population of delta cells, together
with all other key lineages (alpha, beta and epsilon lineages)
(Fig. 4a–c). As evidenced by the corresponding gene-expression trend
analysis, VIA detects all of the hormone-producing cells including
delta cells which show exclusively elevated Hhex, Sst, and Cd24a
(Fig. 4c–e). To show that this is not a co-incidence of parameter
choice, we verify that these populations can be identified for a wide
range of chosen highly variable genes (HVGs prior to PCA) and
number of PCs (see Supplementary Fig. 1c). Interestingly, consistent
with an observation by Bastidas-Ponce et al.23 we see two groups of
Fev+ populations branching from the Ngn+ populations, which
subsequently progress towards the distinct cell lines. We show
consistency in predicted topology, cell fates and gene trends when
applying VIA directly on 1000 s of HVGs without PCA for a wide
range of HVGs (see Supplementary Fig. 29), and under artificial
degradation of the data to test robustness to noise (see Supplementary

Fig. 18 and Note 4 to see that VIA is more robust to the addition of
noise than other methods which merge major lineages).

Interestingly, we find VIA often automatically detects two Beta-
cell subpopulations (Beta-1 and Beta-2) (Fig. 4b–e) that express
common Beta-cell markers, such as Dlk1, Pdx1, but differ in their
expressions of Ins1 and Ins2 (Fig. 4c–e). The pseudotime order
within this Beta-cell heterogeneity24,25, undetectable by other TI
methods (as shown in the gene correlation comparisons Supple-
mentary Fig. 15), can further be reconciled in the VIA graph where
the immature Beta-2 population precedes the mature Beta-1
population. We find that the immature Beta-2 population strongly
expresses Ins2, and weakly expresses Ins1, followed by the mature
Beta-1 cells which express both types of Ins25 (Fig. 4d–f). VIA
graphs colored by Ins1 and Ins2 further show the difference in Ins
expression by the two Beta populations).

VIA recovers Isl1+ cardiac progenitor bifurcation in multi-
omic data. We next demonstrate the applicability of VIA in single-
cell multi-omics analysis by investigating murine Ils1+ cardiac
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progenitor cells (CPC) which are known to bifurcate towards
endothelial and cardiomyocyte fates (Fig. 5). VIA consistently
uncovers the bifurcating lineages using both single-cell transcriptomic
(scRNA-seq) and chromatin accessibility (scATAC-seq)
information26–28, as well as their data integration (see “Methods” for
data integration using Seurat). Other methods that are also applicable
to non-transcriptomic data, fail to uncover the two main lineages.

Other methods typically only detect the cardiomyocyte lineage
(the inability to detect a bifurcation is exacerbated when the
number of input PCs increases), and instead falsely detect several
intermediate and early stages as final cell fates. For instance
STREAM consistently merges the cardiomyocyte and endothelial
lineages and instead presents the intermediate stage as a separate
bifurcation. See Supplementary Figs. 20, 21 for sample outputs

across parameters, and Fig. 5g for the corresponding prediction
accuracy of each method. PAGA does not offer automated cell
fate prediction or lineage paths and is therefore not benchmarked
for this dataset. The disparity in trajectory inference is evident in
the scRNAseq and integrated data where Monocle3, Slingshot
and Palantir do not resolve either of the two cell fates (Fig. 5g),
and STREAM detects multiple spurious branches that fragment
the structure entirely. We hypothesized that lowering the K
(number of nearest neighbors) in Palantir and VIA would be
more appropriate given the extremely low cell count (~200 cells)
of the scRNA-seq dataset. Whilst this approach did not alter the
outcome for Palantir, we found that VIA is able to capture the
transition from early to intermediate CPCs and finally lineage
committed cells.

Fig. 4 VIA detects small populations in endocrine progenitor cell differentiation. a VIA graph topology Pancreatic Islets: Colored by VIA pseudotime
with detected terminal states shown in red and annotated based on known cell type as Alpha, Beta-1, Beta-2, Delta, and Epsilon lineages where Beta-2 is
Ins1lowIns2+ Beta subtype (Supplementary Fig. 8 for graph node-level gene expression intensity of Ins1 and Ins2). b TSNE colored by reference cell type
annotations. c colored by inferred pseudotime with predicted cell fates in red-black circles. d VIA inferred cluster-level pathway shows gene regulation
along endocrine progenitor (EP) to Fev+ cells followed by expression of islet specific genes. e Gene-expression trends along pseudotime for each
pancreatic islet. f Beta-2 subtype expresses Ins2 but not Ins1, suggestive of an immature Beta cell subtype. g Marker gene-pseudotime correlations along
respective lineages. Full comparison of gene trends can be referred to Supplementary Fig. 15.
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More importantly, VIA automatically generates a pseudotem-
poral ordering of relevant cells (without requiring manual selection
of relevant cells as done in Jia et al.26) along each lineage and their
marker-TF pairs (Fig. 5c and Supplementary Fig. 19f for differential
gene expression analysis). Hence, VIA can be used to faithfully
interpret relationships between transcription factor dynamics and
gene expression in an unsupervised manner. The highlighted gene
and TF pairs in the cardiac lineage show a strong correlation
between expression and accessibility of Gata and Homeobox Hox
genes which are known to be related to the regulation of
cardiomyocyte proliferation29–31. VIA’s reliable performance
against user-reconfiguration (number of PCs, individual or
integrated omic data) suggests its utility in transferable interpreta-
tion between scRNA-seq and scATAC-seq data.

VIA preserves global connectivity when scaling to millions of
cells. VIA is designed to be highly scalable and offers automated
lineage prediction without extensive dimension reduction or

subsampling even at large cell counts. To showcase this, we use
VIA to explore the 1.3-million scRNA-seq mouse organogenesis
cell atlas (MOCA)7. While this dataset is inaccessible to most TI
methods from a runtime and memory perspective, VIA can
efficiently resolve the underlying developmental heterogeneity,
including nine major trajectories (Fig. 6a, b) with a runtime of
~40 min, compared to the next fastest method PAGA which has a
runtime of 3 h, Palantir and STREAM which takes over 4 and
6.5 h respectively. Other methods like Slingshot and CellRank
were deemed infeasible due to extremely long runtimes on much
smaller datasets. (Supplementary Table 3 for a summary of
runtimes). Going beyond the computational efficiency, VIA also
preserves wider neighborhood information and reveals a globally
connected topology of MOCA which is otherwise lost in the
Monocle3 analysis which first reduces the input data dimen-
sionality using UMAP.

The overall cluster graph of VIA consists of three main branches
that concur with the known developmental process at early
organogenesis32 (Fig. 6a). It starts from the root stem which has
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a high concentration of E9.5 early epithelial cells made of multiple
sub-trajectories (e.g., epidermis, and foregut/hindgut epithelial cells
derived from the ectoderm and endoderm). The stem is connected
to two distinct lineages: (1) mesenchymal cells originated from the
mesoderm which arises from interactions between the ectoderm
and endoderm27,28,32,33–35 and (2) neural tube/crest cells derived
from neurulation when the ectoderm folds inwards34.

The sparsity of early cells (only ~8% are E9.5) and the absence of
earlier ancestral cells make it particularly challenging to capture the
simultaneous development of trajectories. However, VIA is able to
capture the overall pseudotime structure depicting early organogen-
esis (Fig. 6b). For instance, at the junction of the epithelial-to-
mesenchymal branch, we find early mesenchymal cells from

E9.5–E10.5. Cells from later mesenchymal developmental stages
(e.g., myocytes from E12.5–E13.5) reside at the leaves of the branch.
Similarly, at the junction of epithelial-to-neural tube, we find dorsal
tube neural cells and notochord plate cells which are predominantly
from E9.5–E10.5 and more developed neural cells at branch tips (e.g.,
excitatory and inhibitory neurons appearing at E12.5–E13.5). In
contrast, the pseudotime gradient of PAGA’s nodes offer little salient
information at this scale, with 90% of cells predicted to be in the first
10% of the pseudotime color scale (see Supplementary Fig. 22c, d).

VIA also consistently places the other smaller dispersed groups
of trajectories (e.g., endothelial, hematopoietic) in biologically
relevant neighborhoods (see Supplementary Note 7 for a detailed
explanation of VIA’s structural connections supported by known
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trajectory (nodes colored by pseudotime) and shaded-colored regions corresponding to major cell groups. Stem branch consists of epithelial cells derived
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transitions in organogenesis literature). While VIA’s connected
topology offers a coarse-grained holistic view, it does not
compromise the ability to delineate individual lineage pathways,
such as the erythroid and white blood cell lineages within the
hematopoietic super group (consistent with annotations made by
Cao et al.7) as shown in Fig. 6c.

As such, TI using VIA uniquely preserves both the global and
local structures of the data. Whilst manifold-learning methods are
often used to extensively reduce dimensionality to mitigate the
computational burden of large single-cell datasets, they tend to
incur loss of global information and be sensitive to input
parameters. VIA is sufficiently scalable to bypass such a step, and
therefore retains a higher degree of neighborhood information
when mapping large datasets. This is in contrast to Monocle3’s7

UMAP-reduced inputs that reveal different disconnected super-
groups and fluctuating connectivity depending on input para-
meters. As shown in Fig. 6e (and Supplementary Fig. 22 for
varying KNN), methods such as Monocle3 which require a very
low dimensional representation (e.g., first 2-3 components of
UMAP) for TI are susceptible to unpredictable changes in the
composition of super cell groups, their relative positions and
inter-connectivity. For instance, in UMAP, the neural tube group
is sometimes shown as a single super group, and other times
fragmented across the embedding without context of neighboring
groups. Similarly the hematopoietic supergroup is shown as a
single, two or even three separate groups dispersed across the
embedding landscape (Fig. 6e). In contrast, VIA uncovers
biologically consistent structures across the same range of
parameters. In VIA, the cells belonging to these fine-grained
supergroups remain connected and neighborhood relationships
are preserved, for instance the neural crest cells (containing
Peripheral Nervous System neurons and glial cells) remain
adjacent to the neural tube (Figs. 6d, Supplementary Fig. 22a).

VIA’s lazy-teleporting MCMCs delineate mesoderm differ-
entiation in mass cytometry data. Broad applicability of TI
beyond transcriptomic analysis is increasingly critical, but exist-
ing methods have limitations contending with the disparity in the
data structure (e.g., sparsity and dimensionality) across a variety
of single-cell data types. While we have shown that VIA can be
used to successfully interrogate scATACseq, scRNAseq, and their
integrated data, we further investigate whether VIA can cope with
the significant drop in data dimensionality (10–100), as often
presented in flow/mass cytometry data, and still delineate con-
tinuous biological processes.

We applied VIA on a time-series mass cytometry data (28
antibodies, 90K cells) capturing murine ESCs differentiation
toward mesoderm cells36. The mESCs are captured at 12 intervals
within the first 11 days and hence provide sufficiently granular
temporal annotation to allow a correlation assessment of the
inferred pseudotimes. We quantified that the pseudotimes
computed by VIA shows a Pearson correlation of ~88% with
the actual annotated days. We further verified that VIA’s
performance is critically improved by the lazy-teleporting
MCMCs (Fig. 7d), without which the correlation drops closer
to PAGA’s. Palantir and Monocle3 suffer from low connectivity
of cells between the Day 0–1 and the subsequent early stages
(finding disconnected trajectories even when increasing K in
KNN), and thus result in loss of pseudotime gradient and low
correlation to the true annotations.

More importantly, unlike previous analysis36 of the same data
which required chronological labels to visualize the chronological
developmental hierarchy, we ran VIA without such supervised
adjustments and accurately captured the sequential development.
Not only can it achieve faster runtime (running in 2 min on the

full antibody-feature set versus Slingshot which required 6 h even
on a subset of first 5 PCs see Supplementary Table 3 for more
runtime comparisons), VIA detects three terminal states
corresponding to cells in the final developmental stages of Day
10–11 which are indicated by upregulation of Pdgfra, Cd44 and
Gata4 mesodermal markers (Fig. 7e). In contrast, other methods
struggle to identify the correct terminal states (e.g., Palantir,
STREAM and Slingshot Fig. 7f) and do not depict salient
structures (e.g., STREAM where the Day 10–11 branch is placed
in between Day 0 and Day 5 branches).

VIA captures morphological trends of live cells in cell cycle
progression. Apart from the omics technologies, optical micro-
scopy is a powerful parallel advance in single-cell analysis for
generating the “fingerprint” profiles of cell morphology. Such
spatial information is typically obscured in sequencing data, but
can effectively underpin cell states and functions without costly
and time-consuming sequencing protocols. However, trajectory
predictions based on morphological profiles of single cells have
only been scarcely studied until recently, but advancements in
high-throughput imaging cytometry are now making large-scale
image data generation and related studies feasible. We thus
sought to test if VIA can predict biologically relevant progress
based on single-cell morphological snapshots captured by our
recently developed high-throughput imaging flow cytometer,
called FACED13—a technology that is at least 100 times faster
than state-of-the-art imaging flow cytometry (IFC) (Fig. 8a).

Our FACED imaging platform captured multiple image
contrasts of single cells, including FL, and quantitative phase
images (QPI), which measure high-resolution biophysical proper-
ties of cells, which are otherwise inaccessible in other methods37.
Using the QPIs captured by FACED, we first generated spatially-
resolved single-cell biophysical profiles of two live breast cancer
cell types (MDA-MB231 and MCF7) undergoing cell cycle
progressions (38 features including cell shape, size, dry mass
density, optical density and their subcellular textures (see
Supplementary Tables 6, 7 for definitions of features)). The QPI
together with the FL images of individual cells were also used to
train a convolutional neural network-based regression model for
predicting the DNA content. We first validated that there is a
high correlation (Pearson’s correlation coefficient r= 0.72)
between the actual DNA content determined by the FL images
and DNA content predicted by the QPI (Supplementary Fig. 24a).
In addition, the predicted percentages of cells in each cell cycle
phases (i.e., G1, S and G2/M) by the biophysical profile are highly
consistent with the ground truth defined by the DNA dye
(Supplementary Fig. 24b). Based on the biophysical profiles as
validated by the above tests, VIA reliably reconstructed the
continuous cell-cycle progressions from G1-S-G2/M phase of
both types of live breast cancer cells (Methods) (Fig. 8b–g).

Intriguingly, according to the pseudotime ordered by VIA, not
only does it reveal the known cell growth in size and mass38, and
general conservation of cell mass density39 (as derived from the
FACED images (Methods)) throughout the G1/S/G2 phases, but
also a slow-down trend during the G1/S transition in both cell
types, consistent with the lower protein-accumulation rate during
S phase40 (Fig. 8f, g). The variation in biophysical textures (e.g.,
peak phase, and phase fiber radial distribution) along the VIA
pseudotime likely relates to known architectural changes of
chromosomes and cytoskeletons during the cell cycles (Fig. 8f, g).
We find other methods on this dataset to be sensitive to the
choice of early cells and detecting intermediate cells as terminal
cell fates (e.g., Palantir, Slingshot), and often adding additional
edges or branches (e.g., STREAM, PAGA), see Supplementary
Fig. 23 for Palantir, Slingshot, Monocle3, STREAM and PAGA
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outputs. The slowdown during the S-phase is missed by the gene
trend prediction available in other methods. To probe subsets of
the morphological features, we remove volume and volume
related features (e.g., Dry Mass, Area) and test whether this can
still be used to infer the topology and cell ordering that reveals the
slow-down observed in the S-phase. We found that VIA is
consistently able to reveal these trends in both cell lines, whereas
other methods struggle to maintain the linear progression
expected along the cell-cycle with spurious linkages emerging
(see Supplementary Figs. 25, 26) and intermediate states being
selected as final G2 stages. These results further substantiate the
growing body of work41–44 on imaging biophysical cytometry for
gaining a mechanistic understanding of biological systems,
especially when combined with omics analysis45.

Discussion
With the growing scale and complexity of single-cell datasets,
there is an unmet need for accurate cell fate prediction and
lineage detection in complex topologies manifested in biology
(not limited to trees). This challenge, broadly faced by the current

TI methods, is compounded by susceptibility to algorithmic
parameter changes, limited scalability to large data size; and
insufficient generalizability to multi-omic data beyond tran-
scriptomic data. We introduced VIA, which alleviates these
challenges by fast and scalable construction of cluster-graph of
cells, followed by pseudotime, and reconstructing cell lineages
based on lazy-teleporting random walks and MCMC simulations.
This strategy critically relaxes common constraints on graph
traversal and causality that impede accurate prediction of elusive
lineages and less populous cell fates. We validated the efficacy of
these measures in terms of detecting various challenging topol-
ogies on simulated data, as well as robust prediction of cell fates
and temporally changing feature trends on a variety biological
processes (spanning epigenomic, transcriptomic, integrated omic,
as well as imaging and mass cytometric data) to show that VIA
detects pertinent biological lineages and their pathways that
remain undetected by other methods.

Notably, VIA distinguished between dendritic subtypes in an
scRNA-seq hematopoiesis dataset; identified the rare delta cell
islet in pancreatic development, a population requiring manual
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pseudotime computation produces a pseudotime scale closer to the annotated dates. “VIA no-LT” denotes VIA without the lazy-teleporting MCMC stage
of the pseudotime calculation. For Slingshot and STREAM there is no K (NN) setting thus only a single correlation value is presented. STREAM’s
pseudotime is distorted by the insertion of Day 8–11 cells in between Day 0 and Day 5. e Gene expression of key mesodermal markers. f Example outputs
of Palantir, PAGA and Slingshot with the terminal states (black circles) predicted by Slingshot and Palantir. Red “X” denotes incorrect (false positive) or
missing (false negative) terminal state. STREAM places Day 10–11 cells in between Day 0 and Day 5–6 cells.
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assignment in other TI methods; and revealed the bifurcation
towards cardiomyocyte and endothelial lineage commitment in a
multi-omic scATAC-seq and scRNA-seq dataset which proved
challenging for other methods. In order to demonstrate that these
biological findings are robust to user parameter tuning, we con-
ducted a series of ‘stress tests’ of the inferred topology and cell
fates on both simulated and biological data, which show that VIA
behaves more predictably (allowing controllable degrees of ana-
lytical granularity) and accurately than other methods with

regards to topology and lineage prediction. In other methods,
user parameter choice can incur fragmentation or spurious lin-
kages in the modeled topology, and consequently only yield
biologically sensible lineages for a narrow sweet spot of para-
meters (see the summary in Supplementary Fig. 1 and sample
outputs by other methods in Supplementary Figs. 6, 9, 11–13,
15–18, 20–21, 22, and 23).

We also demonstrated on the 1.3 million MOCA dataset that
VIA is highly scalable with a runtime of ~40 min (compared to
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Fig. 8 VIA predicts cell cycle progression based on single-cell biophysical morphology. a FACED high-throughput imaging flow cytometry of MDA-
MB231 and MCF7 cells, followed by image reconstruction and biophysical feature extraction. See “Methods” detailed experimental workflow. b Randomly
sampled quantitative phase images (QPI) and fluorescence images (FL) of MCF7 cells and (d) MDA-MB231 cells. c Single-cell UMAP embedding colored
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and UMAP colored by VIA pseudotime for MCF7. d-e VIA analysis repeated for MDA-MB231 cells. f Unsupervised image-feature-trends of global and local
biophysical textures against VIA pseudotime for MCF7 and (g) MDA-MB231 cells (see Supplementary Table 6 for feature definitions). Cell cycle
pseudotime boundaries are defined here as the intersection of the pseudotime probability density functions of each cell cycle stage (annotated based on
fluorescence intensity).
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3–4 h on the next fastest method). Importantly, VIA not only
recovers the fine-grained sub-trajectories, but also maintains
global connectivity between related cell types and thus captures
key relationships among lineages in early embryogenesis. It also
computes a more salient pseudotime measure supported by lazy-
teleporting MCMCs, compared to other methods whose pseu-
dotime scale was distorted at such high cell counts (Supple-
mentary Fig. 22c, d). We showed that methods which require
UMAP (or t-SNE) before parsing MOCA are highly susceptible to
user defined input parameters that can significantly and unpre-
dictably fragment the global topology.

We also assessed whether VIA can be generalized to non-
transcriptomic single-cell datasets, especially those with sig-
nificant dimensionality disparity compared to sequencing data.
We first applied VIA to the mESC CyTOF dataset and showed
that the lazy-teleporting MCMCs strategy in VIA enables it to
outperform other methods in correctly correlating the pseudo-
time of the mesoderm development to the annotated dates. We
finally explored the utility of VIA in analyzing emerging image-
based single-cell biophysical profile data. We showed that VIA
not only successfully identified the progression of G1/S/G2 stages,
but also revealed the subtle changes in biophysical-related cellular
properties, which are otherwise obscured in other methods. VIA
could thus motivate new strategies in single-cell analysis that link
cellular biophysical phenotypes and biochemical/biomolecular
information, to discover how molecular signatures translate into
the emergent cellular biophysical properties, which has already
shown effective in studies of cancer, ageing, and drug responses.
Overall, VIA offers an advancement to TI methods to robustly
study a diverse range of single-cell data. Together with its scalable
computation and efficient runtime, VIA could be useful for
multifaceted exploratory analysis to uncover biological processes,
potentially those deviated from the healthy trajectories

Methods
VIA algorithm. VIA applies a scalable probabilistic method to infer cell state
dynamics and differentiation hierarchies by organizing cells into trajectories along
a pseudotime axis in a nearest-neighbor graph which is the basis for subsequent
random walks. Single cells are represented by graph nodes that are connected based
on their feature similarity, e.g., gene expression, transcription factor accessibility
motif, protein expression, or morphological features of cell images. A typical
routine in VIA mainly consists of four steps:

Accelerated and scalable cluster-graph construction. VIA first represents the single-
cell data in a k-nearest-neighbor (KNN) graph where each node is a cluster of
single cells. The clusters are computed by our recently developed clustering algo-
rithm, PARC14. In brief, PARC is built on hierarchical navigable small world46

accelerated KNN graph construction and a fast community-detection algorithm
(Leiden method47), which is further refined by data-driven pruning. The combi-
nation of these steps enables PARC to outperform other clustering algorithms in
computational run-time, scalability in data size and dimension (without relying on
subsampling of large-scale, high-dimensional single-cell data (>1 million cells)),
and sensitivity of rare-cell detection. We employ the cluster-level topology, instead
of a single-cell-level graph, for TI as it provides a coarser but clearer view of the key
linkages and pathways of the underlying cell dynamics without imposing con-
straints on the graph edges. Together with the strength of PARC in clustering
scalability and sensitivity, this step critically allows VIA to faithfully reveal complex
topologies namely cyclic, disconnected and multifurcating trajectories (Fig. 2). If
the user prefers to use another clustering method or group-labels of cell types
according to apriori information, VIA can easily accommodate such a substitution
and the robustness of the lazy-teleporting random walks to different clustering
approaches is shown in Supplementary Note 6 and Figs. S30–32 for real and
synthetic data. The root cell is initialized by the user in one of two ways: If for
instance there are some cell type/group/cluster level labels available in advance, the
desired starting group can be indicated to VIA, which will then automatically select
a cluster in its cluster-graph that contains a majority of this particular cell type/
group classification. In the case of many clusters satisfying this criteria, it subse-
quently proceeds to select the cluster in the VIA graph that has connectivity
metrics indicative of a root (leaf) node (such as high out degree, low betweenness
and low centrality). The user can also choose to provide a specific single cell as the
root node. In the case that the user wishes to select the root based on the VIA

graph, one would save the VIA-cluster-graph labels and use them to guide selection
of the root node as described in the first approach.

Probabilistic pseudotime computation. The trajectories are then modeled in VIA as:
(i) lazy-teleporting random walk paths along which the pseudotime is computed
and further refined by (ii) MCMC simulations. The root is a single cell chosen by
the user.These two sub-steps are detailed as follows:

Lazy-teleporting random walk
We first compute the pseudotime as the expected hitting time of a lazy-teleporting
random walk on an undirected cluster-graph generated in Step 1. The lazy-teleporting
nature of this random walk ensures that as the sample size grows, the expected hitting
time of each node does not converge to the stationary probability given by local node
properties, but instead continues to incorporate the wider global neighborhood
information15. Here we highlight the derivation of the closed form expression of the
hitting time of this modified random walk with a detailed derivation in Supplementary
Note 2.
The cluster graph constructed in VIA is defined as a weighted connected graph G (V, E,
W) with a vertex set V of n vertices (or nodes), i.e., V ¼ fv1; � � � ; vng and an edge set E,
i.e., a set of ordered pairs of distinct nodes. W is an n ´ n weight matrix that describes a
set of edge weights between node i and j, wij ≥ 0 are assigned to the edges ðvi; vjÞ. For an
undirected graph, wij ¼ wji , the n ´ n probability transition matrix, P, of a standard
random walk on G is given by

P ¼ D�1W ð1Þ
where D is the n × n degree matrix, which is a diagonal matrix of the weighted sum of the
degree of each node, i.e., the matrix elements are expressed as

dij
∑
k
wik

0

; i ¼ j

; i≠ j

(
ð2Þ

where k are the neighboring nodes connected to node i. Hence, dii (which can be reduced
as di) is the degree of node i. We next consider a lazy random walk, defined as Z, with
probability (1 � x) of being lazy (where 0< x < 1), i.e., staying at the same node, then

Z ¼ xP þ ð1 � xÞI ð3Þ
where I is the identity matrix. When teleportation occurs with a probability (1 � α), the
modified lazy-teleporting random walk Z′ can be written as follows, where Jis an n ´ n
matrix of ones.

Z0 ¼ αZ þ ð1 � αÞ 1
n
J ð4Þ

Here we adapt the concept of personalized PageRank vector, originally used for recording
(or ranking) personal preferences of a web-surfer toward particular website pages48, to
rank the importance of other nodes (clusters of cells) to a given node, depending on the
similarities among nodes (related to P in the graph), and the lazy-teleporting random
walk characteristics in the graph (set by probabilities of teleporting and being lazy). Based
on this concept, one could model the likelihood to transit from one node (cluster of cells)
to another, and thus construct the pseudotime based on the hitting time, which is a
parameter describing the expected number of steps it takes for a random walk that starts
at node i and visit node j for the first time. Consider the teleporting probability of
(1 � α) and a seed vector s specifying the initial probability distribution across the n
nodes (such that ∑m sm ¼ 1, where sm is the probability of starting at node m) the
personalized PageRank vector prαðsÞ (which is defined as a column vector) is the unique
solution to49

prαðsÞT ¼ αprαðsÞTZ þ ð1 � αÞsT ð5Þ
Substituting Z (Eq. (3)) into Eq. (5), we can express the personalized PageRank vector
prαðsÞ in terms of the inverse of the β-normalized Laplacian, Rβ;NL of the modified
random walk (Supplementary Note 2), i.e.,

prαðsÞT ¼ βsTD�0:5Rβ;NLD
0:5 ð6Þ

where β ¼ 2ð1� αÞ
ð2� αÞ , and Rβ;NL ¼ ∑m¼ 1

ΦmΦ
T
m

½βþ 2xð1� βÞηm �. Φm and ηm are the mth eigenvector
and eigenvalue of the normalized Laplacian. In the expression of Rβ;NL , the β and x
regulate the weight of contribution in each eigenvalue-eigenvector pair of the summation
such that the first eigenvalue-eigenvector pair (corresponding to the stationary dis-
tribution and given by the local-node degree-properties) remains included in the overall
expression, but does not overwhelm the global information provided by subsequent
“eigen-pairs”. Moreover, computation of Rβ;NL is not limited to a subset of the first k
eigenvectors (bypassing the need for the user to select a suitable threshold or subset of
eigenvectors) since the dimensionality is not on the order of number of cells, but equal to
the number of clusters and hence all eigenvalue–eigenvector pairs can be incorporated
without causing a bottleneck in runtime.
The expected hitting time from node q to node r is given by50,

hαðq; rÞ ¼ ½prαðerÞT�ðrÞ
dr

� ½prαðerÞT�ðqÞ
dq

ð7Þ

where eiis an indicator vector with 1 in the ith entry and 0 elsewhere (i.e., sm ¼ 1 if
m ¼ i and sm ¼ 0 if m≠ i). We can substitute Eq. (6) into Eq. (7), making use of the
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fact that 1
dr

¼ ½D�1er�ðrÞ, and D�0:5Rβ;NLD
�0:5 is symmetric, to obtain a closed form

expression of the hitting time in terms of Rβ;NL

hαðq; rÞ ¼ βðer � eqÞTD�0:5Rβ;NLD
�0:5er ð8Þ

MCMC simulation
The hitting time metric computed in Step-1 is used to infer graph-directionality. Instead
of pruning edges in the “reverse” direction, edge-weights are biased based on the time
difference between nodes using the logistic function with growth factor b= 1.

f ðtÞ ¼ 1
1 þ e�bðt0 � t1Þ

ð9Þ

We then recompute the pseudotimes on the forward biased graph: Since there is no
closed form solution of hitting times on a directed graph, we perform MCMC simulations
(parallely processed to enable fast simulations of 1000 s of teleporting, lazy random walks
starting at the root node of the cluster graph) and use the first quartile of the simulated
pseudotime values for a respective node as the refined pseudotime for that node relative
to the root. This refinement step ensures that the pseudotime is robust to the spurious
links (or conversely, links that are too weakly weighted) that can distort calculations
based purely on the closed form solution of hitting times (Supplementary Fig. 7d). By
using this 2-step pseudotime computation, VIA mitigates the issues of convergence issues
and spurious edge-weights, both of which are common in random-walk pseudotime
computation on large and complex datasets15.

Automated terminal-state detection. The algorithm uses the refined directed and
weighted graph (edges are re-weighted using the refined pseudotimes) to predict
which nodes represent the terminal states based on a consensus vote of pseudotime
and multiple vertex connectivity properties, including out-degree (i.e., the number
of edges directed out of a node), closeness C(q), and betweenness B(q).

CðqÞ ¼ 1
∑q≠ r lðq; rÞ ð10Þ

BðqÞ ¼ ∑
r ≠ q≠ t

σrtðqÞ
σrt

ð11Þ

lðq; rÞ is the distance between node q and node r (i.e., the sum of edges in a shortest
path connecting them). σrt is the total number of shortest paths from node r to
node t. σrtðqÞ is the number of these paths passing through node q. The consensus
vote is performed on nodes that score above (or below for out-degree) the median
in terms of connectivity properties. We show on multiple simulated and real
biological datasets that VIA more accurately predicts the terminal states, across a
range of input data dimensions and key algorithm parameters, than other methods
attempting the same (Supplementary Fig. 1).

Automated trajectory reconstruction. VIA then identifies the most likely path of
each lineage by computing the likelihood of a node traversing towards a particular
terminal state (e.g., differentiation). These lineage likelihoods are computed as the
visitation frequency under lazy-teleporting MCMC simulations from the root to a
particular terminal state, i.e., the probability of node i reaching terminal-state j as
the number of times cell i is visited along a successful path (i.e., terminal-state j is
reached) divided by the number of times cell i is visited along all of the simulations.
In contrast to other trajectory reconstruction methods which compute the shortest
paths between root and terminal node1,2, the lazy-teleporting MCMC simulations
in VIA offer a probabilistic view of pathways under relaxed conditions that are not
only restricted to the random-walk along a tree-like graph, but can also be gen-
eralizable to other types of topologies, such as cyclic or connected/disconnected
paths. In the same vein, we avoid confining the graph to an absorbing Markov
chain18,51 (AMC) as this places prematurely strict/potentially inaccurate con-
straints on node-to-node mobility and can impede sensitivity to cell fates (as
demonstrated by VIA’s superior cell fate detection across numerous datasets
(Supplementary Fig. 1).

Downstream visualization and analysis. VIA generates a visualization that
combines the network topology and single-cell level pseudotime/lineage probability
properties onto an embedding based on UMAP or PHATE. Generalized additive
models (GAMs) are used to draw edges found in the high-dimensional graph onto
the lower dimensional visualization (Fig. 1). An unsupervised downstream analysis
of cell features (e.g., marker gene expression, protein expression or image phe-
notype) along pseudotime for each lineage is performed (Fig. 1). Specifically, VIA
plots the expression of features across pseudotime for each lineage by using the
lineage likelihood properties to weight the GAMs. A cluster-level lineage pathway is
automatically produced by VIA to visualize feature heat maps at the cluster-level
along a lineage-path to see the regulation of genes. VIA provides the option of gene
imputation before plotting the lineage specific gene trends. The imputation is fast
as it relies on the single-cell KNN (scKNN) graph computed in Step 1. Using an
affinity-based imputation method52, this step computes a “diffused” transition
matrix on the scKNN graph used to impute and denoise the original gene
expressions.

Simulated data. We employed the DynToy5 (https://github.com/dynverse/dyntoy)
package, which generates synthetic single-cell gene expression data (~1000 cells ×
1000 “genes”), to simulate different complex trajectory models. Using these
datasets, we tested that VIA consistently and more accurately captures both tree
and non-tree like structures compared to other methods (Fig. 2). The types of
topologies span multifurcating, cyclic, connected (hybrid of cyclic and multi-
furcating) and disconnected (hybrid of the first three). All methods are subject to
the same data preprocessing steps, PCA dimension reduction, and root-cell to
initialize the path.

The composite accuracy metric assesses multiple layers of the inferred
trajectory, taking into account the topological similarity between the reference
model and the inferred topology, the correlation between the real and “pseudo”
times, and the prediction accuracy of the terminal cell fates (lineages). Absolute
measurements of similarities are converted into a percentage scale before taking the
arithmetic mean (of the 5 metrics, see below) which gives the composite accuracy.
Since PAGA does not predict lineages, the composite score is simply the average of
the first 4 metrics for PAGA. A detailed explanation of the 5 metrics can be referred
to Supplementary Note 3. The 5 metrics are:

Ipsen–Mikhailov (IM). is used to measure the similarity of global graph topology.
The IM ranges from 0 to 1 and equals the difference in spectral densities of two
graphs.

Graph edit distance (GED). is the cost of converting GTI to GREF with the least
possible number of operations. Each operation has a cost of one and includes
insertion/deletion of edges and nodes.

F1-branch score. We compute the harmonic mean of recall and precision for the
local branch accuracy relative to the reference model. A False Negative edge in the
inferred model is when there is an edge in the reference model between cell types
that is absent in the inferred trajectory. A False Positive edge in the inferred model
is an edge that is not actually present in the reference model.

Temporal correlation. Pearson correlation coefficient is used as a measure of how
closely the inferred pseudotime follows the true sampling times.

F1-cell fate score. Similar to the F1-branch score, we use the harmonic mean of
recall and precision to quantify the prediction accuracy of terminal states.

Benchmarked methods. The methods were mainly chosen based on their superior
performance in a recent large-scale benchmarking study5, including a select few
recent methods claiming to supersede those in the study. Specifically, recent and
popular methods exhibiting reasonable scalability, and automated cell fate pre-
diction in multi-lineage trajectories, not limited to tree-topologies, were favored as
candidates for benchmarking (see Supplementary Table 1 for the key character-
istics of methods). Performance stress-tests in terms of lineage detection of each
biological dataset, automated gene trend prediction along lineages, and pseudotime
correlation were conducted over a range of key input parameters (e.g., numbers of
k-nearest neighbors, highly variable genes (HVGs), PCs) and preprocessing pro-
tocols (see Supplementary Fig. 1). Methods that focus exclusively on a single data
modality or on topology without predicting cell fates and their lineage pathways
(e.g., TinGa53, Tempora54) were generally not included in the benchmarking as
they would require manual selection of cell fates and differentiation pathways. All
comparisons were run on a computer with an Intel(R) Xeon (R) W-2123 central
processing unit (3.60 GHz, 8 cores) and 126 GB RAM.

Details of parameter settings for each of the benchmarked methods can be
found in Supplementary Tables 4, 5, with an emphasis on the rationale for changes
deviating from default parameters.

Quantifying terminal state prediction accuracy for parameter tests was done
using the F1-score, defined as the harmonic mean of recall and precision and
calculated as:

F1 ¼ tp
tp þ 0:5ðfp þ fnÞ ð12Þ

Where tp is a true-positive: the identification of a terminal cluster that is in fact a
final differentiated cell fate; fp is a false positive identification of a cluster as
terminal when in fact it represents an intermediate state; and fn is a false negative
where a known cell fate fails to be identified.

Downstream analysis enabled by the automated lineage prediction capabilities of
each method is key to facilitating the exploration of biological data. The
unsupervised gene-trend analysis inferred by VIA is compared to the lineage gene-
trends predicted by other methods both quantitatively and qualitatively. We follow
an approach used by Chen et al.3 where pseudotime is correlated against expression
of a marker gene known to monotonically increase along the lineage. The gene-
expression of such markers can be considered a surrogate for the correct sampling
time and thus the resulting correlation is an indication of the accuracy of cell
ordering by pseudotime. We also provide a side-by-side comparison of the predicted
topology and gene-trends generated by each method to visually assess how well
separated the predicted lineages are (e.g., if multiple lineages that represent distinct
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cell fates exhibit significant cross-talk in the plotted trends or uniquely express the
genes most relevant to their lineages). The Pearson correlation coefficient is given by
ρx;y , where σX is the standard deviation and μX is the mean of X

ρx;y ¼ E½ðX � μX Þ � ðY � μY Þ�
σXσY

ð13Þ

Built-in functions for gene-trend plotting (wherever available), and in other
cases manually selection of branches/clusters or extension of a method by adding
GAMs to general gene-trend curves was required to facilitate comparison (e.g.,
PAGA and STREAM). Additionally, when methods cannot automatically detect all
the relevant lineages, we either chose the most relevant lineage (e.g., for the
megakaryocyte lineage, we plotted its CD41 marker gene along the detected
erythroid lineage which often absorbed the smaller megakaryocytic cell line), or we
noted that the lineage was missed, (e.g., in the small delta cell population in the
endocrine dataset) when the lost lineage was not an obvious part of another lineage.
Given that these nuances are not necessarily captured by the correlation
coefficient,the outputs of the gene-trend plots inferred by each method are shown
for three datasets which have multiple lineages of different abundances, and well
known lineage markers (scRNA-seq and scATAC-seq hematopoiesis, and
endocrine genesis in Supplementary Figs. 9, 11, 15).

PAGA55. It uses a cluster-graph representation to capture the underlying topology.
PAGA computes a unified pseudotime by averaging the single-cell level diffusion
pseudotime computed by DPT, but requires manual specification of terminal cell
fates and clusters that contribute to lineages of interest in order to compare gene
expression trends across lineages.

Palantir2. It uses diffusion-map56. components to represent the underlying tra-
jectory. Pseudotimes are computed as the shortest path along a KNN-graph con-
structed in a low-dimensional diffusion component space, with edges weighted
such that the distance between nodes corresponds to the diffusion pseudotime57

(DPT). Terminal states are identified as extrema of the diffusion maps that are also
outliers of the stationary distribution. The lineage-likelihood probabilities are
computed using Absorbing Markov Chains (constructed by removing outgoing
edges of terminal states, and thresholding reverse edges).

Slingshot1. It is designed to process low-dimensional embeddings of the single-cell
data. By default Slingshot runs clustering based on Gaussian mixture modeling and
recommends using the first few PCs as input. Slingshot connects the clusters using
a minimum spanning tree and then fits principle curves for each detected branch. It
uses the orthogonal projection against each principal curve to fit a separate
pseudotime for each lineage, and hence the gene expressions cannot be compared
across lineages. Also, the runtimes are prohibitively long for large datasets or high
input dimensions.

CellRank13. This method combines the information of RNA velocity (computed
using scVelo58) and gene-expression to infer trajectories. Given it is mainly suited
for the scRNA-seq data, with the RNA-velocity computation limiting the overall
runtime for larger dataset, we limit our comparison to the pancreatic dataset which
the authors of CellRank used to highlight its performance.

Monocle34. The workflow consists of three steps: the first is to project the data to
two or three dimensions using UMAP (this is a strict requirement), followed by
Louvain clustering on a K-Nearest Neighbor graph constructed in the low-
dimensional UMAP space. A cluster-graph is then created and partitioned to
deduce disconnected trajectories. Subsequently, it learns a principal graph in the
low-dimensional space along which it calculates pseudotimes as the geodesic dis-
tance from root to cell.

STREAM3. After selecting the desired number of PCs, STREAM projects the cells
to a lower dimensional PCA space using a non-linear dimensionality reduction
method (such as Modified Locally Linear Embedding, Spectral Embedding or
UMAP). In the embedded space, STREAM constructs a tree-model trajectory using
an Elastic Principal Graph implementation called ElPiGraph. The results are
visualized as a branching structure or re-organized as a subway plot relative to a
user-designated starting branch.

Biological data. The preprocessing steps described below for each dataset are not
included in the reported runtimes as these steps are typically very fast, (typically
<1–10% of the total runtime depending on the method. E.g., only a few minutes for
pre-processing 100,000 s of cells) and only need to be performed once as they
remain the same for all subsequent analyses. It should also be noted that visuali-
zation (e.g., UMAP, t-SNE) are not included in the runtimes. VIA provides a
subsampling option at the visualization stage to accelerate this process for large
datasets without impacting the previous computational steps. However, to ensure
fair comparisons between TI methods (e.g., other methods do not have an option
to compute the embedding on a subsampled input and transfer the results between
the full trajectory and the sampled visualization, or rely on a slow version of tSNE),

we simply provide each TI method with a precomputed visualization embedding
on which the computed results are projected.

ScRNA-seq of mouse pre-B cells. This dataset21 models the pre-BI cell (Hardy
fraction C′) process during which cells progress to the pre-BII stage and B cell
progenitors undergo growth arrest and differentiation. Measurements were
obtained at 0, 2, 6, 12, 18, and 24 h (h) for a total of 313 cells × 9075 genes. We
follow a standard Scanpy preprocessing recipe59 that filters cells with low counts,
and genes that occur in <3 cells. The filtered cells are normalized by library size and
log transformed. The top 5000 HVG are retained. Cells are renormalized by library
count and scaled to unit variance and zero mean. VIA identifies the terminal state
at 18–24 h and accurately recapitulates the gene expression trends21 along inferred
pseudotime of IgII1, Slc7a5, Fox01, Myc, Ldha, and Lig4. (Supplementary Fig. 6a).
We show the results generalize across a range of PCs for two values of K of the
graph with higher accuracy in locating the later cell fates than Slingshot and
Palantir (Supplementary Fig. 6b).

ScRNA-seq of human CD34+ bone marrow cells. This is a scRNA-seq dataset of
5800 cells representing human hematopoiesis2. We used the filtered, normalized
and log-transformed count matrix provided by Setty et al.2 with PCA performed on
all the remaining (~14,000) genes. The cells were annotated using SingleR60. which
automatically labeled cells based on the hematopoietic reference dataset Noversh-
tern Hematopoietic Cell Data—GSE2475961. The annotations are in agreement with
the labels inferred by Setty et al. for the seven clusters, including the root HSCs
cluster that differentiates into six different lineages: monocytes, erythrocytes, and B
cells, as well as the less populous megakaryocytes, cDCs, and pDCs. VIA con-
sistently identifies these lineages across a wider range of input parameters and data
dimensions (e.g., the number of K and PCs provided as input to the algorithms see
Fig. 2p, and Supplementary Figs. 7–9). Notably, the upregulated gene expression
trends of the small populations can be recovered in VIA, i.e., pDC and cDC show
elevated CD123 and CSF1R levels relative to other lineages, and the upregulated
CD41 expression in megakaryocytes (Supplementary Figs. 7–9).

ScRNA-seq of human embryoid body. This is a midsized scRNA-seq dataset of
16,825 human cells in embryoid bodies (EBs)17. We followed the same pre-
processing steps as Moon et al. to filter out dead cells and those with too high or
low library count. Cells are normalized by library count followed by square root
transform. Finally the transformed counts are scaled to unit variance and zero
mean. The filtered data contained 16,825 cells × 17,580 genes. PCA is performed on
the processed data before running each TI method. VIA identifies six cell fates,
which, based on the upregulation of marker genes as cells proceed towards
respective lineages, are in accord with the annotations given by Moon et al. (see the
gene heatmap and changes in gene expression along respective lineage trajectories
in Supplementary Fig. 13). Note that Palantir and Slingshot do not capture the
cardiac cell fate, and Slingshot also misses the neural crest (see the F1-scores
summary for terminal state detection Supplementary Fig. 13).

ScRNA-seq of mouse organogenesis cell atlas. This is a large and complex scRNA-seq
dataset of mouse organogenesis cell atlas (MOCA) consisting of 1.3 million cells4. The
dataset contains cells from 61 embryos spanning 5 developmental stages from early
organogenesis (E9.5–E10.5) to organogenesis (E13.5). Of the 2 million cells profiled, 1.3
million are “high-quality” cells that are analysed by VIA. The runtime is ~40min which
is in stark contrast to the next fastest tool Palantir which takes 4 h (excluding visuali-
zation). The authors of MOCA manually annotated 38 cell-types based on the differ-
entially expressed genes of the clusters. In general, each cell type exclusively falls under
one of 10 major and disjoint trajectories inferred by applying Monocle3 to the UMAP
of MOCA. The authors attributed the disconnected nature of the ten trajectories to the
paucity of earlier stage common predecessor cells. We followed the same steps as Cao
et al.4 to retain high-quality cells (i.e., remove cells with less than 400 mRNA, and
remove doublet cells and cells from doubled derived sub-clusters). PCA was applied to
the top 2000 HVGs with the top 30 PCs selected for analysis. VIA analyzed the data in
the high-dimensional PC space. We bypass the step in Monocle34 which applies UMAP
on the PCs prior to TI as this incurs an additional bias from choice of manifold-learning
parameters and a further loss in neighborhood information. As a result, VIA produces a
more connected structure with linkages between some of the major cell types that
become segregated in UMAP (and hence Monocle3), and favors a biologically relevant
interpretation (Fig. 2, Supplementary Fig. 11). A detailed explanation of these con-
nections (graph-edges) extending between certain major groups using references to
literature on organogenesis is presented in Supplementary Note 3.

ScRNA-seq of murine endocrine development23. This is an scRNA-seq dataset of E15.5
murine pancreatic cells spanning all developmental stages from an initial endocrine
progenitor-precursor (EP) state (low level of Ngn3, or Ngn3low), to the intermediate EP
(high level of Ngn3, or Ngn3high) and Fev+ states, to the terminal states of hormone-
producing alpha, beta, epsilon, and delta cells23. Following steps by Lange et al.18 we
preprocessed the data using scVelo to filter genes, normalize each cell by total counts
over all genes, keep the top most variable genes, and take the log-transform. PCA was
applied to the processed gene matrix. We assessed the performance of VIA and other TI
methods (CellRank, Palantir, Slingshot) across a range of number of retained HVGs
and input PCs (Fig. 2m, Supplementary Figs. 16, 16, 18, 29).
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ScATAC-seq of human bone marrow cells. This scATAC-seq data profiles 3072 cells
isolated from human bone marrow using FL activated cell sorting (FACS), yielding
9 populations20: HSC, MPP, CMP, CLP, LMPP, GMP, MEP, mono, and plasma-
cytoid DCs (Fig. 3a and Supplementary Figs. 10, 11). We examined TI results for
two different preprocessing pipelines to gauge how robust VIA is on the scATAC-
seq analysis which is known to be challenging for its extreme intrinsic sparsity. We
used the pre-processed data consisting of PCA applied to the z-scores of the
transcription factor (TF) motifs used by Buenrostro et a20. Their approach corrects
for batch effects in select populations and weighting of PCs based on reference
populations and hence involves manual curation. We also employed a more gen-
eral approach used by Chen et al.22 which employs ChromVAR to compute k-mer
accessibility z-scores across cells. VIA infers the correct trajectories and the
terminal cell fates for both of these inputs, again across a wide range of input
parameters (Fig. 3d and Supplementary Figs. 11–13).

ScRNA-seq and scATAC-seq of Isl1+ cardiac progenitor cells. This time-series dataset
captures murine Isl1+ cardiac progenitor cells (CPCs) from E7.5 to E9.5 characterized
by scRNA-seq (197 cells) and scATAC-seq (695 cells)26. The Isl1+ CPCs are known to
undergo multipotent differentiation to cardiomyocytes or endothelial cells. For the
scRNA-seq data, the quality filtered genes and the size-factor normalized expression
values are provided by Jia et al.26 as a “Single Cell Expression Set” object in R. Similarly,
the cells in the scATAC-seq experiment were provided in a “SingleCellExperiment”
object with low quality cells excluded from further analysis. The accessibility of peaks
was transformed to a binary representation as input for TF-IDF (term frequency-
inverse document frequency) weighting prior to singular value decomposition (SVD).
The highlighted TF motifs in the heatmap (Fig. 2j) correspond to those highlighted by
Jia et al. We tested the performance when varying the number of SVDs used. We also
considered the outcome when merging the scATAC-seq and scRNA-seq data using
Seurat362. Despite the relatively low cell count of both datasets, and the relatively under-
represented scRNA-seq cell count, the two datasets overlapped reasonably well and
allowed us to infer the expected lineages in an unsupervised manner (Fig. 2d and
Supplementary Fig. 8. In contrast, Jia et al. performed a supervised TI by manually
selecting cells relevant to the different lineages (for the scATAC-seq cells) and choosing
the two diffusion components that best characterize the developmental trajectories in
low dimension26.

Mass cytometry data of mouse embryonic stem cells (mESC). This is a mass cytometry
(or CyTOF) dataset, consisting of 90,000 cells and 28 antibodies (corresponding to
~7000 cells each from Day 0–11 measurements), that represents differentiation of
mESC to mesoderm cells36. An arcsinh transform with a scaling factor of five was
applied on all features—a standard procedure for CyTOF datasets, followed by nor-
malization to unit variance and zero mean. All 28 antibodies are used by the TI
methods (with the exception of Slingshot which requires PCA followed by subsetting of
the first 5 PCs in order to computationally handle the high cell count) (Supplementary
Fig. 9). To improve Palantir performance we used 5000 waypoints (instead of default
1200) but this takes almost 20min to complete (excluding time taken for embedding
the visualization). VIA runs in ~3min and produces results consistent with the known
ordering and identifies regions of Day 10–11 cells.

Single-cell biophysical phenotypes derived from imaging flow cytometry. This is the
in-house dataset of single-cell biophysical phenotypes of two different human
breast cancer types (MDA-MB231 and MCF7). Following our recent image-based
biophysical phenotyping strategy63,64 we defined the spatially-resolved biophysical
features of a cell in a hierarchical manner based on both bright-field and QPI
captured by the FACED imaging flow cytometer (i.e., from the bulk features to the
subcellular textures)65. At the bulk level, we extracted the cell size, dry mass
density, and cell shape. At the subcellular texture level, we parameterized the global
and local textural characteristics of optical density and mass density at both the
coarse and fine scales (e.g., local variation of mass density, its higher-order sta-
tistics, phase entropy radial distribution etc.). This hierarchical phenotyping
approach63,64 allowed us to establish a single-cell biophysical profile of 38 features,
which were normalized based on the z-score (see Supplementary Tables 4, 5). All
these features, without any PCA, are used as input to VIA. In order to weigh the
features, we use a mutual information classifier to rank the features, based on
the integrated FL intensity of the FL FACED images of the cells (which serve as the
ground truth of the cell-cycle stages). Following normalization, the top three
features (which relate to cell size) are weighted (using a factor between 3 and 10).

Imaging flow cytometry experiment
FACED imaging flow cytometer setup. A multimodal FACED IFC platform was used
to obtain the quantitative phase and FL images of single cells in microfluidic flow at
an imaging throughput of ~70,000 cells/s. The light source consisted of an Nd:YVO
picosecond laser (center wavelength= 1064 nm, Time-Bandwidth) and a
periodically-poled lithium niobate (PPLN) crystal (Covesion) for second harmonic
generation of a green pulsed beam (center wavelength= 532 nm) with a repetition
rate of 20MHz. The beam was then directed to the FACED module, which mainly
consists of a pair of almost-parallel plane mirrors. This module generated a linear
array of 50 beamlets (foci) which were projected by an objective lens (40X, 0.6NA,
MRH08430, Nikon) on the flowing cells in the microfluidic channel for imaging.
Each beamlet was designed to have a time delay of 1 ns with the neighboring beamlet

in order to minimize the FL crosstalk due to the FL decay. Detailed configuration of
the FACED module can be referred to Wu et al.13. The epi-fluorescence image signal
was collected by the same objective lens and directed through a band-pass dichroic
beamsplitter (center: 575 nm, bandwidth: 15 nm). The filtered orange FL signal was
collected by the photomultiplier tube (PMT) (rise time: 0.57 ns, Hamamatsu). On the
other hand, the transmitted light through the cell was collected by another objective
lens (40X, 0.8NA, MRD07420, Nikon). The light was then split equally by the 50:50
beamsplitter into two paths, each of which encodes different phase-gradient image
contrasts of the same cell (a concept similar to Scherlien photography66). The two
beams are combined, time-interleaved, and directed to the photodetector (PD)
(bandwidth: >10 GHz, Alphalas) for detection. The signals obtained from both PMT
and PD were then passed to a real-time high-bandwidth digitizer (20 GHz, 80 GS/s,
Lecroy) for data recording.

Cell culture and preparation. MDA-MB231 (ATCC) and MCF7 (ATCC), which are
two different breast cancer cell lines, were used for the cell cycle study. The culture
medium for MDA-MB231was ATCC modified RPMI 1640 (Gibco) supplemented
with 10% fetal bovine serum (FBS) (Gibco) and 1% antibiotic-antimycotic (Anti-
Anti) (Gibco), while that for MCF7 was DMEM supplemented with 10% FBS
(Gibco) and 1% Anti-Anti (Gibco). The cells were cultured inside an incubator
under 5% CO2 and 37 °C, and subcultured twice a week. 1e6 cells were pipetted out
from each cell line and stained with Vybrant DyeCycle orange stain (Invitrogen).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Pancreatic data used in this study are available in the Gene Expression Omnibus
(GEO) database under accession code GSE132188. The Cardiac progenitor data used in
this study are available in the ENA repository under the accession code PRJEB23303 or
from [https://github.com/loosolab/cardiac-progenitors]. The B-cell data used in this
study are available in the STATegraData GitHub repository. [https://github.com/
STATegraData/STATegraData] and under the GEO database under accession code
GSE75417. The Mass cytometry mesoderm data used in this study are available in the
Cytobank database [https://community.cytobank.org/cytobank/experiments/71953]. The
scRNA-seq Human Hematopoiesis data used in this study are available in the Human
Cell Atlas data portal database [https://data.humancellatlas.org/explore/projects/
091cf39b-01bc-42e5-9437-f419a66c8a45]. The Embryoid Body data used in this study are
available in the Mendeley Data database at [https://doi.org/10.17632/v6n743h5ng.1]. The
Mouse organogenesis data used in this study are available in the NCBI Gene Expression
Omnibus database under accession code GSE119945. The FACED cell cycle data used in
this study are available at https://github.com/ShobiStassen/VIA and on FigShare database
[https://doi.org/10.6084/m9.figshare.13601405.v1]. The scATAC-seq Hematopoiesis data
used in this study are available in the GEO database under accession code GSE96772.
Processed scATAC-seq data, which include PC values and TF scores per cell can be
found in Data S1. [https://doi.org/10.1016/j.cell.2018.03.074]. The Toy Data used in the
study is available in [https://zenodo.org/record/5205377] https://doi.org/10.5281/
zenodo.5205377 [https://github.com/ShobiStassen/VIA].

Code availability
VIA is available as a pip installable python library “pyVIA” with tutorials and sample
data available on https://github.com/ShobiStassen/VIA, https://pypi.org/project/pyVIA/
and https://zenodo.org/record/520537767.
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